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An explicit bound of integral points on modular curves

Yulin Cai

Abstract. In this paper, we give the constant C in [9, Theorem 1.2] by using an
explicit Baker’s inequality, hence we obtain an explicit bound for the heights of the
integral points on modular curves.

1 Introduction

Let X be a smooth, connected projective algebraic curve defined over a number field K,
and let © € K(X) be a non-constant rational function on X. If S is a finite set of places
of K (including all the infinite places), we call a point P € X (K) an S-integral point if
z(P) € Og, where Og = Og f is the ring of S-integers in K. The set of S-integral points
is denoted by X (Ogs, z).

According to the classical theorem of Siegel [11] the set X (Og,z) is finite if at least
one of the following conditions is satisfied:

the genus g(X) > 1; (1)

x admits at least 3 poles in X (Q). (2)

Unfortunately, the existing proofs of this theorem for general curves are not effective, that
is they do not imply any explicit expression bounding the heights of integral points. But for
many pairs (X, z), the effective proofs of this theorem were discovered by Baker’s method,
see [1], [2] and the references therein.

Sha [9] considered the case where X = X is the modular curve corresponding to a
congruence subgroup I' of SLy(Z), and = = j is the j-invariant.

To state his result, we introduce some notations. For a congruence subgroup I' as
above, the number of cusps on Xt is denoted by v, (I'). For a number field K, let Mk be
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the set of all places of K, and S C My a finite subset containing all infinite places. We
put d = [K : Q] and s = |S|. Let O be the ring of integers of K. We define the following
quantity

©(N)
A(N) = /NN D[#) (log( NN | D[PM)) %N 5 | TT logNxjo(v)
vES
vfoo

as a function of N € NT, where D is the absolute discriminant of K, ¢(N) is Euler’s

totient function, and the norm Ny g(v) of a place v, by definition, is equal to |Ok /p,|

when v is finite and p, is its corresponding prime ideal, and is set to be 1 if v is infinite.
Sha [9] proved the following theorem.

Theorem 1.1 ([9] Theorem 1.2). Let I" be of level N. If voo(I') > 3, then
h(j(P)) < (CdsM?)*M (log(dM))>*MMA(M)  for every P € Xp(Os, j),

where C' is an absolute effective constant, { is the maximal prime such that there exists
v € S with vll, or £ =1 if S only contains infinite places, and M is defined as following:

N  if N is not a power of any prime;
M= <3N if N is a power of 2;
2N if N is a power of an odd prime.

(Here h(-) is the standard absolute logarithmic height defined on the set Q of algebraic
numbers.)

For certain applications it is useful to have an explicit value of the constant C' from
Theorem 1.1. In this note we prove the following result.

Theorem 1.2. The constant C' in Theorem 1.1 can be taken to be 2'%.

In the proof, we follow the main lines of Sha’s argument, with some minor modifications.
We calculate explicitly the implicit constants occurring therein.

For a number field K, v € M, we define the valuation |- |, on K as following: for any
ae K:
la, :=|o ()|, if v is infinite with embedding o;

|l = N g (v) =@/ Qe if 4 s finite.

2 Upper bound of S-regulator

As before, for a number field K, and a finite subset S C Mg containing all infinite
places, we put d = [K : Q], s =|S] and r = s — 1. We fix vy € S and set

S =S\ {v} ={v1,...,v.}.
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The S-regulator R(S) is defined as

R(S) = | det(dy, log |&kv; )1<ik<r];

where d,, = [K,, : Q,,] is the local degree of v; for each i, and {&;,- - ,&,} is a fundamental
system of the S-units. It is independent of the choice of vy and of the fundamental system
of S-units. We also denote by wy the number of roots of unity in K.

We set

3
(logf) ifd=2,
¢ = lo 3
gd .
4 fd>3.
(loglogd> iHd=3

This  is better than the one in [9, Proposition 4.1 and Corollary 4.2], and can make these
results valid, see [12, Theorem and Corollary 2].

Lemma 2.1. We have

0.1 < R(S) < hiRi [ [log Niejg(v),

ves

vfoo

wi (2\"™ [elog|D]\*"
<22z Z el </ | |
vfoo

where e is the base of the natural logarithm, ro is the number of complexr embeddings of K,
and D is the absolute discriminant of K.

Proof. For the first inequality see [4, Lemma 3|. One may remark that the lower bound
R(S) > 0.1 follows from Friedman’s famous lower bound [5, Theorem B] for the usual
regulator Ry. The second one follows from Siegel’s estimate [10], or [6, Theorem 1]

wi 2\ [elog| D]\
h <= (= —= \/|D 1
kR < 5 (W) <4(d— 1 | |Ul;£ 0g N /a(v),
vfoo

here, we replace (1/(d —1))?! with 1 when d = 1. O

We will use the following lemma. For the convenience of the readers, we prove it here.

Lemma 2.2. wi < 2d?. Moreover, wx < d? if K contains a primitive n-th root of unity
for some n > 6.
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Proof. Tt’s sufficient to show that ¢(n) > /n for n # 2, 6.
For k > 1, set fi(x) := 2% — a%1 — 2¥? gu(z) := 2% — 2F~1 — /22%/2. Then

fo(z) = a®D2(E=D20 1) — Y2y >z —1—2Y2 > 0,

if x > 3. Similarly, gx(z) >0ifx >50r k> 2,2 > 3.

Let n = 2™ [ p°, where p runs through all odd prime numbers. If m = 0, then
p

o) = [T =) = [] p7* = V.

ep>1 ep>1

It is similar for the case where m > 2.
If m = 1, then there exists a prime ¢ such that ¢ > 5,e, > 1 or ¢ = 3,¢, > 2. Hence

p(n) = [T —p") = Vaq* T] 7/ = V. O

ep>1 p#q
ep>1

3 Baker’s inequality
In this section, we state Baker’s inequality in an explicit form.

Theorem 3.1 (Baker's inequality). Let n be an integer not less than 2, K be a number field
of degree d, ay, -+ ,a, € K*, and by,--- ,b, € Z such that o/{l---af;" # 1. We define
Al,"' ,An,BO by

log A; := max{h(a;),1/d}, 1<i<nm;

By :=max{3, |b1], -, |ba|}-
Then for any v € Mg, we have

ol alr — 1], > exp{—Tlog A; - - -log A, log By}, (3)

where

28129 4n 2 Jog (ed) if v|oo,
= { (4)

210n+10 . 62n+2d3n+3pg valpv < 0.

The proof of this theorem is based on [7, Corollary 2.3] and [13, Main Theorem, page
190-191]. For the convenience of readers, we state their results here.
As convention, for a nonzero element z € C we set

log z = log |z| + vV —1arg z,

where —m < arg z < 7 is the principal argument of z.
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Theorem 3.2 ([7, Corollary 2.3]). Let n € Nt, let K be a number field of degree d, and let
ay, o, € K*. Let by, -+ b, € Z be such that A :=bylogay + -+ b,loga,, #0. We
define A3,--- A, B by

1 ;| 0.16 .
log A7 = max{h(«;), | Oia |,7}, 1<j<n,
|b]|10gA*

B = — — J.1<j<n}
max{3, log A <j<n}

Then
log |A| > —C(n, 2)d"*log(ed) log A} - - -log A* log(eB),

where C(n, 3) = min{ L (1en)#307+3p35, 260201

_{1 if ar, -, an €R,

2  otherwise.

Theorem 3.3 ([13] consequence of Main Theorem). Keep the notation of Theorem 3.2. We
deﬁne Ah T 7An7 BO by

1 .
7W}7 1<1<n,
BO = max{S, ’b1|, s ,‘bn‘}

Then for any prime number p, and any prime ideal p over p in the ring of integers of
Q(aq, -+ ,ay), we have

log A; = max{h(«;)

ordy (b -+ alr — 1) < Cy(n, d,p) log A, - - - log A, log By,

n

where Cy(n, d,p) = (16ed)>"In5/2 log(2nd) log(2d) - egﬁ.ﬁ);;p)?’ and ey, f, are the ramifi-

cation index and the residue degree at p respectively.

Now we prove Theorem 3.1. The idea comes from [14, Section 9.4.4].
Proof of Theorem 3.1. If v|p, for some prime p,, then from Theorem 3.3, we have

a8t abr — 1], > exp{—Ci(n,d,p)log A - - -log A, log By},

where
log p, Jo
Cr(n,d,p) = (—222)Co(n, d, p) = (16ed)*™ >/ log(2nd) log(2d) - € -
© f21og py

We have

Cl(n, d,p> S (166)2(n+1)d2n+2n5/2 . 9nd - 2d - dn_l ) pg
S 210n+10 X 62n+2d3n+3pg,
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since n7/2 < 4m,
If v|oo, it is sufficient to bound |a5" - - - ab» —1|. When |z| < 1/2, the function w is
holomorphic, then by the maximal modulus principle, there exists zo with |z9| = 1/2 such

that
log(1 + 2)

< 2[log(1 + 20)| < 2log 2,
z

(-

where we use the inequality |log(1+ z9)| = | >
n=1
2] < 1/2,

oo
2] < 21 12| = log 2. Hence, for
n—=

|log(1 + 2)| < 2log2|z| < 2|z]. (5)

To prove Theorem 3.1, without loss of generality, we may assume that b; # 0 for 1 < i < n,
and A; <--- < A,, and set a = ozll’l - -af{l — 1. We need to consider three cases.
(a) If By < 2nd, with Liouville’s inequality, we have

h(a) <log2+ Z |b;] h(ey),

i=1
log |ao] > —dh(a) > —d(log2 4+ nBylog A,,).

Hence,
la] > exp{—(dlog2 + 2n*d*log A,)}.

Since 1 < dlog A; for 1 <i < n, and log 2 + 2n? < 287729 Jog(ed), we have
dlog 2 + 2n*d?log A,, < (log2 + 2n*)d*log A,, < Tlog A, - - -log A, log By.

Hence we have inequality (3).

(b) If By > 2nd, and |a| > 1/2, since log2 < 28" ]og(ed), it is easy to deduce
inequality (3) from this.

(c) If By > 2nd, and |o| < 1/2, this is the main part of the proof. By (5), we have

1 1 1
o] > 3 [log(1+ a)| = 5 log(al - aly)| = S |Al
where A = bglog(—1) + by logay + - - - + b, log av,, by = 2k for some integer k. Hence, it is

sufficient to bound |A].
To use Theorem 3.2, for 1 <17 <n we set

log A7 = vm2 +1-log A,

s
log Af = —
Og 0 d’
B = B3
We will show that for 1 <17 < n, we have
|log ;| 0.16

log A7 > max{h(«;), g ’T}’
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log(—1)| 0.16
log Aj > max{h(—1), | Og; )|, y } = 27
b;|log| A%
BZmax{&%:OSjﬁn}.

Indeed, notice that for 1 <i <n, log A7 > %, and we have
[ log ai|* < 7 + (log |awi])?,

l .
'%%%mwsm&<@@’

S0
llog oi| < (7 + d*(log A;)*)Y? < Vr2 +1-dlog A;.

For log A}, it’s obvious. For B, obviously B > 3. Before showing that B >
for 0 < 7 < n, we bound by first. Since |o| < 1/2,s0 |A| <1 and

1b;  log | A% |
log A%,

m|bo| < [A]+ |bilogay + -+ + b, log oy

<1+4+nByvn?+ 1ldlog A,
< 2mndBylog A,

here we use the fact that v72+1<7+1,1 < (7 —1)ndBylog A,. Since By > 2nd > 2n,
we have B = B? > 2nB,,

bllog 45wl _ o
log A}, V24 1-dlogA, — V241

log A log A,

nBy < 2nBy < B,

for 1 <i<n.
By Theorem 3.2, we have

log |A| > —C(n + 1, 30)d" " log(ed) log Aj log A} - - - log A% log(eB)

>
> —3n(n? + 1)"2C(n + 1, 30)d" 2 log(ed) - log A; - - -log A, log By,
and
1
ol > 214
> exp{—(37(n® + 1)V2C(n + 1, 3¢) + log 2)d" 2 log(ed) - log A; - - - log Ay, log By }.

Hence, it is sufficient to show that

3r(m? + 1)2C(n + 1, 3) +log2 < 22" 3C (n 4 1, 2) < 28729,
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Indeed,
4 "3
2(m? 4+ 1) <4- (—) ——W)C’n—l—l,%
(v +1) —— ) - 5] Co+ 1.2
16 3
> 2(n? +1)Y/? (———7‘(‘)02,%
> 2+ 1) (o= — 57) €29
>0.92-C(2, »)
> log 2,
since 0.92 - C'(2, ») > 0.92 - min{2%*%¢ - 30°, 232} > log 2. O]

The following lemma will be used when we apply Theorem 3.1.
Lemma 3.4 ([8, Lemma 2.2]). Let b>0,h > 1,a > (e2/h)", and let x € RT be such that
z — a(logx)" — b <0,

then x < 2"(b"" + a*/"log(ha))". In particular, if h = 1, then x < 2(b+ aloga).

4 Proof of Theorem 1.2

We only consider the case of mixed level, i.e Theorem 1.1, since if N is a power of some
prime p, we can replace N by 3N if p =2, and by 2N if p # 2. From the assumption, we
have that N > 6.

We consider the case where Q((y) C K at first, then consider the general case.

For P € X1(0Ogs, j), since j(P) € Og, we have

h(j(P)) =d™ ") dylog" [j(P)], <) log" |j(P)], < slog|j(P)|w,

vES veS

for some w € S. Hence, it suffices to bound log |j(P)|,.

If |7(P)|lw < 3500, then h(j(P)) < 16s, which is a better bound than that given in
Theorem 1.1 when C = 2.

If [7(P)|w > 3500, then by [9, Proposition 3.3] or [3, Proposition 3.1], we have P € Q.
for some cusp ¢, and |j(P)|w < 2|quw(P) s , where Q.,, and g,, are defined in [3, Section 3.
Hence, we only need to bound log |g,(P)™!|..

Notice that, if |q,(P)|, > 107, then log|j(P)], < 2N log10 and h(j(P)) < 6sN,
which is better than that given in Theorem 1.1 when C' = 24

In the sequel, we consider the case where P € Q,,, and |g,(P)], < 107V,

By the statements in [9, Page 4507-4508], there exists a modular unit W on Xp which
is integral over Z[j], and a constant ~,, € Q({x) such that

P W(P) = 1], < 424 g, ()L™,

w
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h(yw) < 24N7log2,

and W (P) is a unit of Og. Hence W(P) = wn®" - - -y for some by, - - - , b, € Z, where w is a
root of unity and {n,--- ,n,} is a fundamental system of S-units from [9, Proposition 4.1].
We set

A =, W(P) = nony* -y,

where 19 = wy,,'. Then we have

A = 1 < 42" qu (PN, (6)

w

If A £ 1, we will use this upper bound and the lower bound from Theorem 3.1 to get a
bound of |g,(P)|, which gives an upper bound of h(j(P)). For the case where A = 1, see
9, Section 8§].

To state the following lemma, we set " =1 when r =0, i.e s = 1.

Lemma 4.1. If Q((x) C K and A # 1, then we have
h(j(P)) < 40dsr® (" N8 T R(S) log(d?sr*" ¢* NYSTR(S)),
where T = 2135+22s+3¢d - 4nd ¢ has been defined in Section 2.

Proof. We define Ay, --- , A,, By by
log A; := max{h(n;),1/d},0 <i <r;

B() = max{S, ’b1|, LR |br|}
Since A = non®* - - -1t # 1, by Theorem 3.1, we have

|A — 1], > exp{—"Tlog A - - -log A, log By},

where

285+29ds+2 1 d f
T:{ Og(e )7 1 w|oo7 (7)

2105+10 . 628+2d38+3pdw, if w|pw < 0.

Obviously 210s+19 . 93s+3g3s+3pd — 913s+223s+3/d j5 Jaroer than Y in each one of the cases
since d > 2,5 > 1, so we can take Y = 2135722¢353d,
By (6), we have

exp{—Tlog Ay - - -log A, log By} < 4**"|q,,(P)|Y/V,

w

that is
1og |qu(P) | < NYlog Ay - - - log A, log By + 48 N*®log 2. (8)

By [9, Proposition 4.1], we have Ch(n,) > 1/d and ¢ > 1, so

IOgAk: S Ch(nk)a k= 17 Ty
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log Ay ---log A, < d~"r*"¢"R(S).
Notice that the both sides are 1 when r» = 0. On the other hand, since
h(no) = h(y.) < 24NTlog?2,
we have
log Ay < 24N"log 2.

For By, we set B* = max{|by|,---,|b.|} if » > 1, and B* = 0 if r = 0. By 9,

Corollary 4.2 and Proposition 6.1] we have
B* < 2dr*" Ch(W(P)) ©)

< 2dr*"¢(2sN®log|q,," (P)]w + 94sN®log N),
SO

By < 2dr*"¢(2sN®log|q," (P)]w + 94sN®log N).

We write
o = 4dsr*" ¢ N®,

B = 188dsr*" ¢ N®log N = 47alog N,
Ci=aNTlogAy---logA,,
Cy = 48aN®log 2 + 3.
Hence, inequalities (8) and (9) yield

alog|qu(P) ™ w + 8 < Cilog(alog|qu(P) ™ w + B) + Co.
By Lemma 3.4, we obtain
alog |qu(P) w4+ 8 < 2(Cilog C1 + Cy).

Hence,
10g |¢u(P) w < 207" Crlog C1 + ' (205 — ),
log |j(P)|w < log2|gu(P) " |w < 207 'Crlog C1 + a1 (2C; — B) + log 2,

so we have
h(j(P)) < 2sa™'Cylog Cy + sa™ ' (20, — B) + slog 2.

Next we bound each term on the right-hand side:

251 Cy log Cy
=2sNYlog Ay --log A, log(4dsr* (N*Ylog Ay - - - log A,)
< 48log?2-d "sr*"("N®YTR(S)1log(961log2 - d " sr* ("HI N T R(S))
< 39d "sr* (" N3YR(S) log(d~"sr*" ("L NS T R(S)),
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here we use the fact that 481log2 x log(961log2) < 140 < 5log(d~""'T); we also have

sa (203 — B) + slog2 = 961og 2 - sN® 4 47slog N + slog 2
< 98log2 - sN°®.

After replacing d 5T = 2135+222543¢d 1y T we have
h(j(P)) < 40dsr® ¢"NTR(S) log(d?sr*" C* N T R(S)). O
We will use the bound ¢ < 2'3(log d)? subsequently. If d = 2,

(log6)®  (log, 6)°

¢ = 5= (logd)® < 2*(log d)?;
if d > 3, then
¢=a(08d Ty tosd Vo 4809(log d)? < 213 (log d)®
~*\oglogd) = \loglogs) = g4 = g

By Lemma 2.1 and Lemma 2.2, we have

1
R(S) < TKW (log [ D))" /ID[ [ log N (v)

veSs
vfoo

WK < 2d2

log R(S) < log( 5 %) + dlog | D| + slog(dl) < 2logd + dlog |D| + slog(dl).

We have d < 2s and log s < s/2. Then we have

log T = (13s + 22) log 2 + (25 4 3) log d + dlog ¢
< (155 +25)log2 + (25 + 3) log s + dlog ¢
<285+ (s+2)s+ sl
< 32s%

and

log(d?sr¥" "IN T R(S))
<2logd + 4slogs + 13slog2 + 3sloglogd + 16 log N
+log T 4 2log d + dlog |D| + slog(dl)
<25 + 252 4+ 105 + 25% 4+ 16log N + 325%( + 25 + 2slog | D| + s*¢
<8N + 2slog |D| + 515%¢
<61s*(N log | D|
<2°5*N/log|D|.
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Hence combining with Lemma 4.1, we have

h(j(P))
< 20. ds® 1" NBYR(S) log(d?sr* ¢"HINIOT R(S))

s s r 25— w 1 B
< 22018 @ log d) s TINE sr (log [P /1D
. H log Ni¢/g(v) - (295> Nelog |D|)
vES
vfoo
S S T S 1
— 9265420 ;2 +4(logd)3 2 +1N9€d+1me(log ]D\)d\/WH IOgNK/Q(U)- (10)
vES
vfoo

Next we deal with the general case. Set K = K - Q(Cy) = K(Cy). Let S be the set

consisting of the extensions of the places from S to K, that is,

gz{f}eM;{:ﬂv,vES}.

Then P € Xr(Og,j). Put d = [l? :Ql, §=15], 7 =35—1, and let D be the absolute

discriminant of K.

Lemma 4.2.

(N)

H log Nz o (v) < 43¢N) H log Nk /o(v)
veS UJ[ES
vioo vfoo

Proof. The first three inequalities come directly from the definition of K and Sand N > 6
has at least two prime factors. The fourth inequality comes from wz < 2d? < 2d%p(N)2.

Let Dy be the relative discriminant of K /K. We have
D= NK/@(DR/K)D[E:K]-
We denote by Ok and Oj the ring of integers of K and K, respectively. Since K = K ((n),

we have

OK C OK(CN) C Of{
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Note that the absolute value of the discriminant of the polynomial 2% —1 is N, we obtain
SO
|NK/Q(DF</K)| < NV

Hence, _
|D| < N[ D[P,

Notice that K /K is Galois. Let v be a non-Archimedean place of K, and let vq,..., v,

be all its extensions to K with residue degree f over K. Then ¢gf < [K : K| < p(N),
which implies glog, f < gf < @(N), i.e. f7 < 2¢™). Note that 2log Nk g(v) > 1 and
Nz jolvr) = Nijgv)! for 1 <k < g, g < ¢(N), we have

g
[ log Mg g (vr) < 277 (log N s (v))?
k=1

< 2°0)(21log Nic/q(v))?
< 4‘P<N)(logNK/Q(v))“D(N).

Hence
(N)
[T log N o (v) < 4% [ TTlog Nicsg(v) : O
ves ves
vfoo vfoo
Combine the lemma above with the bound (10), we have
h(j(P))
o s = 3503 ; 1 - s =
< 2265+20d25+4(10g d)3r82 +1N9€d+1”f(m(bg ‘D|)d |D‘ HIOng(/Q(U)
veS
vfoo

< 2285¢(N)+21d25tp(N)+6 (].Og ng(N))SS(’D(N) 823<p(N)+1SD(N)45@(N)+7N9£d<p(N)+1A(N)
< 2283Nd2sN (log dN)3SN828NN4SN€dNA(N)
< (2%dsN?)?N (log dN)**N N A(N).

This completets the proof of Theorem 1.2.
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