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An explicit bound of integral points on modular curves

Yulin Cai

Abstract. In this paper, we give the constant C in [9, Theorem 1.2] by using an
explicit Baker’s inequality, hence we obtain an explicit bound for the heights of the
integral points on modular curves.

1 Introduction

Let X be a smooth, connected projective algebraic curve defined over a number field K,
and let x ∈ K(X) be a non-constant rational function on X. If S is a finite set of places
of K (including all the infinite places), we call a point P ∈ X(K) an S-integral point if
x(P ) ∈ OS, where OS = OS,K is the ring of S-integers in K. The set of S-integral points
is denoted by X(OS, x).

According to the classical theorem of Siegel [11] the set X(OS, x) is finite if at least
one of the following conditions is satisfied:

the genus g(X) ≥ 1; (1)

x admits at least 3 poles in X(Q̄). (2)

Unfortunately, the existing proofs of this theorem for general curves are not effective, that
is they do not imply any explicit expression bounding the heights of integral points. But for
many pairs (X, x), the effective proofs of this theorem were discovered by Baker’s method,
see [1], [2] and the references therein.

Sha [9] considered the case where X = XΓ is the modular curve corresponding to a
congruence subgroup Γ of SL2(Z), and x = j is the j-invariant.

To state his result, we introduce some notations. For a congruence subgroup Γ as
above, the number of cusps on XΓ is denoted by v∞(Γ). For a number field K, let MK be
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the set of all places of K, and S ⊆ MK a finite subset containing all infinite places. We
put d = [K : Q] and s = |S|. Let OK be the ring of integers of K. We define the following
quantity

∆(N) :=
√
NdN |D|ϕ(N)(log(NdN |D|ϕ(N)))dϕ(N) ×

∏
v∈S
v-∞

logNK/Q(v)


ϕ(N)

as a function of N ∈ N+, where D is the absolute discriminant of K, ϕ(N) is Euler’s
totient function, and the norm NK/Q(v) of a place v, by definition, is equal to |OK/pv|
when v is finite and pv is its corresponding prime ideal, and is set to be 1 if v is infinite.

Sha [9] proved the following theorem.

Theorem 1.1 ([9] Theorem 1.2). Let Γ be of level N . If v∞(Γ) ≥ 3, then

h(j(P )) ≤ (CdsM2)2sM(log(dM))3sM`dM∆(M) for every P ∈ XΓ(OS, j),

where C is an absolute effective constant, ` is the maximal prime such that there exists
v ∈ S with v|`, or ` = 1 if S only contains infinite places, and M is defined as following:

M =


N if N is not a power of any prime;

3N if N is a power of 2;

2N if N is a power of an odd prime.

(Here h(·) is the standard absolute logarithmic height defined on the set Q̄ of algebraic
numbers.)

For certain applications it is useful to have an explicit value of the constant C from
Theorem 1.1. In this note we prove the following result.

Theorem 1.2. The constant C in Theorem 1.1 can be taken to be 214.

In the proof, we follow the main lines of Sha’s argument, with some minor modifications.
We calculate explicitly the implicit constants occurring therein.

For a number field K, v ∈MK , we define the valuation | · |v on K as following: for any
α ∈ K:

|α|v := |σ(α)|, if v is infinite with embedding σ;

|α|v := NK/Q(v)− ordv(α)/[Kv :Qv ], if v is finite.

2 Upper bound of S-regulator

As before, for a number field K, and a finite subset S ⊆ MK containing all infinite
places, we put d = [K : Q], s = |S| and r = s− 1. We fix v0 ∈ S and set

S ′ = S \ {v0} = {v1, . . . , vr}.
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The S-regulator R(S) is defined as

R(S) = | det(dvi log |ξk|vi)1≤i,k≤r|,

where dvi = [Kvi : Qvi ] is the local degree of vi for each i, and {ξ1, · · · , ξr} is a fundamental
system of the S-units. It is independent of the choice of v0 and of the fundamental system
of S-units. We also denote by ωK the number of roots of unity in K.

We set

ζ =


(log 6)3

2
if d = 2,

4

(
log d

log log d

)3

if d ≥ 3.

This ζ is better than the one in [9, Proposition 4.1 and Corollary 4.2], and can make these
results valid, see [12, Theorem and Corollary 2].

Lemma 2.1. We have

0.1 ≤ R(S) ≤ hKRK

∏
v∈S
v-∞

logNK/Q(v),

R(S) ≤ ωK
2

(
2

π

)r2 (e log |D|
4(d− 1)

)d−1√
|D|
∏
v∈S
v-∞

logNK/Q(v),

where e is the base of the natural logarithm, r2 is the number of complex embeddings of K,
and D is the absolute discriminant of K.

Proof. For the first inequality see [4, Lemma 3]. One may remark that the lower bound
R(S) ≥ 0.1 follows from Friedman’s famous lower bound [5, Theorem B] for the usual
regulator RK . The second one follows from Siegel’s estimate [10], or [6, Theorem 1]

hKRK ≤
ωK
2

(
2

π

)r2 (e log |D|
4(d− 1)

)d−1√
|D|
∏
v∈S
v-∞

logNK/Q(v),

here, we replace (1/(d− 1))d−1 with 1 when d = 1.

We will use the following lemma. For the convenience of the readers, we prove it here.

Lemma 2.2. ωK ≤ 2d2. Moreover, ωK ≤ d2 if K contains a primitive n-th root of unity
for some n > 6.
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Proof. It’s sufficient to show that ϕ(n) ≥
√
n for n 6= 2, 6.

For k ≥ 1, set fk(x) := xk − xk−1 − xk/2, gk(x) := xk − xk−1 −
√

2xk/2. Then

fk(x) = x(k−1)/2(x(k−1)/2(x− 1)− x1/2) ≥ x− 1− x1/2 > 0,

if x ≥ 3. Similarly, gk(x) > 0 if x ≥ 5 or k ≥ 2, x ≥ 3.
Let n = 2m

∏
p

pep , where p runs through all odd prime numbers. If m = 0, then

ϕ(n) =
∏
ep≥1

(pep − pep−1) ≥
∏
ep≥1

pep/2 =
√
n.

It is similar for the case where m ≥ 2.
If m = 1, then there exists a prime q such that q ≥ 5, eq ≥ 1 or q = 3, eq ≥ 2. Hence

ϕ(n) =
∏
ep≥1

(pep − pep−1) ≥
√

2qeq/2
∏
p6=q
ep≥1

pep/2 =
√
n.

3 Baker’s inequality

In this section, we state Baker’s inequality in an explicit form.

Theorem 3.1 (Baker’s inequality). Let n be an integer not less than 2, K be a number field
of degree d, α1, · · · , αn ∈ K∗, and b1, · · · , bn ∈ Z such that αb11 · · ·αbnn 6= 1. We define
A1, · · · , An, B0 by

logAi := max{h(αi), 1/d}, 1 ≤ i ≤ n;

B0 := max{3, |b1|, · · · , |bn|}.

Then for any v ∈MK, we have

|αb11 · · ·αbnn − 1|v ≥ exp{−Υ logA1 · · · logAn logB0}, (3)

where

Υ =

{
28n+29dn+2 log(ed) if v|∞,

210n+10 · e2n+2d3n+3pdv if v|pv <∞.
(4)

The proof of this theorem is based on [7, Corollary 2.3] and [13, Main Theorem, page
190-191]. For the convenience of readers, we state their results here.

As convention, for a nonzero element z ∈ C we set

log z = log |z|+
√
−1 arg z,

where −π < arg z ≤ π is the principal argument of z.
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Theorem 3.2 ([7, Corollary 2.3]). Let n ∈ N+, let K be a number field of degree d, and let
α1, · · · , αn ∈ K∗. Let b1, · · · , bn ∈ Z be such that Λ := b1 logα1 + · · · + bn logαn 6= 0. We
define A∗1, · · · , A∗n, B by

logA∗i = max{h(αi),
| logαi|

d
,
0.16

d
}, 1 ≤ j ≤ n,

B = max{3,
|bj| logA∗j

logA∗n
: 1 ≤ j ≤ n}.

Then
log |Λ| ≥ −C(n,κ)dn+2 log(ed) logA∗1 · · · logA∗n log(eB),

where C(n,κ) = min{ 1
κ (1

2
en)κ30n+3n3.5, 26n+20},

κ =

{
1 if α1, · · · , αn ∈ R,

2 otherwise.

Theorem 3.3 ([13] consequence of Main Theorem). Keep the notation of Theorem 3.2. We
define A1, · · · , An, B0 by

logAi = max{h(αi),
1

16e2d2
}, 1 ≤ i ≤ n,

B0 = max{3, |b1|, · · · , |bn|}.
Then for any prime number p, and any prime ideal p over p in the ring of integers of
Q(α1, · · · , αn), we have

ordp(α
b1
1 · · ·αbnn − 1) < C0(n, d, p) logA1 · · · logAn logB0,

where C0(n, d, p) = (16ed)2(n+1)n5/2 log(2nd) log(2d) · enp
pfp

(fp log p)2
, and ep, fp are the ramifi-

cation index and the residue degree at p respectively.

Now we prove Theorem 3.1. The idea comes from [14, Section 9.4.4].

Proof of Theorem 3.1. If v|pv for some prime pv, then from Theorem 3.3, we have

|αb11 · · ·αbnn − 1|v > exp{−C1(n, d, p) logA1 · · · logAn logB0},

where

C1(n, d, p) = (
log pv
ep

)C0(n, d, p) = (16ed)2(n+1)n5/2 log(2nd) log(2d) · en−1
p

p
fp
v

f 2
p log pv

.

We have

C1(n, d, p) ≤ (16e)2(n+1)d2n+2n5/2 · 2nd · 2d · dn−1 · pdv
≤ 210n+10 · e2n+2d3n+3pdv,
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since n7/2 ≤ 4n.
If v|∞, it is sufficient to bound |αb11 · · ·αbnn −1|. When |z| ≤ 1/2, the function log(1+z)

z
is

holomorphic, then by the maximal modulus principle, there exists z0 with |z0| = 1/2 such
that ∣∣∣∣ log(1 + z)

z

∣∣∣∣ ≤ 2| log(1 + z0)| ≤ 2 log 2,

where we use the inequality | log(1 + z0)| = |
∞∑
n=1

(−1)n−1

n
zn0 | ≤

∞∑
n=1

1
n
|z0|n = log 2. Hence, for

|z| ≤ 1/2,
| log(1 + z)| ≤ 2 log 2|z| ≤ 2|z|. (5)

To prove Theorem 3.1, without loss of generality, we may assume that bi 6= 0 for 1 ≤ i ≤ n,
and A1 ≤ · · · ≤ An, and set α = αb11 · · ·αbnn − 1. We need to consider three cases.

(a) If B0 ≤ 2nd, with Liouville’s inequality, we have

h(α) ≤ log 2 +
n∑
i=1

|bi| h(αi),

log |α| ≥ −d h(α) ≥ −d(log 2 + nB0 logAn).

Hence,
|α| ≥ exp{−(d log 2 + 2n2d2 logAn)}.

Since 1 ≤ d logAi for 1 ≤ i ≤ n, and log 2 + 2n2 ≤ 28n+29 log(ed), we have

d log 2 + 2n2d2 logAn ≤ (log 2 + 2n2)d2 logAn ≤ Υ logA1 · · · logAn logB0.

Hence we have inequality (3).
(b) If B0 > 2nd, and |α| > 1/2, since log 2 ≤ 28n+29 log(ed), it is easy to deduce

inequality (3) from this.
(c) If B0 > 2nd, and |α| ≤ 1/2, this is the main part of the proof. By (5), we have

|α| ≥ 1

2
| log(1 + α)| = 1

2
| log(αb11 · · ·αbnn )| = 1

2
|Λ|,

where Λ = b0 log(−1) + b1 logα1 + · · ·+ bn logαn, b0 = 2k for some integer k. Hence, it is
sufficient to bound |Λ|.

To use Theorem 3.2, for 1 ≤ i ≤ n we set

logA∗i =
√
π2 + 1 · logAi,

logA∗0 =
π

d
,

B = B2
0 .

We will show that for 1 ≤ i ≤ n, we have

logA∗i ≥ max{h(αi),
| logαi|

d
,
0.16

d
},
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logA∗0 ≥ max{h(−1),
| log(−1)|

d
,
0.16

d
} =

π

d
,

B ≥ max{3,
|bj| log |A∗j |

logA∗n
: 0 ≤ j ≤ n}.

Indeed, notice that for 1 ≤ i ≤ n, logA∗i ≥ 0.16
d

, and we have

| logαi|2 ≤ π2 + (log |αi|)2,

log |αi|
d

≤ h(αi) ≤ logAi < logA∗i ,

so
| logαi| ≤ (π2 + d2(logAi)

2)1/2 ≤
√
π2 + 1 · d logAi.

For logA∗0, it’s obvious. For B, obviously B ≥ 3. Before showing that B ≥ |bj | log |A∗
j |

logA∗
n

for 0 ≤ j ≤ n, we bound b0 first. Since |α| ≤ 1/2, so |Λ| ≤ 1 and

π|b0| ≤ |Λ|+ |b1 logα1 + · · ·+ bn logαn|
≤ 1 + nB0

√
π2 + 1d logAn

≤ 2πndB0 logAn,

here we use the fact that
√
π2 + 1 ≤ π+ 1, 1 ≤ (π− 1)ndB0 logAn. Since B0 > 2nd ≥ 2n,

we have B = B2
0 > 2nB0,

|b0| logA∗0
logA∗n

=
π|b0|√

π2 + 1 · d logAn
≤ 2π√

π2 + 1
nB0 < 2nB0 < B,

|bi| logA∗i
logA∗n

=
|bi| logAi

logAn
≤ |bi| ≤ B0 < B

for 1 ≤ i ≤ n.
By Theorem 3.2, we have

log |Λ| ≥ −C(n+ 1,κ)dn+3 log(ed) logA∗0 logA∗1 · · · logA∗n log(eB)

≥ −3π(π2 + 1)n/2C(n+ 1,κ)dn+2 log(ed) · logA1 · · · logAn logB0,

and

|α| ≥ 1

2
|Λ|

≥ exp{−(3π(π2 + 1)n/2C(n+ 1,κ) + log 2)dn+2 log(ed) · logA1 · · · logAn logB0}.

Hence, it is sufficient to show that

3π(π2 + 1)n/2C(n+ 1,κ) + log 2 ≤ 22n+3C(n+ 1,κ) ≤ 28n+29.
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Indeed,

2(π2 + 1)n/2
(

4 ·
(

4√
π2 + 1

)n
− 3

2
π

)
C(n+ 1,κ)

≥ 2(π2 + 1)1/2

(
16√
π2 + 1

− 3

2
π

)
C(2,κ)

≥ 0.92 · C(2,κ)

≥ log 2,

since 0.92 · C(2,κ) ≥ 0.92 ·min{22.5e · 305, 232} ≥ log 2.

The following lemma will be used when we apply Theorem 3.1.

Lemma 3.4 ([8, Lemma 2.2]). Let b ≥ 0, h ≥ 1, a > (e2/h)h, and let x ∈ R+ be such that

x− a(log x)h − b ≤ 0,

then x < 2h(b1/h + a1/h log(hha))h. In particular, if h = 1, then x < 2(b+ a log a).

4 Proof of Theorem 1.2

We only consider the case of mixed level, i.e Theorem 1.1, since if N is a power of some
prime p, we can replace N by 3N if p = 2, and by 2N if p 6= 2. From the assumption, we
have that N ≥ 6.

We consider the case where Q(ζN) ⊂ K at first, then consider the general case.
For P ∈ XΓ(OS, j), since j(P ) ∈ OS, we have

h(j(P )) = d−1
∑
v∈S

dv log+ |j(P )|v ≤
∑
v∈S

log+ |j(P )|v ≤ s log |j(P )|w,

for some w ∈ S. Hence, it suffices to bound log |j(P )|w.
If |j(P )|w ≤ 3500, then h(j(P )) ≤ 16s, which is a better bound than that given in

Theorem 1.1 when C = 214.
If |j(P )|w > 3500, then by [9, Proposition 3.3] or [3, Proposition 3.1], we have P ∈ Ωc,w

for some cusp c, and |j(P )|w ≤ 2|qw(P )−1|w , where Ωc,w and qw are defined in [3, Section 3].
Hence, we only need to bound log |qw(P )−1|w.

Notice that, if |qw(P )|w > 10−N , then log |j(P )|w ≤ 2N log 10 and h(j(P )) < 6sN ,
which is better than that given in Theorem 1.1 when C = 214.

In the sequel, we consider the case where P ∈ Ωc,w and |qw(P )|w ≤ 10−N .
By the statements in [9, Page 4507-4508], there exists a modular unit W on XΓ which

is integral over Z[j], and a constant γw ∈ Q(ζN) such that

|γ−1
w W (P )− 1|w ≤ 424N7 |qw(P )|1/Nw ,
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h(γw) ≤ 24N7 log 2,

and W (P ) is a unit of OS. Hence W (P ) = ωηb11 · · · ηbrr for some b1, · · · , br ∈ Z, where ω is a
root of unity and {η1, · · · , ηr} is a fundamental system of S-units from [9, Proposition 4.1].
We set

Λ = γ−1
w W (P ) = η0η

b1
1 · · · ηbrr ,

where η0 = ωγ−1
w . Then we have

|Λ− 1|w ≤ 424N7|qw(P )|1/Nw . (6)

If Λ 6= 1, we will use this upper bound and the lower bound from Theorem 3.1 to get a
bound of |qw(P )|w which gives an upper bound of h(j(P )). For the case where Λ = 1, see
[9, Section 8].

To state the following lemma, we set rr = 1 when r = 0, i.e s = 1.

Lemma 4.1. If Q(ζN) ⊂ K and Λ 6= 1, then we have

h(j(P )) ≤ 40dsr2rζrN8Υ̃R(S) log(d2sr4rζsN16Υ̃R(S)),

where Υ̃ = 213s+22d2s+3`d, and ζ has been defined in Section 2.

Proof. We define A0, · · · , Ar, B0 by

logAi := max{h(ηi), 1/d}, 0 ≤ i ≤ r;

B0 := max{3, |b1|, · · · , |br|}.

Since Λ = η0η
b1
1 · · · ηbrr 6= 1, by Theorem 3.1, we have

|Λ− 1|w ≥ exp{−Υ logA0 · · · logAr logB0},

where

Υ =

{
28s+29ds+2 log(ed), if w|∞,

210s+10 · e2s+2d3s+3pdw, if w|pw <∞.
(7)

Obviously 210s+19 · 23s+3d3s+3`d = 213s+22d3s+3`d is larger than Υ in each one of the cases
since d ≥ 2, s ≥ 1, so we can take Υ = 213s+22d3s+3`d.

By (6), we have

exp{−Υ logA0 · · · logAr logB0} ≤ 424N7|qw(P )|1/Nw ,

that is
log |qw(P )−1|w ≤ NΥ logA0 · · · logAr logB0 + 48N8 log 2. (8)

By [9, Proposition 4.1], we have ζ h(ηk) ≥ 1/d and ζ ≥ 1, so

logAk ≤ ζ h(ηk), k = 1, · · · , r,
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logA1 · · · logAr ≤ d−rr2rζrR(S).

Notice that the both sides are 1 when r = 0. On the other hand, since

h(η0) = h(γw) ≤ 24N7 log 2,

we have
logA0 ≤ 24N7 log 2.

For B0, we set B∗ = max{|b1|, · · · , |br|} if r ≥ 1, and B∗ = 0 if r = 0. By [9,
Corollary 4.2 and Proposition 6.1] we have

B∗ ≤ 2dr2rζh(W (P ))

≤ 2dr2rζ(2sN8 log |q−1
w (P )|w + 94sN8 logN),

(9)

so
B0 ≤ 2dr2rζ(2sN8 log |q−1

w (P )|w + 94sN8 logN).

We write
α = 4dsr2rζN8,

β = 188dsr2rζN8 logN = 47α logN,

C1 = αNΥ logA0 · · · logAr,

C2 = 48αN8 log 2 + β.

Hence, inequalities (8) and (9) yield

α log |qw(P )−1|w + β ≤ C1 log(α log |qw(P )−1|w + β) + C2.

By Lemma 3.4, we obtain

α log |qw(P )−1|w + β ≤ 2(C1 logC1 + C2).

Hence,
log |qw(P )−1|w ≤ 2α−1C1 logC1 + α−1(2C2 − β),

log |j(P )|w ≤ log 2|qw(P )−1|w ≤ 2α−1C1 logC1 + α−1(2C2 − β) + log 2,

so we have
h(j(P )) ≤ 2sα−1C1 logC1 + sα−1(2C2 − β) + s log 2.

Next we bound each term on the right-hand side:

2sα−1C1 logC1

= 2sNΥ logA0 · · · logAr log(4dsr2rζN9Υ logA0 · · · logAr)

≤ 48 log 2 · d−rsr2rζrN8ΥR(S) log(96 log 2 · d−r+1sr4rζr+1N16ΥR(S))

≤ 39d−rsr2rζrN8ΥR(S) log(d−r+1sr4rζr+1N16ΥR(S)),
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here we use the fact that 48 log 2× log(96 log 2) ≤ 140 < 5 log(d−r+1Υ); we also have

sα−1(2C2 − β) + s log 2 = 96 log 2 · sN8 + 47s logN + s log 2

≤ 98 log 2 · sN8.

After replacing d−sΥ = 213s+22d2s+3`d by Υ̃, we have

h(j(P )) ≤ 40dsr2rζrN8Υ̃R(S) log(d2sr4rζsN16Υ̃R(S)).

We will use the bound ζ ≤ 213(log d)3 subsequently. If d = 2,

ζ =
(log 6)3

2
=

(log2 6)3

2
(log d)3 ≤ 24(log d)3;

if d ≥ 3, then

ζ = 4

(
log d

log log d

)3

≤ 4

(
log d

log log 3

)3

≤ 4809(log d)3 ≤ 213(log d)3.

By Lemma 2.1 and Lemma 2.2, we have

R(S) ≤ ωK
2

1

(d− 1)d−1
(log |D|)d−1

√
|D|
∏
v∈S
v-∞

logNK/Q(v),

ωK ≤ 2d2,

logR(S) ≤ log(
ωK
2

) + d log |D|+ s log(d`) ≤ 2 log d+ d log |D|+ s log(d`).

We have d ≤ 2s and log s ≤ s/2. Then we have

log Υ̃ = (13s+ 22) log 2 + (2s+ 3) log d+ d log `

≤ (15s+ 25) log 2 + (2s+ 3) log s+ d log `

≤ 28s+ (s+ 2)s+ s`

≤ 32s2`

and

log(d2sr4rζr+1N16Υ̃R(S))

≤2 log d+ 4s log s+ 13s log 2 + 3s log log d+ 16 logN

+ log Υ̃ + 2 log d+ d log |D|+ s log(d`)

≤2s+ 2s2 + 10s+ 2s2 + 16 logN + 32s2`+ 2s+ 2s log |D|+ s2`

≤8N + 2s log |D|+ 51s2`

≤61s2`N log |D|
≤26s2N` log |D|.
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Hence combining with Lemma 4.1, we have

h(j(P ))

≤ 26 · ds2s−1ζrN8Υ̃R(S) log(d2sr4rζr+1N16Υ̃R(S))

≤ 226s+15 · d2s+4(log d)3rs2s−1N8`d
ωK
2

1

(d− 1)d−1
(log |D|)d−1

√
|D|

·
∏
v∈S
v-∞

logNK/Q(v) · (26s2N` log |D|)

= 226s+20d2s+4(log d)3rs2s+1N9`d+1ωK
1

(d− 1)d−1
(log |D|)d

√
|D|

∏
v∈S
v-∞

logNK/Q(v). (10)

Next we deal with the general case. Set K̃ = K · Q(ζN) = K(ζN). Let S̃ be the set

consisting of the extensions of the places from S to K̃, that is,

S̃ = {ṽ ∈MK̃ : ṽ|v, v ∈ S}.

Then P ∈ XΓ(OS̃, j). Put d̃ = [K̃ : Q], s̃ = |S̃|, r̃ = s̃ − 1, and let D̃ be the absolute

discriminant of K̃.

Lemma 4.2.

N − ϕ(N) ≥ 4,

s̃ ≤ sϕ(N),

d̃ ≤ dϕ(N),

ωK̃ ≤ 2d2ϕ(N)2,

|D̃| ≤ NdN |D|ϕ(N),

∏
v∈S̃
v-∞

logNK̃/Q(v) ≤ 4sϕ(N)

∏
v∈S
v-∞

logNK/Q(v)


ϕ(N)

.

Proof. The first three inequalities come directly from the definition of K̃ and S̃ and N ≥ 6
has at least two prime factors. The fourth inequality comes from ωK̃ ≤ 2d̃2 ≤ 2d2ϕ(N)2.

Let DK̃/K be the relative discriminant of K̃/K. We have

D̃ = NK/Q(DK̃/K)D[K̃:K].

We denote by OK and OK̃ the ring of integers of K and K̃, respectively. Since K̃ = K(ζN),
we have

OK ⊂ OK(ζN) ⊂ OK̃ .
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Note that the absolute value of the discriminant of the polynomial xN−1 is NN , we obtain

DK̃/K |N
N ,

so
|NK/Q(DK̃/K)| ≤ NdN .

Hence,
|D̃| ≤ NdN |D|ϕ(N).

Notice that K̃/K is Galois. Let v be a non-Archimedean place of K, and let v1, . . . , vg
be all its extensions to K̃ with residue degree f over K. Then gf ≤ [K̃ : K] ≤ ϕ(N),
which implies g log2 f ≤ gf ≤ ϕ(N), i.e. f g ≤ 2ϕ(N). Note that 2 logNK/Q(v) > 1 and
NK̃/Q(vk) = NK/Q(v)f for 1 ≤ k ≤ g, g ≤ ϕ(N), we have

g∏
k=1

logNK̃/Q(vk) ≤ 2ϕ(N)(logNK/Q(v))g

≤ 2ϕ(N)(2 logNK/Q(v))g

≤ 4ϕ(N)(logNK/Q(v))ϕ(N).

Hence

∏
v∈S̃
v-∞

logNK̃/Q(v) ≤ 4sϕ(N)

∏
v∈S
v-∞

logNK/Q(v)


ϕ(N)

.

Combine the lemma above with the bound (10), we have

h(j(P ))

≤ 226s̃+20d̃2s̃+4(log d̃)3r̃s̃2s̃+1N9`d̃+1ω
K̃

1

(d̃− 1)d̃−1
(log |D̃|)d̃

√
|D̃|

∏
v∈S̃
v-∞

logN
K̃/Q(v)

≤ 228sϕ(N)+21d2sϕ(N)+6(log dϕ(N))3sϕ(N)s2sϕ(N)+1ϕ(N)4sϕ(N)+7N9`dϕ(N)+1∆(N)

≤ 228sNd2sN (log dN)3sNs2sNN4sN`dN∆(N)

≤ (214dsN2)2sN (log dN)3sN`dN∆(N).

This completets the proof of Theorem 1.2.
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