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Upgrading Probability via Fractions of Events

Roman Frič, Martin Papčo

Abstract. The influence of “Grundbegriffe” by A. N. Kolmogorov (pub-
lished in 1933) on education in the area of probability and its impact on
research in stochastics cannot be overestimated. We would like to point
out three aspects of the classical probability theory “calling for” an up-
grade: (i) classical random events are black-and-white (Boolean); (ii) clas-
sical random variables do not model quantum phenomena; (iii) basic maps
(probability measures and observables – dual maps to random variables)
have very different “mathematical nature”. Accordingly, we propose an
upgraded probability theory based on  Lukasiewicz operations (multival-
ued logic) on events, elementary category theory, and covering the clas-
sical probability theory as a special case. The upgrade can be compared
to replacing calculations with integers by calculations with rational (and
real) numbers. Namely, to avoid the three objections, we embed the clas-
sical (Boolean) random events (represented by the {0, 1}-valued indicator
functions of sets) into upgraded random events (represented by measurable
[0, 1]-valued functions), the minimal domain of probability containing “frac-
tions” of classical random events, and we upgrade the notions of probability
measure and random variable.

1 Introduction
Our goal is to survey recent results related to upgrading the classical probability
theory, CPT for short (cf. [2], [3], [13], [11], [12], [14], [15], [17]).

We start with two important initiatives to “modernize” CPT. In his pioneering
paper [32], L. A. Zadeh has proposed to consider Borel fuzzy sets as fuzzy random
events and probability integral of the corresponding measurable functions as their
probabilities. Having in mind “soft computing” applications, he proposed fuzzy op-
erations on fuzzy random events and introduced basic fuzzified probability notions
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(cf. [33]). More information about the resulting fuzzy probability and applications
can be found at http://people.eecs.berkeley.edu/~zadeh/papers.

A thorough analysis of operations on fuzzy random events and generalized prob-
ability measures on fuzzy random events (based on T-norms and T-conorms) has
been provided by R. Mesiar in [22] and by M. Navara in [23]. Fuzzy random events
can be viewed as quantum structures (effect algebras, D-posets). A comprehensive
treatise on quantum structures [6] by A. Dvurečenskij and S. Pulmannová serves
as a standard reference.

It seems justified to call and understand by fuzzy probability what has resulted
from Zadeh’s approach and to find another name for the generalized probability
motivated by quantum phenomena, as presented by S. Gudder in [17] and S. Bugaj-
ski in [2], [3]; while Gudder sticks with fuzzy probability, Bugajski has proposed to
call it operational probability.

The theory as outlined by Gudder and Bugajski (many other authors have con-
tributed, too, see [2], [3]) rests heavily on deep theorems of abstract analysis. We
believe that basic category theory apparatus provides tools and language to refor-
mulate and prove fundamental theorems and to present the resulting probability
in a more transparent way.

2 Why we need “fractions” of random events?
Let (Ω, p) and (Ξ, q) be finite (discrete) probability spaces. Let T be a map of
Ω = {ω1, ω2, . . . , ωn} into Ξ = {ξ1, ξ2, . . . , ξm} such that q(ξk) =

∑
ωl∈T←(ξk)

p(ωl)

for all k ∈ {1, 2, . . . ,m} such that q(ξk) > 0. Then T is said to be a transformation
of (Ω, p) to (Ξ, q) and (Ξ, q) is said to be the T -image of (Ω, p). If Ξ is a set of real
numbers, then T becomes a random variable.

Let T be a transformation of (Ω, p) to (Ξ, q). Then T can be visualized as a
system of n pipelines ωl 7→ T (ωl) through which p(ωl) flows to ξk = T (ωl). If ξk is
the target of several pipelines, then q(ξk) is the sum

∑
ωl∈T←(ξk)

p(ωl), i.e., the total

influx through the pipelines in question. (See Figure 1.)

Question: Does there always exist a transformation of (Ω, p) to (Ξ, q)?

Answer: No.

Indeed, it is easy to see that if Ξ has more points than Ω, then there is no
transformation of (Ω, p) to (Ξ, q).

However, “est modus in rebus”: instead of sending each p(ωl) to some ξk via a
simple “pipeline”, ωl 7→ ξk = T (ωl), we can try to distribute p(ωl) via a complex
“upgraded pipeline”, simultaneously sending to each ξk, k ∈ {1, 2, . . . ,m}, some
fraction wklp(ωl) of p(ωl). Of course, not arbitrarily, but in such a way that the

fractions sum up “properly”, i.e.,
n∑
l=1

wklp(ωl) = q(ξk) and

m∑
k=1

n∑
l=1

wklp(ωl) =

n∑
l=1

p(ωl)

m∑
k=1

wkl =

m∑
k=1

q(ξk) = 1 .
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Figure 1

Figure 2

To comply with the second condition it suffices to guarantee that
m∑
k=1

wkl = 1. In

fact, this means that to each ωl, l ∈ {1, 2, . . . , n}, we assign a suitable probability
function ql = (w1l, w2l, . . . , wml) on Ξ. (See Figure 2.)

The construction of an “upgraded pipeline” yields a generalized transformation
of (Ω, p) to (Ξ, q); p flows trough the pipeline and it is transformed into q. The
generalized transformation has a surprising background: upgraded probability.
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Let {
rkl; k ∈ {1, 2, . . . ,m}, l ∈ {1, 2, . . . , n}

}
be nonnegative numbers such that

m∑
k=1

rkl = p(ωl), l ∈ {1, 2, . . . , n}

and
n∑
l=1

rkl = q(ξk), k ∈ {1, 2, . . . ,m} .

For k ∈ {1, 2, . . . ,m} and l ∈ {1, 2, . . . , n} define wkl = 1
m if p(ωl) = 0 (any choice

such that
m∑
k=1

wkl = 1 does the same trick) and wkl = rkl
p(ωl)

otherwise. Clearly,

n∑
l=1

wklp(ωl) = q(ξk) for all k ∈ {1, 2, . . . ,m} and
m∑
k=1

wkl = 1. This yields the

“upgraded pipeline”.

Observations

1. The “upgraded pipeline” is determined by a matrix W consisting of m rows
wk = (wk1, wk2, . . . , wkn) and n columns ql = (w1l, w2l, . . . , wml), where
wkl ∈ [0, 1] and each ql is a suitable probability function on Ξ.

2. Each ql distributes the content p(ωl) among the points ξk ∈ Ξ (respecting
n∑
l=1

wklp(ωl) = q(ξk)).

3. For k ∈ {1, 2, . . . ,m}, wk ∈ [0, 1]Ω represents the “fraction of sure event”
determining what fraction of the total flow will reach ξk. Further, if Ξ′ is a
subset of Ξ, then “the sum” of corresponding fractions determines how much
will flow into Ξ′.

4. The rows of W are special cases “fractions of events”, i.e., random events in
the upgraded probability. Further, W determines a map (morphism) from
the upgrade of (Ξ, q) to the upgrade of (Ω, p); such maps (dual to random
variables) play a central role in the resulting theory and are called observables.

3 From Boolean two-valued to  Lukasiewicz multivalued logic
In [13], the notion of a probability domain has been introduced as a general con-
struction to obtain various models of random events. Briefly, in a given model, a
random event is a propositional function u : X −→ [0, 1], u(x) is the “truth value”
of u at x, and the events are equipped with some “logic” (Boolean, D-poset, effect
algebra,  Lukasiewicz, . . . ). From the viewpoint of category theory, the interval
I = [0, 1] carries a suitable structural information about the model in question (it
is a cogenerator) and the operations on events are inherited from the categorical
(initial, or coordinatewise) structure of the power [0, 1]X .
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This approach to probability domains can be summarized as follows (cf. [13]):

• Start with a “system A of events”;

• Choose a “cogenerator” C – usually a structured set suitable for “measuring”
(e.g., the two-element Boolean algebra {0,1}, the interval I = [0, 1] carrying
the  Lukasiewicz MV-structure, D-poset structure, . . . );

• Choose a set X of “properties” measured via C so that X separates A;

• Represent each event a ∈ A via the “evaluation” of A into CX sending a ∈ A
to aX ∈ CX , aX ≡ {x(a); x ∈ X};

• Form the minimal “subalgebra” D of CX containing {aX ; a ∈ A};

• The subalgebra forms a probability domain D ⊆ CX which has nice categor-
ical properties.

Fields of sets, ID-posets and bold algebras can serve as typical examples of
probability domains described above ([26], [27], [28]). Nontraditional cogenerators
provide nontraditional models of probability theory ([29]).

D-posets have been introduced in [19] in order to model events in quantum
probability. They generalize Boolean algebras, MV-algebras and other probability
domains and enable us to construct a category in which observables and states
become morphisms ([4], [31]). Recall that a D-poset is a partially ordered set X
with the greatest element 1X , the least element 0X , and a partial binary operation
called difference, such that a	 b is defined iff b ≤ a, and the following axioms are
assumed:

(D1) a	 0X = a for each a ∈ X;

(D2) If c ≤ b ≤ a, then a	 b ≤ a	 c and (a	 c)	 (a	 b) = b	 c.

Fundamental to applications ([8], [27]) are D-posets of fuzzy sets, i.e. systems
X ⊆ IX carrying the coordinatewise partial order, coordinatewise convergence of
sequences, containing the top and bottom elements of IX , and closed with respect
to the partial operation difference defined coordinatewise. We always assume that
X is reduced, i.e., for x, y ∈ X, x 6= y, there exists u ∈ X such that u(x) 6= u(y).
A D-homomorphism is a map preserving the D-poset structure (partial order, con-
stants, difference). Denote ID the category having (reduced) D-posets of fuzzy sets
as objects and having sequentially continuous D-homomorphisms as morphisms.
Objects of ID are subobjects of the powers IX . Concerning the undefined notions,
the reader is referred to [6], [5] and [1].

Recall ([6], [7]) that a bold algebra (also TL-clan, see [25]) is a system X ⊆
[0, 1]X containing the constant functions 0X , 1X and closed with respect to the
usual ( Lukasiewicz) operations: for u, v ∈ X put

(u⊕ v)(x) = u(x)⊕ v(x) = min{1, u(x) + v(x)}, u∗(x) = 1− u(x), x ∈ X .

Bold algebras are MV-algebras representable as [0, 1]-valued functions, MV-algebras
generalize Boolean algebras and bold algebras generalize in a natural way fields



34 Roman Frič, Martin Papčo

of sets (viewed as indicator functions). Each bold algebra can be considered as
on object of ID. More information concerning MV-algebras and probability on
MV-algebras can be found in [30].

Each bold algebra X ⊆ [0, 1]X is a lattice, where for u, v ∈ X we have

(u ∨ v)(x) = u(x) ∨ v(x) and (u ∧ v)(x) = u(x) ∧ v(x) , x ∈ X ,

and, in fact, bold algebras are lattice (defined coordinatewise) ID-posets. If a bold
algebra X ⊆ [0, 1]X is sequentially closed in [0, 1]X (with respect to the coordi-
natewise sequential convergence), then X is a  Lukasiewicz tribe (X is closed not
only with respect to finite, but also with respect to countable  Lukasiewicz sums,
cf. Corollary 2.8 in [7]). Let X ⊆ [0, 1]X be a bold algebra. Then the smallest
sequentially closed subset of [0, 1]X containing X is a  Lukasiewicz tribe; it is the
intersection of all  Lukasiewicz tribes Y ⊆ [0, 1]X such that X ⊆ Y.

Observations

1. ID-posets provide a minimal model of random events: sure and impossible
event, complement. Further, bold algebras model disjunction and conjunc-
tion, and  Lukasiewicz tribes model closedeness with respect limits (remember,
stochastics is about limit properties).

2. What is missing? Fractions! Fortunately,  Lukasiewicz tribes closed with
respect to fractions are exactly what is needed. Let X ⊆ [0, 1]X be a
 Lukasiewicz tribe. Then there is a unique σ-field A of subsets of X such
that (identifying sets and their indicator functions) A ⊆ X ⊆ M(A), where
M(A) is the set of all A-measurable functions ranging in [0, 1]. Further, if
X contains fractions, then X = M(A). So, the inclusion of fraction events
results in upgrading σ-fields to [0, 1]-valued measurable functions.

3. As proposed by L. Zadeh, probability measures are to be upgraded to proba-
bility integrals (integrals with respect to probability measures). What about
sequential continuity of D-homomorphisms? If X is a singleton {a} and
T = {∅, {a}} is the σ-field of all subsets of X, then M(T) and [0, 1] can
be identified and, surprisingly, sequentially continuous D-homomorphisms on
M(A) into M(T) are exactly probability integrals ([9]). Finally, due to the
Lebesgue Dominated Convergence Theorem, probability integrals are sequen-
tially continuous.

4. To sum up, if we incorporate fractions of random events into an upgraded
probability, then (Ω,M(A),

∫
(·) dp) is the minimal upgrade of the classical

probability space (Ω,A, p).

4 From analysis to arrows
In this section we illustrate some benefits of the categorical approach to probability.
First, taking into account new results and the categorical background, some orig-
inal notions “deserve an upgrade”. Secondly, arrows and commutative diagrams
visualize deep theorems and help to understand their proofs ([16]).
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Figure 3

For example, the categorical approach to probability “forces” us to reconsider
the notion of a probability measure. A probability measure p on random events
from A is a map of A into [0, 1] by which we usually measure the relative frequency
of the events. The domain and the range of p have very different mathematical
nature. We avoid this by upgrading p to

∫
(·) dp and the upgraded map becomes

a morphism (of M(A) into M(T)). Observe that there is a one-to-one correspon-
dence between probability measures and probability integrals, hence no classical
information is lost.

The notion of a classical random variable (see Figure 3) calls for an upgrade, too.
Its dual, the preimage map, is a sequentially continuous Boolean homomorphism
on random events and, despite an implicit exploitation, in the classical probability
it does not have a name ([18], [21]). The duals to upgraded random variables are
called observables and play a central role in the upgraded probability (see also [20],
[24]).

Let (Ω,A, p) ba a classical probability space and let f be a random variable, i.e.,
a measurable map of Ω into the real line R. Denote BR the real Borel sets. Then
f induces a map Df of the set P(A) of all probability measures on A into the set
P(BR) of all probability measures on BR: for q ∈ P(A) we define Df (q) = q ◦ f←,
where f← is the preimage map (f←(B) = {ω ∈ Ω; f(ω) ∈ B}, B ∈ BR); we say
that f pushes forward q to Df (q). Observe that f← is a sequentially continuous
Boolean homomorphism on BR into A. If we identify each ω ∈ Ω and the Dirac
point-probability δω and, similarly, each r ∈ R and δr, then a straightforward
calculation shows that Df (δω) = δf(ω). Consequently, Df can be considered as an
extension of f (mapping Ω ⊆ P(A) into R ⊆ P(BR)) to Df (mapping P(A) into
P(BR)). Hence Df is a channel through which the stochastic information about
A is transported to the stochastic information about BR. (See Figure 4.)

Usually (cf. [6]), an observable is a map of the real random events BR into fuzzy
random eventsM(A) which preserves suitable operations on events. Again, in or-
der to get a morphism, the domain and the range of an upgraded observable should
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Figure 4

be of the same type. Fortunately, each such map of BR into M(A) can uniquely
extended to a sequentially continuous D-homomorphism h : M(BR) −→ M(A)
(cf. Theorem 4.1 in [10]). This leads to the following upgrade of a “categorical”
notion of observable.

Definition 1. A sequentially continuous D-homomorphism h : M(B) −→ M(A)
is said to be an observable. Moreover, if h(B) ∈ A for all B ∈ B, then h is said to
be conservative.

Example 1. Observe that if A = T and p : B −→ [0, 1] is a nondegenerated prob-
ability measure, then the corresponding integral

∫
(·) dp, viewed as an observable

mapping M(B) into M(T) = [0, 1], fails to be conservative.

Each observable h defines a map Th of the set IP(A) of all probability inte-
grals on M(A) into the set IP(B) of all probability integrals on M(B). Indeed,
consider each

∫
(·) dp as a sequentially continuous D-homomorphism of M(A) into

M(T) = [0, 1]. The composition of h and
∫
(·) dp is a sequentially continuous

D-homomorphism of M(B) into M(T) = [0, 1], hence a probability integral on
M(B).

Definition 2. Let h be an observable, then Th is said to be a statistical map.
Moreover, if Th maps degenerated integrals into degenerated integrals, then Th is
said to be conservative.

Theorem 1. A statistical map Th is conservative iff the dual observable h is con-
servative.

Proof. Both implications follow by a straightforward calculations based on the
definition of a statistical map. �

Example 2. (i) A classical degenerated random variable is defined as follows.
Fix r ∈ R and define f : Ω −→ R by putting f(ω) = r for all ω ∈ Ω. Then
Df (p) = δr for all p ∈ P(A).
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Figure 5

(ii) A degenerated statistical map is defined analogously: For a fixed q ∈ P(B)
we need an observable h : M(B) −→ M(A) such that the corresponding
Th maps each probability integral

∫
(·) dp, p ∈ P(A), on M(A) to the same

probability integral
∫
(·) dq on M(B). It suffices to define h as follows: for

u ∈ M(B) let h(u) be the constant function vq on Ω the value of which is∫
udq. Then, for all p ∈ P(A), we have

∫
h(u) dp =

∫
vq dp =

∫
udq, and

hence Th(
∫
(·) dp) =

∫
(·) dq. If B ∈ B, 0 < q(B) < 1, and χB is the indicator

function of B, then 0 < (h(χB))(ω) < 1 for all ω ∈ Ω, hence h and Th fail to
be conservative. (See Figure 5.)

Observe that one of the possible “upgraded pipelines” (cf. Figure 2) can be
constructed via the following nonconservative statistical map: it is the unique
“upgrading” of a map mapping each ω ≡ δω to the probability q on the subsets
of Ξ.

5 Duality between observables and statistical maps
An observable h can be viewed as a channel through which the information concern-
ing operations on random events in B is transported to the information concerning
operations on random events in A. A statistical map Th can be viewed as another
channel, going the opposite way from the set IP(A) of all probability integrals on
M(A) to the set IP(B) of all probability integrals on M(B). The relationship
between observables and statistical maps can be described in terms of a categorical
duality.

In category theory, an equivalence of categories is a relation between two cate-
gories which establishes that these categories are “essentially the same”. If a cat-
egory is equivalent to the opposite (or dual) of another category then one speaks
of a duality of categories, and says that the two categories are dually equivalent.
An equivalence of categories consists of a functor between the involved categories,
which is required to have an “inverse” functor. However, in contrast to the sit-
uation common for isomorphisms in an algebraic setting, the composition of the
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functor and its “inverse” is not necessarily the identity mapping. Instead it is suffi-
cient that each object be naturally isomorphic to its image under this composition.
Thus one may describe the functors as being “inverse up to isomorphism”.

Formally, an equivalence of categories C and D consists of a functor F : C −→
D, a functor G : D −→ C, and two natural isomorphisms ε : FG −→ idD and
η : GF −→ idC. Here FG and GF denote the respective compositions of F and
G, and idC and idD denote the identity functors on C and D. If F and G are
contravariant functors one speaks of a duality of categories instead.

One can show that a functor F : C −→ D yields an equivalence of categories if
and only if it is simultaneously:

– full, i.e. for any two objects c1 and c2 of C, the map

HomC(c1, c2) −→ HomD(Fc1, F c2)

induced by F is surjective,

– faithful, i.e. for any two objects c1 and c2 of C, the map

HomC(c1, c2) −→ HomD(Fc1, F c2)

induced by F is injective, and

– essentially surjective (dense), i.e. each object d in D is isomorphic to an object
of the form Fc, for c in C.

Let C be the category the objects of which are of the form (Ω,M(A)) and the
morphisms are observables and let D be the category the objects of which are of
the form IP(A) and the morphisms are statistical maps.

Theorem 2. The categories C and D are dual.

Proof. Hint. Denote F : C −→ D the contravariant functor sending M(A) to
IP(A) and sending an observable h to the statistical map Th. A straightforward
calculation shows that F is full, faithful and essentially surjective. �

Observe that each upgraded pipeline is determined by the matrix W , the rows
of which “code” an observable and the columns of which “code” the corresponding
dual statistical map, hence W “codes” the duality.

The duality reveals a surprising fact: in the upgraded probability, the fuzzy
character of random events and the quantum character of statistical maps are
dual! (Remember, an elementary random event, i.e., an outcome of a random
experiment, is mapped to a probability measure.)

6 The upgrading of CPT as an epireflection
Let B be the category the objects of which are of the form (Ω,A) and the mor-
phisms are sequentially continuous Boolean homomorphisms. Let L be the cat-
egory the objects of which are of the form (Ω,M(A)) and the morphisms are
observables. Consider the following covariant functor U : B −→ L which sends
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Figure 6

(Ω,A) to (Ω,M(A)) and sends a sequentially continuous Boolean homomorphism
h : B −→ A to its unique extension (an observable) U(h) : M(B) −→M(A). The
relationship between the “Boolean” category B and the “ Lukasiewicz” category L
characterizes the upgrading of CPT: L is an epirelective subcategory of B, there is
a one-to-one correspondence between objects of B and L, L has “more” morphisms
than B (remember, there are nonconservative observables), and each probability
measure on A is a “shadow” of an observable onM(A) intoM(T). (See Figure 6.)

7 Concluding remarks
In this survey we have presented an attempt to “upgrade” the classical probability
theory. Accordingly, instead of “definition, lemma, theorem, proof” style, we have
rather included motivation, comments, and schemes. We hope that a categorical
approach and exploitation of basic categorical constructions will help the reader to
appreciate our goal. “More next”.
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