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Toeplitz Quantization for Non-commutating Symbol
Spaces such as SUq(2)

Stephen Bruce Sontz

Abstract. Toeplitz quantization is defined in a general setting in which the
symbols are the elements of a possibly non-commutative algebra with a con-
jugation and a possibly degenerate inner product. We show that the quan-
tum group SUq(2) is such an algebra. Unlike many quantization schemes,
this Toeplitz quantization does not require a measure. The theory is based
on the mathematical structures defined and studied in several recent papers
of the author; those papers dealt with some specific examples of this new
Toeplitz quantization. Annihilation and creation operators are defined as
densely defined Toeplitz operators acting in a quantum Hilbert space, and
their commutation relations are discussed. At this point Planck’s constant
is introduced into the theory. Due to the possibility of non-commuting sym-
bols, there are now two definitions for anti-Wick quantization; these two
definitions are equivalent in the commutative case. The Toeplitz quantiza-
tion introduced here satisfies one of these definitions, but not necessarily the
other. This theory should be considered as a second quantization, since it
quantizes non-commutative (that is, already quantum) objects. The quan-
tization theory presented here has two essential features of a physically
useful quantization: Planck’s constant and a Hilbert space where natural,
densely defined operators act.

This paper is dedicated to the memory of Jaime Cruz Sampedro whose
great friendship and mathematical intelligence I will dearly miss.

1 Introduction
The history of Toeplitz operators covers a bit over one hundred years and includes
many major works, far too numerous to mention here. For a recent reference that
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will give the reader some first links to that extensive literature, see Section 3.5 in
[18]. Speaking for myself, the papers [6], [7] and [11] have been rather influential.
But the study of Toeplitz operators with symbols coming from a non-commutative
algebra seems to be limited mostly to cases where the algebra is a matrix algebra or
is some other quite specific non-commutative algebra such as in two recent works,
[24] and [21], of the author. The papers [24] and [21] can be considered as two rather
elaborated examples of the theory presented here. That study is continued in this
paper, but in a much more general setting intended to clarify the mathematical
structures at play in those two examples. A new example, the quantum group
SUq(2) as symbol space, will also be presented here.

The paper is organized as follows. After presenting the foundations of this
theory in the next section, we define and analyze in Section 3 the Toeplitz quan-
tization. In particular, Toeplitz operators are defined as densely defined operators
acting in a quantum Hilbert space. The symbols of these Toeplitz operators come
from a possibly non-commutative algebra A, which in physics terminology serves
as the phase space for the theory. The common domain of these Toeplitz oper-
ators is P, a pre-Hilbert space and sub-algebra of A. P represents the possibly
non-commuting holomorphic polynomials in A. We also discuss another important
additional structure, namely, a projection operator P : A → P. We emphasize
that in order to quantize a given algebra A with conjugation we need to choose
appropriately P and P . There is also a choice to be made of a possibly degenerate
inner product on A. As examples make clear, these choices are not unique. And
in general there is no reason as far as I know to suppose that a given algebra A
must necessarily have these extra structures. So that remains a question for future
inquiry.

In Section 4 we discuss how to find a sub-algebra P of A to represent the possi-
bly non-commuting holomorphic polynomials. This technical point is nonetheless
central to the application of the theory. In Section 5 we define two special cases of
Toeplitz operators, the creation and annihilation operators. Then next in Section 6
we study the relation of this Toeplitz quantization with two plausible definitions
of anti-Wick quantization, each of which arises naturally in a non-commutative
setting. (These two definitions turn out to be equivalent in the commutative set-
ting.) This Toeplitz quantization always satisfies one of these definitions, which is
of course then taken to be the ‘correct’ generalization of anti-Wick quantization
for this setting. The notion of canonical commutation relations in this abstract
context is discussed in Section 7. At this point Planck’s constant is introduced
into the quantum side of the theory. In Section 8 we show that this theory can
be applied in the setting of non-commutative geometry. We define and study a
Toeplitz quantization whose symbols lie in the quantum group SUq(2) and which
acts (possibly via unbounded operators) on the Manin quantum plane, viewed as
a pre-Hilbert space with respect to a specific inner product. In the last section
we conclude with a few remarks about our approach to Toeplitz quantization with
non-commuting symbols as contrasted with other approaches.

One notable feature, one might even say failing if one were unkind, of this theory
is that almost none of the standard structures of a phase space is imposed on A.
For example, measures, symplectic forms, Poisson brackets and coherent states are
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not needed, though some of these structures could be present in some examples.
The most important structure on A is strangely enough the conjugation operation.
Even the multiplication on A (as an algebra) is not a critically important structure
and can be dispensed with as is done in [23].

2 The Setting
We will study an algebra A over the complex numbers C with unit 1 and with an
involutive, anti-linear conjugation (also called a ∗-operation), denoted by f∗ for
f ∈ A, together with a unital sub-algebra P of A (that is, with 1 ∈ P). We assume
that 1∗ = 1. The algebra A will be the space of symbols for the Toeplitz operators
which we will define later. So A is the ‘classical’ space we wish to quantize. For
example, it could be an algebra of ‘functions’ on a non-commutative phase space,
but in this paper we do not impose a Poisson structure on A. The typical case
that we have in mind is that P is not closed under the conjugation and that in
fact the intersection P ∩ P∗ is as small as it possibly could be, namely C1. Here
P∗ := {g∗ | g ∈ P}. However, we will make no hypothesis about P ∩ P∗.

We do not assume that A is a ∗-algebra, namely that (fg)∗ = g∗f∗ holds for
all f, g ∈ A. Also, we do not put any restriction on the dimensions of these vector
spaces. The existence of a unit in A is not an essential element of this theory, and
many of the results go through without assuming that it exists. The fact that we
are using an algebra of symbols allows us to include non-commutative geometry
as a special case of this theory. So A could be any algebra that is considered to
be a non-commutative space. The possibility of such a theory was raised, but not
realized, in a remark in [2].

We suppose there is a sesquilinear, complex symmetric form (or inner product)
A×A → C, which is denoted by 〈·, ·〉A. Our convention is that this form is anti-
linear in the first entry and linear in the second. We allow the possibility that
this inner product could be degenerate. However, we impose the requirement that,
when this inner product is restricted to P, it is positive definite. Therefore P is
a pre-Hilbert space. We let H denote the completion of P. Therefore P can be
realized as a dense subspace in the Hilbert space H with no loss of generality. We
assume from now on that this is the case. The letter P is meant to remind us of
‘polynomial’ and ‘pre-Hilbert space’.

We suppose there exists an orthonormal indexed set Φ = {ϕj | j ∈ J} ⊂ P that
satisfies the following three conditions:

1. Φ is a Hamel basis of P. (A Hamel basis of a vector space is a maximal,
linearly independent subset of that vector space.) So,

P =
{∑

k

akϕk

∣∣∣ ak = 0 for all but finitely many k
}
.

2. Φ is an orthonormal basis of H. So,

H =
{∑

k

akϕk

∣∣∣ ∑
k

|ak|2 <∞
}
.
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This is actually a consequence of Condition 1, but for the sake of clarity we
state it separately.

3. For every f ∈ A, the set defined by Φf := {ϕj ∈ Φ | 〈ϕj , f〉A 6= 0} is finite.
However, the cardinality of the set Φf can depend on f .

If P is finite dimensional, as in [22], then P = H and such a subset Φ exists.
Notice that neither the ∗-operation nor the unit 1 is mentioned in these three
conditions and so some of this theory can be developed without those structures,
though the more interesting results do use those structures. (Cp. Theorem 2,
Parts 1, 4 and 5.) We now fix such a set Φ and continue developing this theory
further. We address later the question if the subsequent theory really depends on
the choice of Φ. These conditions are technical in nature and could be modified
to give similar theories. The first two conditions concern relations among Φ, the
pre-Hilbert space P and its completion H.

The third condition has a quite different character, since it relates the sub-
algebra P with the larger algebra A. (Recall A will be the symbol space.) In-
tuitively, this condition says that A is not ‘too’ big or equivalently that P is not
‘too’ small. In particular, using Condition 3 the Toeplitz operators which we will
define presently leave their common domain invariant and so the composition of
two of them is completely straightforward. An alternative condition, weaker than
Condition 3, would be to require:

3′. The series
∑
j

|〈ϕj , f〉A|2 converges for all f ∈ A.

With this weaker condition the common domain of our Toeplitz operators need not
be invariant and so the composition of them becomes problematic. For example,
the discussion of the canonical commutation relations becomes more complicated
in this case.

The intuition behind this theory comes from physics. There are three spaces
here, each with a physical interpretation: A, P and H. The starting point is A,
which corresponds to the ‘functions’ on the classical phase space of a classical phys-
ical system. The classical phase space is typically the space of positions and (linear)
momenta of the physical system under consideration. However, here we allow a
certain level of ‘quantum’ (i.e., non-commutative) behavior even at this ‘classical’
level, since A need not be commutative. But we consider a fully quantum descrip-
tion of a physical system to have at least two essential aspects: densely defined
linear operators acting in a complex Hilbert space and Planck’s constant ~ > 0.
The second space of the theory is the sub-algebra P of A. The idea is that P cor-
responds to the functions on the configuration space of the physical system. The
configuration space is typically the space of positions, and so has half the number
of variables as the phase space. Here P corresponds to the holomorphic polyno-
mials (say) on the configuration space. With that interpretation the conjugate
space P∗ corresponds to the anti-holomorphic polynomials on the configuration
space. These interpretations of P and P∗ can be interchanged with no loss of
mathematical generality nor of physical intuition. However, the central role of the
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conjugation operation ∗ must be heavily emphasized. The third space of this the-
ory is the Hilbert space H, where the densely defined Toeplitz operators act. The
quantum side of the theory resides in H and its Toeplitz operators. Each Toeplitz
operator Tg comes from an element g ∈ A called its symbol. The collection of all
the Toeplitz operators gives us the Toeplitz quantization of A. As a further step
in the theory, Planck’s constant is introduced into the quantum side of this theory
via the canonical commutation relations that certain Toeplitz operators (those of
creation and annihilation) satisfy. The bridge between the classical side of the the-
ory and the quantum side is provided by P. Two algebraic structures, namely the
multiplication and inner product for A, are auxiliary to this basic outline and can
be modified without changing the basic theory as indicated in [23].

However, a quantization does not necessarily involve dynamics, that is, an equa-
tion of motion. It is rather well understood and accepted that the dynamics must
be introduced in various ways, each way corresponding to its own quantum phys-
ical system. This is typically done by choosing a specific quantum Hamiltonian
operator for the quantum system under consideration and using it in Schrödinger’s
equation. While the quantum Hamiltonian can be the quantization of a classical
physics Hamiltonian, this aspect of quantization will not be considered in this paper
beyond one simple remark for now. One can always take a self-adjoint symbol g,
that is g∗ = g, and consider it as a ‘classical’ Hamiltonian whose corresponding
quantum Hamiltonian is some self-adjoint extension of the symmetric Toeplitz op-
erator Tg. Note that Tg will be a symmetric operator under a hypothesis relating
the inner product with the conjugation. But in some examples that hypothesis
need not hold and so the construction of self-adjoint Hamiltonians becomes an
important problem; one such example is given by SUq(2). We will return to this
point.

This paragraph is a non-rigorous discussion which is only meant to serve as
motivation. We first consider the formal sum

K :=
∑
j∈J

ϕ∗j ⊗ ϕj . (1)

We emphasize that the cardinality of the index set J is completely arbitrary. If we
restrict j in the previous sum to lie in some finite subset of J , this gives a well-
defined element in P∗⊗P, which in turn can be identified (essentially by thinking of
Dirac’s bra-ket notation) as a finite rank projection operator mapping P to itself. If
H has finite dimension, then (1) itself immediately identifies K as the kernel of the
identity operator of P = H. IfH has infinite dimension, then (1) also identifies K as
the kernel of the identity operator of P provided that we interpret the infinite sum in
the topology corresponding to the strong operator topology of bounded operators.
So (1) is basically a resolution of the identity of P. It seems reasonable to suppose
that (1) could be replaced with a resolution of the identity of P by coherent states
without changing this theory dramatically. However, we must emphasize that the
Toeplitz quantization to be defined below is not the coherent state quantization
(see [10]) associated to (1). The latter quantization in this setting maps the function
α : J → C to the operator associated to

∑
j∈J α(j)ϕ∗j ⊗ ϕj , modulo the usual

technical details about convergence of the sum. Moreover, the set of all such α’s
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forms a commutative algebra, while we will quantize the possibly non-commutative
algebra A.

A formal computation now gives for all f ∈ P that

〈K, f〉A = 〈
∑
j

ϕ∗j ⊗ ϕj , f〉A =
∑
j

〈ϕ∗j ⊗ ϕj , f〉A =
∑
j

〈ϕj , f〉A ϕj .

These remarks motivate this formal definition for all f ∈ P:

〈K, f〉A :=
∑
j

〈ϕj , f〉A ϕj .

Even though the conjugation was used to motivate this definition, note that the
conjugation does not appear in the definition. By Condition 3 the sum on the right
side has only finitely many non-zero terms. It gives us an element in P, since each
ϕj ∈ P. Moreover, since f ∈ P we have that∑

j

〈ϕj , f〉A ϕj = f,

which is an elementary result. So 〈K, f〉A = f and thus K can also be viewed
formally as a generalized reproducing kernel for P. While all the material of this
paragraph can be developed rigorously (for example, following the presentations in
[22] or [21]), for the moment we merely wished to give an idea of what the set Φ is
good for.

It is natural to require that the inner product in A has this relation with the
conjugation in A:

〈f, g〉∗A = 〈f∗, g∗〉A (2)

for all f, g ∈ A. This simply means that f 7→ f∗ is an anti-unitary map of A to
itself. This condition is satisfied by the paragrassmann algebras (see [22]) and by
the complex quantum plane (see [21]). Here is an immediate consequence of this
requirement.

Proposition 1. P∗ is a pre-Hilbert space with respect to the restriction of the inner
product 〈·, ·〉A to it.

Sketch of Proof: The set Φ∗ = {ϕ∗j | j ∈ J} is an orthonormal set in P∗ by (2). It
is left to the reader to prove that Φ∗ is a Hamel basis of P∗ as well. Then it follows
that the inner product 〈·, ·〉A restricted to P∗ is positive definite, and so P∗ is a
pre-Hilbert space. �

We denote the completion of the pre-Hilbert space P∗ by H∗. There is an anti-
unitary identification as inner product spaces between the pair of spaces (P,H)
and the pair of spaces (P∗,H∗) induced by P 3 f 7→ f∗ ∈ P∗. We sometimes
refer to H as the holomorphic space (or Segal-Bargmann space) and to H∗ as the
anti-holomorphic space (or anti-Segal-Bargmann space). It turns out that these
designations are completely arbitrary and can be reversed with absolutely no loss
of rigor nor (if one is savvy enough) of intuition. Since P ∩ P∗ consists either
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way of elements which, according to this classification, are both holomorphic and
anti-holomorphic, we see the intuition behind the condition P ∩ P∗ = C1. But we
continue with P ∩ P∗ being completely arbitrary.

Curiously, the statement “P∗ is a sub-algebra of A” could be false, though it
is true whenever A is a ∗-algebra or for the examples in [24] and [21] (even when
A is not a ∗-algebra). In [24] P is the holomorphic Hilbert space, while in [21] the
sub-algebra Pre(θ) plays the role of P.

Proposition 2. If
(
A,P,Φ, 〈·, ·〉A

)
satisfy Conditions 1–3, then it follows that(

A,P∗,Φ∗, 〈·, ·〉A
)

satisfy Conditions 1–3.

Sketch of Proof: We have already commented that Φ∗ satisfies Condition 1. And,
as also noted, Condition 2 readily follows from Condition 1. That Condition 3
holds we leave to the reader as a quick exercise using (2). �

In the rest of this paper we will only use this relation between the sesquilinear
form and the conjugation:

〈f1, f2g〉A = 〈f1g
∗, f2〉A for f1, f2 ∈ P, g ∈ A. (3)

This identity holds for the examples in [24] and [21]. So those two examples are
special cases of the theory in the rest of this paper. However, the example using
SUq(2) in Section 8 does not satisfy this identity. Nonetheless, it is an illustrative
example of many aspects of Toeplitz quantization.

3 Toeplitz Quantization
First we take any g ∈ A and use it to define a linear map

Mg : P → A

by Mgψ := ψg for all ψ ∈ P. Notice that ψg ∈ A, since it is a product of two
elements in the algebra A. In this paper this is the main use of the multiplication
of A. So a bilinear map P × A → A could be used instead of the multiplication
(ψ, g) 7→ ψg. This map would have to satisfy some other conditions as well to make
the theory work out. We will not go into further details about this more general
approach, which is discussed in [23].

We next wish to use the kernelK to extend the identity map on P to a projection
map PK : A → A. The technique is standard in analysis. We simply use the same
formula to define a different operator, where the difference consists in using a
different domain of definition. So we define for f ∈ A:

PKf :=
∑
j

〈ϕj , f〉A ϕj . (4)

Of course, by our previous discussion we have PKf = f provided that f ∈ P. Now
for f ∈ A we have assumed that only finitely many of the coefficients 〈ϕj , f〉A are
non-zero. So the sum on the right side of (4) is effectively over a finite number
of terms and so PKf ∈ P for all f ∈ A, that is, PK : A → P. It is important to
emphasize that the inner product on A is used in this theory only to define this
linear map PK .
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Theorem 1. PK is a projection, that is P 2
K = PK , and is symmetric with respect

to the inner product on A, that is

〈PKf, g〉A = 〈f, PKg〉A (5)

for all f, g ∈ A. If the inner product is non-degenerate, then we can write (5) as
P ∗K = PK , where P ∗K is the unique adjoint operator of PK .

Proof. First we note that PKf ∈ P for all f ∈ A and that PK acts as the identity
on P. So PK(PKf) = PKf for all f ∈ A, thereby proving that P 2

K = PK . Next,
one readily calculates that each side of (5) is equal to

∑
j〈f, ϕj〉A〈ϕj , g〉A. And

this is a sum with only finitely many non-zero terms, and so there is no problem
with the convergence of this sum. �

We now return to the question whether this theory depends on the choice of
orthonormal set Φ = {ϕj | j ∈ J}. The point is that this set is used to define PK .
But suppose that Ψ = {ψj | j ∈ J} is another orthonormal set in P that is also a
Hamel basis of P. And let PK be the projection operator defined above using the
set Φ. We temporarily denote PK by PΦ

K to indicate its dependence on Φ. Suppose
that f ∈ A. Then as we have seen PΦ

Kf ∈ P. So we can expand PΦ
Kf uniquely in

the Hamel basis Ψ of P to get

PΦ
Kf =

∑
k

akψk (6)

with all but finitely many ak = 0. Taking the inner product of this with ψj yields

aj = 〈ψj , PΦ
Kf〉A = 〈PΦ

Kψk, f〉A = 〈ψk, f〉A (7)

for all j ∈ J , since Ψ is orthonormal and PΦ
K acts as the identity of P. So the set

Ψf := {ψj | 〈ψj , f〉A 6= 0} is finite.
Substituting (7) back into (6) we see for all f ∈ A that

PΦ
Kf =

∑
k

〈ψk, f〉A ψk = PΨ
Kf,

using in the second equality the corresponding definition of the projection operator
PΨ
K defined by the set Ψ. In short, the definition of PΦ

K does not depend on the
choice of the set Φ. Since the only essential use of the set Φ is exactly to define PΦ

K ,
we now have shown that the subsequent theory does not depend on the particular
choice Φ. And so we revert to our original notation PK .

Since Φ will make only minor appearances in the rest of this paper and it was
only used so far to define PK , an alternative approach to this theory is to start with
A, P and an inner product on P, all as above. But instead of Φ one introduces an
operator P : A → P straightaway with the properties in Theorem 1.

Definition 1. For any g ∈ A we can form the composition of linear maps

P Mg−→ A PK−→ P

which we define to be the Toeplitz operator associated with the symbol g ∈ A,
denoted by Tg := PKMg.
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Notice that Tg is defined in the dense domain Dom(Tg) := P, which does
not depend on g. Furthermore, P is invariant under the action of Tg and so
we can always compose any finite number of Toeplitz operators. This is not a
usual situation in Toeplitz operator theory in function spaces, where the domain
typically depends on the symbol and where that domain is not necessarily invari-
ant.

The symbol g in Tg is known as the upper symbol in Lieb’s paper [16] and as the
contravariant symbol in Berezin’s paper [5]. The corresponding lower or covariant
symbol of those papers does not seem to have an exact analogue in this general
non-commutative setting. For example, see [4] where lower symbols are introduced
in a non-commutative setting that includes coherent states. So it may well be a
worthwhile avenue for future research to modify the present theory so as to include
coherent states as well.

The linear map T : g 7→ Tg for g ∈ A is called the Toeplitz quantization. Since A
can be a non-commutative algebra, we do include the possibility that the symbols
of the Toeplitz quantization do not commute among themselves. This is in rather
sharp contrast to most studies of Toeplitz operators in classical analysis, where the
symbols are real or complex valued functions with multiplication defined pointwise.
Other definitions in the literature of Toeplitz operators with non-commuting sym-
bols will be discussed in the concluding section. This is a strictly mathematical
point of view of what is being done here.

However, from a physics point of view, we are quantizing the (possibly non-
commutative, i.e., quantum) space A by densely defined operators acting in the
quantum Hilbert space H. The space A could be the functions on a phase space
or just about anything else. When A is non-commutative this can be considered
as a type of second quantization (that is, it is the quantization of something that
is already quantum), though the result of the quantization is not a quantum field
theory by any means. However with a little bit more work, this Toeplitz quanti-
zation can be realized as a functor and so is in accord with Nelson’s maxim that
second quantization is a functor. (See Section X.7 in [20].)

We can take the co-domain of the Toeplitz quantization T to be the vector
space

L ≡ L(P) := {S : P → P | S is linear}

of densely defined linear operators in H with common invariant domain P. So,
L(P) is an algebra under composition, though it does not have a natural norm,
thereby putting it on the same footing as the algebra A. Then the Toeplitz quan-
tization

T : A → L(P)

is a linear map between algebras. However, it is not expected to be an algebra
morphism in any reasonable set-up. Nonetheless, it does have some properties re-
lated to the multiplication as well as some other nice properties. Parts 2 and 3
below can be false without the hypothesis that P is a sub-algebra.
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Theorem 2. The following hold:

1. T1 = IP where IP is the identity map of P.

2. If g ∈ P, then Tg = Mg.

3. If g ∈ A and h ∈ P, then TgTh = Thg.

4. Suppose that f1, f2 ∈ P and g ∈ A. Then

〈Tgf1, f2〉A = 〈f1, Tg∗f2〉A. (8)

This can also be expressed by saying that Tg∗ ⊂ (Tg)
∗ or equivalently that

Tg ⊂ (Tg∗)
∗. This shows a compatibility between the ∗-operation in the

algebra A and the adjoint operation of densely defined operators.

5. If g = g∗, then Tg is a symmetric operator.

Proof. For Part 1, we note that M1 is just the inclusion map of P into A. Since
PK acts as the identity on P, we get T1 = PKM1 = IP .

For Part 2 we remark that the range of Mg is contained in P for g ∈ P, since
Mgψ = ψg ∈ P for all ψ ∈ P. Here we are using the hypothesis that P is a
sub-algebra of A. But PK acts as the identity on P. So, Tg = PKMg = Mg.

For Part 3 we first note for all g ∈ A and all h, φ ∈ P that

MgMhφ = (Mhφ)g = (φh)g = φ(hg) = Mhgφ.

So, using this and Part 2 we see that

TgTh = PKMgMh = PKMhg = Thg.

For Part 4 we suppose f1, f2 ∈ P and g ∈ A. Then we calculate

〈Tgf1, f2〉A = 〈PKMgf1, f2〉A = 〈f1g, PKf2〉A = 〈f1g, f2〉A,

where the last equality follows from f2 ∈ P. Similarly we see that

〈f1, Tg∗f2〉A = 〈f1, PKMg∗f2〉A = 〈PKf1, f2g
∗〉A = 〈f1, f2g

∗〉A,

where now the last equality follows from f1 ∈ P. Finally, we use the identity
〈f1, f2g

∗〉A = 〈f1g, f2〉A, which we took as a hypothesis in (3).
Next, the two relations Tg∗ ⊂ (Tg)

∗ and Tg ⊂ (Tg∗)
∗ follow immediately

from (8). These relations are equivalent using the substitution g 7→ g∗.
Part 5 is an immediate consequence of Part 4 and the definition (see [19]) of a

symmetric operator. �

We now are presented with a classical problem in the functional analysis of
densely defined operators, namely, in the case of a self-adjoint symbol g = g∗ we
have the symmetric, densely defined operator Tg. One would like to know whether
this operator has self-adjoint extensions and, if it does, how to explicitly classify
them. In particular, it could be that Tg is self-adjoint or essentially self-adjoint for
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particular choices of self-adjoint g. For example, T1 = IP is essentially self-adjoint.
Of course, the probabilistic interpretation of any self-adjoint extension of Tg as a
physical observable would be based on its projection valued measure, just as is
done in [19].

We continue with some technical, but important, mathematical details.

Theorem 3. For any g ∈ P, the Toeplitz operator Tg is closable and its closure Tg
satisfies

Tg = (Tg)
∗∗ ⊂ (Tg∗)

∗.

Proof. All of this follows from basic functional analysis. (See [19].) For example, an
operator R is closable if and only if DomR∗ is dense. But Dom(Tg)

∗ ⊃ DomTg∗ =
P and P is dense in H. So, Dom(Tg)

∗ is also dense and therefore Tg is closable.
Next Tg = (Tg)

∗∗ comes directly from [19]. Finally, Tg∗ ⊂ (Tg)
∗ implies that

(Tg)
∗∗ ⊂ (Tg∗)

∗. �

Since Tg is closable, we would expect that in this setting there is a more explicit
description of its closure Tg = (Tg)

∗∗. We leave this as a problem for future
consideration.

Many other problems that are considered in the usual, classical Toeplitz quan-
tization of functions also arise in this non-commutative context. These include
finding necessary conditions as well as sufficient conditions for a Toeplitz operator
to be bounded. Then given that a Toeplitz operator is bounded, there are open
problems remaining to find necessary conditions as well as sufficient conditions for
it to be compact, to be in a Schatten class, to be normal, to be unitary and so
forth. However, these questions are known to depend on the particular properties
of P and A in the case of classical Toeplitz operators and so may not be amenable
to much more analysis in this general setting.

The material in this section deals with one of eight (at least!) possible Toeplitz
quantizations that can be defined in this setting. For starters, one could change
the definition of the operators Mg to be multiplication on the left (instead of on
the right) by g. This would give us a different, but very similar theory. Another
possibility is to consider the Toeplitz quantization given by Toeplitz operators
acting in the anti-holomorphic space H∗ together with the two options for how the
multiplication operators Mg act, namely, on the right or on the left. This gives us
two more Toeplitz quantizations provided that P∗ is a sub-algebra of A. Again,
these are quite similar to the theory developed here. And yet another variation
is to replace Mg with Mg∗ in each of the previous four cases, thereby resulting in
anti-linear Toeplitz quantizations. But these are all minor variations on the same
theme and will not be discussed further.

4 Seeking P
In practice, we usually have a candidate algebra A which we wish to quantize. The
‘tricky bit’ is to find the appropriate sub-algebra P (as well as the inner product, of
course) in order to make everything work out. In this section we consider various
aspects of this situation. We start off with some elementary results.
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Lemma 1. Suppose that H is a separable Hilbert space and that P ⊂ H is a dense
subset of H. Then there exists D′ ⊂ P such that D′ is a countable dense subset of
H, and hence also a countable dense subset of P.

Remark 1. The notation betrays how we will use this result. In particular, we will
be interested in the case when P is a dense subspace of H. In that case P will not
be countable, except in the trivial case when H = 0.

Proof. Let D ⊂ H be a dense countable subset of H. For each x ∈ D and each
integer n ≥ 1 there exists y = y(x, n) ∈ P such that

‖x− y‖ = ‖x− y(x, n)‖ < 1/n,

since P is dense in H. Define

D′ :=
⋃

(x,n)

{y(x, n)},

where (x, n) ∈ D × N+, a countable set. So D′ is countable. Obviously by con-
struction D′ ⊂ P.

To show that D′ is dense inH we take z ∈ H arbitrary as well as ε > 0 arbitrary.
Pick an integer n sufficiently large so that

1

n
<
ε

2
.

Then there exists x0 ∈ D such that ‖z − x0‖ < ε/2, since D is dense in H. Then,

‖z − y(x0, n)‖ ≤ ‖z − x0‖+ ‖x0 − y(x0, n)‖ < ε

2
+

1

n
< ε.

But y(x0, n) ∈ D′. So D′ is dense in H. Even more so, this means that D′ is also
dense in P. �

Proposition 3. Suppose that Q ⊂ H is a dense subspace of a separable Hilbert
space H. Then there exists an orthonormal basis {ϕj | j ≥ 0} of H such that
ϕj ∈ Q for all j ≥ 0.

Proof. If H is finite dimensional, then Q = H and so the result is trivial. So from
now on we assume that H is infinite dimensional.

By the previous lemma there exists some (highly non-unique) D′ ⊂ Q such
that D′ is a dense countable subset of H. Use some (highly non-unique) bijection
of D′ with N to express D′ as a sequence. Applying Gram-Schmidt to this sequence
we obtain a countable orthonormal basis {ϕj | j ≥ 0} of H. Now Gram-Schmidt
produces the elements ϕj as finite linear combinations of elements in D′. But D′

lies inside the subspace Q. So each ϕj ∈ Q. �

In general, the orthonormal basis {ϕj} will not be a Hamel basis of Q. Simply
stated, Q could be too big. For example, Q = H is a possibility, in which case it is
well known that {ϕj} is not a Hamel basis of Q. However, we can define

P := span{ϕj},
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the algebraic span of the orthonormal basis. Then it is clear that {ϕj} is a Hamel
basis of P. This procedure of going from a dense subspace Q of H to a ‘good’ dense
subspace P of H is not an algorithm. Many such subspaces P will be produced in
general.

So we would like some criteria for which of these ‘good’ subspaces P are ‘better’
than others. And also we would like some concept of what constitutes the ‘best’
such subspace P. Here is how one can go about doing that. But now the emphasis
is not on the relation of P with the quantum Hilbert space H, but rather how to
look for an adequate sub-algebra P inside of a given algebra A.

To address this situation let us first suppose that at least one such P has been
found. Say that P ′ is a sub-algebra of P. Since the inner product on A is positive
definite when restricted to P, it is also positive definite when restricted to P ′.
Consequently, P ′ is a pre-Hilbert space, and so its completion, denoted as H′, is
a closed subspace of H. Suppose that we can find an orthonormal set Φ ⊂ P
satisfying Conditions 1 to 3 and such that there exists a subset Φ′ of Φ which is
a Hamel basis of P ′. Then the pair (P ′,Φ′) satisfies all the Conditions 1 to 3 for
developing this theory. The collection of all such sub-algebras P ′ clearly form a
partially ordered system, where the partial order is the inclusion of one sub-algebra
in another as well as the inclusion of their Hamel bases. This discussion serves as
motivation for the next definition.

Definition 2. Suppose A is an algebra with an inner product. Let (P,Φ) and
(P ′,Φ′) satisfy the Conditions 1 to 3 with respect to the algebra A and the inner
product ofA is positive definite on P and on P ′. Then we say that (P ′,Φ′) is smaller
than (P,Φ) provided that P ′ ⊂ P and Φ′ ⊂ Φ. Notation: (P ′,Φ′) << (P,Φ).

It should be clear that << is a partial order. We are really interested in finding
a maximal pair (P,Φ) for a given algebra A with an inner product. Of course, the
pair (P,Φ) = (0, ∅) always satisfies the Conditions 1 to 3. This is the minimal pair.
And it is trivial.

Proposition 4. Suppose A is an algebra with an inner product. Then there ex-
ists a maximal pair (P,Φ) for A with respect to the partial order << such that
Conditions 1 and 2 hold and the inner product of A is positive definite on P.

Proof. This is a simple application of Zorn’s lemma. The point is that if (Pα,Φα)
is any ascending chain of pairs with respect to <<, then the pair (

⋃
α Pα,

⋃
α Φα)

satisfies Conditions 1 and 2, but not necessarily Condition 3. Also, the inner
product of A is positive definitive when restricted to

⋃
α Pα, since it is positive

definite on each Pα. �

In practice, one usually wants the quantum Hilbert space to be separable. How-
ever, the maximal pair given in the previous proposition need not have Φ countable.
The problem of finding a maximal pair satisfying Conditions 1 to 3 remains to be
considered case by case, although the considerations in this section could prove
helpful. A further restriction which should simplify this problem is to require pairs
for which P ∩ P∗ = C1 holds.
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5 Creation and Annihilation Operators
Definition 3. Let g ∈ P be given. Then the creation operator associated to g is
defined to be

A†(g) := Tg

and the annihilation operator associated to g is defined to be

A(g) := Tg∗ .

These are reasonable definitions given that they are in accord with the usual mean-
ing of these terms as exemplified in [11] and [21]. However, there are other nor-
malizations used as well for these operators. One of these entails putting a factor
of ~−1/2 on the right sides of these definitions, where ~ denotes Planck’s constant.
But we will postpone the introduction of Planck’s constant to a bit later. Notice
that g 7→ A†(g) is linear (as already remarked) and that g 7→ A(g) is anti-linear.
Also A†(g) = Tg = Mg holds, since g ∈ P. Since A†(1) = A(1) = T1 = IP , we see
that IP is both a creation and an annihilation operator. In fact for any g ∈ P∩P∗,
one has Tg = A†(g) = A(g∗) and so Tg is both a creation and an annihilation
operator.

One of the important contributions of Bargmann’s seminal paper [3] is that
it realizes the creation and annihilation operators introduced by Fock as adjoints
of each other with respect to the inner product on the Hilbert space which is
nowadays called the Segal-Bargmann space. The creation operator A†(g) and the
annihilation operator A(g) also have this relation, modulo domain considerations,
as we have already seen in Theorem 2, Part 4. Whether each is exactly the adjoint
of the other as in [3] is an open question if P has infinite dimension, but is trivially
so for finite dimensional P.

6 Anti-Wick Quantizations
We now have the language needed to discuss whether this is an anti-Wick quan-
tization, as is expected from a Toeplitz quantization. First recall that we have
shown

Tgh = ThTg (9)

provided that g ∈ P but with h ∈ A being arbitrary. Because we are allowing
non-commutative algebras A, we are led to two definitions for ‘anti-Wick’ in this
theory. These are clearly equivalent conditions if A is commutative as the reader
will soon appreciate.

Definition 4. We say that T is an anti-Wick quantization if

Thg∗ = Tg∗Th

for all g, h ∈ P. We say that T is an alternative anti-Wick quantization if

Tg∗h = Tg∗Th

for all g, h ∈ P.
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Notice that on the right side in both of these definitions we have the product of an
annihilation operator Tg∗ to the left of a creation operator Th. And so the right
side is in anti-Wick order for each of these definitions. The naming of these two
properties was determined only after proving the following results. What we deem
to call the anti-Wick quantization turns out to be the ‘correct’ generalization of
this notion to the present setting as the next result shows.

Theorem 4. The Toeplitz quantization T is an anti-Wick quantization.

Proof. Take g, h ∈ P. Then Thg∗ = Tg∗Th, where we have used (9). �

This clarifies why the examples in [24] and [21] are anti-Wick quantizations even
though they arise in a non-commutative context. The longer, explicit computations
given in those references are not needed as we can now see.

This theorem has several immediate consequences:

Corollary 1. If A = PP∗, then one can write any Toeplitz operator as a sum of
terms in anti-Wick order.

Corollary 2. IfA is commutative, then the Toeplitz quantization T is an alternative
anti-Wick quantization.

The examples in [24] and [21] for q 6= 1 (which is the non-commutative case) are
not alternative anti-Wick quantizations.

The last corollary has a partial converse.

Theorem 5. T is not an alternative anti-Wick quantization if and only if there
exist elements g, h ∈ P such that Tg∗h 6= Thg∗ .

Proof. As already shown Tg∗Th = Thg∗ is an identity for all g, h ∈ P. Now by
definition T is not an alternative anti-Wick quantization if and only if

Tg∗h 6= Tg∗Th

for some g, h ∈ P. These two statements give the result. �

Corollary 3. Suppose that there exists an element in P which does not commute
with some element in P∗ and that T is a monomorphism. Then T is not an
alternative anti-Wick quantization.

Proof. By hypothesis there exist elements g, h ∈ P such that g∗h 6= hg∗. Since T
is a monomorphism, this implies that Tg∗h 6= Thg∗ . And now the previous theorem
applies. �

I suppose that the Toeplitz quantization of some non-commutative algebras can
be an alternative anti-Wick quantization, but I have not constructed an example.
The results just presented indicate where not to look for such an example. This
remains an open, though relatively minor, problem.

Just for completeness we read into the record two more related definitions.
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Definition 5. We say that T is a Wick quantization if

Thg∗ = ThTg∗

for all g, h ∈ P. We say that T is an alternative Wick quantization if

Tg∗h = ThTg∗

for all g, h ∈ P.

These definitions are not expected in any way at all to describe a typical Toeplitz
quantization. Their value lies in the possibility that some other types of quantiza-
tions of non-commutative algebras may have these properties. If the range of the
Toeplitz quantization T consists of operators which commute among themselves,
then T is trivially a Wick quantization. Of course, this condition on T is not
what one wants in a quantum theory and should be considered as a pathological
condition.

7 Canonical Commutation Relations
We next want to consider the canonical commutation relations satisfied by these
creation and annihilation operators. The method of this section can be applied
to all the examples in [24] and [21] without further ado. We shall do this later
on for one of the examples from [21]. One upshot of such an exercise is that the
deformation parameter q in those papers is seen to be independent of Planck’s
constant ~.

Now our approach here is quite the opposite of the usual approach in which
one starts with some generalization or modification of the standard canonical com-
mutation relations (considered as formal relations to be satisfied), and then one
looks for realizations (namely, representations) of them as actual operators in some
Hilbert space. Here we would like to find the appropriate canonical commutation
relations that arise from a given Toeplitz quantization, that is, the operators are
given first.

Our first observation is that the creation and annihilation operators all sit inside
the algebra L. So they generate a sub-algebra of L, which is an object well known
in mathematical physics.

Definition 6. The sub-algebra of L generated by all the creation operators Tg,
where g ∈ P, and all the annihilation operators Th, where h ∈ P∗, is called the
algebra of canonical commutation relations (CCR) and is denoted by CCR(A,P).

Alternatively, we will write CCR if context resolves the ambiguity in this notation.
This may be a good time to point out that the inner product has been suppressed
from our notation of Toeplitz operators. Therefore even the notation CCR(A,P)
is ambiguous.

We also define the Toeplitz algebra, denoted T , to be the sub-algebra of L
generated of all the Toeplitz operators Tg for arbitrary symbols g ∈ A. Clearly,
CCR ⊂ T . An explicit description of either of the algebras CCR or T seems to be
in no way trivial in general.
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Notice that in this abstract approach we first define the algebra of CCR before
defining the canonical commutation relations themselves. Typically in studies in
physics and mathematical physics, one defines the algebra of CCR in terms of
a presentation of generators and relations, where the relations are exactly the
canonical commutation relations. In the present abstract approach this corresponds
to writing CCR as the quotient of some other free algebra F and then identifying
the kernel of the quotient map π : F → CCR as the ideal of relations. Then we
could pick a minimal set of generators of this ideal of relations as the CCR of this
theory. However, the trick is to do this (or at least some of it) in a functorial way,
because otherwise we will not have a general theory.

We propose the following construction. We define F to be the free algebra
over C generated by the set P ∪P∗. Since P ∪P∗ ⊂ A, we distinguish the product
in F from that in A by writing the algebra generators of F as Gf for f ∈ P∪P∗. So
F is the complex vector space with a basis given by all monomials Gf1Gf2 · · ·Gfn
with each fj ∈ P ∪ P∗. The algebra morphism π : F → CCR is defined on the
algebra generators of F by π : Gf 7→ Tf for all f ∈ P ∪ P∗. Since the algebra
F is free on these generators, this defines π uniquely. Also since the elements
Tf for f ∈ P ∪ P∗ are algebra generators for the algebra CCR, it follows that π
is surjective. Moreover, π(Gf1Gf2 · · ·Gfn) = Tf1Tf2 · · ·Tfn gives the map π on a
basis of F .

Definition 7. Let π : F → CCR be as above. Then we define the ideal of canonical
commutation relations (CCR) in F to be R := kerπ.

This seems to be as far as one can go before getting down to the details of
picking ideal generators of R. It appears to be impossible to do that next step in a
functorial way in this general setting. But it is reasonable to say that any minimal
set of algebra generators of R is a set of CCR. Notice that such a set need not
be unique in general. So we are still some ways from having the typical situation
found in most studies of CCRs.

We now discuss the well known, standard CCRs of quantum mechanics in Rn
in this setting. These are given by the generators A1, . . . , An, A

†
1, . . . , A

†
n together

with the relations (the standard CCR):

AjAk −AkAj (10)

A†jA
†
k −A

†
kA
†
j (11)

AjA
†
k −A

†
kAj − δj,k ~ 1 (Kronecker delta) (12)

for j, k ∈ {1, 2, . . . , n}. Here ~ > 0 is Planck’s constant. Notice that we have
deliberately written these as relations to be quotiented out and that we have not
used the standard notation for commutators. One important point, often sluffed
over, is that (10) and (11) are non-trivial relations mathematically, since they
impose the commutativity of certain pairs of generators in the quotient algebra of
CCR. The corresponding generators of the free algebra do not commute, of course.
However, in physics the intuition is that commuting operators are like objects in
classical mechanics and so are deemed to be trivial in the quantum setting. Using
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this physics intuition, the only non-trivial case is (12) when j = k, while from a
mathematical perspective all the cases of (12) as well as (10) and (11) are non-
trivial.

Instead of concerning ourselves with what is trivial and what is not (and from
whose point of view), let us simply note that the relations (10), (11) and, when
j 6= k (12), are homogeneous elements (in this case of degree 2) in the free algebra,
while (12) for j = k is not a homogeneous element. Also, Planck’s constant only
plays a role in (12) for j = k and then only in a lower order term.

The free algebra F introduced above is also a graded algebra, where the linear
span of all of the basis elements Gf1Gf2 · · ·Gfn for some fixed integer n ≥ 0 and
fj /∈ C1 for j = 1, . . . , n is by definition the subspace of homogeneous elements of
degree n. The identity element 1 ∈ F has degree zero.

Definition 8. Let R ⊂ F be the ideal of CCR as above. Any homogeneous element
in R is called a classical relation while any non-homogeneous element in R is called
a quantum relation.

This dichotomy is important more for ideal generators of R rather than for
arbitrary elements in R itself. For example, using this dichotomy, one sees that
the q-commutation relation AA† − qA†A (usually written as xy − qyx) for q ∈ C
is a classical relation, while the relation AA† − qA†A − ~1 is a quantum relation.
Notice that both of these relations, classical and quantum, arise in the study of
Toeplitz operators associated with the quantum plane. See [21].

The next definition is motivated by the examples discussed above.

Definition 9. Let R ∈ R be a non-zero relation. Then we can write R uniquely as
R = R0 + R1 + · · · + Rn, where degRj = j for each j = 0, 1, . . . , n and Rn 6= 0.
Then we say that Rn is the classical relation associated to R.

Notice that Rn is indeed a classical relation. Both of the cases Rn ∈ R and Rn /∈ R
can occur. Intuitively, to get the classical relation Rn from R we throw away the
‘quantum corrections’ R0, R1, . . . , Rn−1 in R. We let

Rcl :=
〈
Rn
∣∣ Rn is the classical relation associated to some R

〉
,

where R ranges over some set of generators of R and the brackets 〈·〉 indicate
that we are taking the two-sided ideal in F generated by the elements inside the
brackets.

Definition 10. The dequantized algebra associated to A is defined to be

DQ := F/Rcl.

Note that DQ need not be commutative.
We can realize DQ as the case ~ = 0 of a family of algebras defined for all ~ ∈ C

and with ~ = 1 corresponding to CCR. Of course, when ~ > 0 we interpret ~ as
Planck’s constant. To achieve this we define the ~-deformed relations to be

R~ :=
〈
~n/2R0 + ~(n−1)/2R1 + · · ·+ ~1/2Rn−1 +Rn

〉
(13)

=
〈
R0 + ~−1/2R1 + · · ·+ ~−(n−1)/2Rn−1 + ~−n/2Rn

〉
, (14)
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using the above notation R = R0 + R1 + · · · + Rn, where R ranges over a set of
generators of R. And then we define

CCR~ := F/R~.

In the second expression (14) the powers of ~−1/2 correspond to the degree of
homogeneity of each of the terms, while in the first expression (13) each of the
homogeneous terms has been given its intuitively correct degree of ‘quantumness’.
The first expression (13) also clarifies in a formal way what happens when we take
the limit when ~ → 0. For ~ 6= 0 the two expressions (13) and (14) are clearly
equivalent, but for ~ = 0 only the definition (13) makes sense. In physics one
considers ~ > 0, but here the discussion is valid for ~ ∈ C.

An example of this quantization scheme is given in [21] in the setting of the
quantum plane of Manin. In the notation of that paper the annihilation operator
is A = Tθ and the creation operator is A† = Tθ. In a special case described there
in detail (see the discussion related to Eq. (27) in [21]), one has the commutation
relation

[A,A†]q−1 = AA† − q−1A†A = I,

where q ∈ C \ {0}. The occurrence of q−1 in this commutation relation arises
because we are following the notational conventions of [21]. Introducing Planck’s
constant ~ according to the above procedure gives us the relation

[A,A†]q−1 = ~I.

This clearly demonstrates, as mentioned earlier, that q and ~ are independent
parameters. This in turn gives the standard canonical commutation relation when
one lets q = 1. The corresponding classical relation is [A,A†]q−1 = 0. Therefore, we
have that AA† = q−1A†A holds in DQ. This shows that the motivating example
in (12) for the physically non-trivial case j = k is recovered here when q = 1 and
n = 1. Generalizing the results in [21] to the case n ≥ 2 is straightforward, thereby
allowing us to recover (12) as well for j = k, q = 1 and n ≥ 2.

Again we remark that the dequantized algebra DQ in Definition 10 could be
non-commutative even though intuitively one feels that the construction of the
dequantized algebra is some sort of dequantization. Another blow to intuition can
occur in the quantization process too, since the ideal R could logically speaking
be generated by a set of classical generators. In that case Planck’s constant ~
plays no role in the definition of R~. Actually, in such a case one would have
R~ = R = Rcl. In other words, the result of the quantization in such a case
would not be a quantum theory from a physical point of view. However, I have
so far found no examples of these logically possible, counter-intuitive situations.
Another quite likely possibility is that R = 0. In that case we would also have
R~ = Rcl = 0.

We have included Planck’s constant ~ to emphasize that this theory has semi-
classical behavior (more precisely, what happens when ~ tends to zero) as well
as a classical counterpart DQ (that is, what happens when we put ~ equal to
zero). However, the semi-classical theory as well as the general relation between
the algebras A and DQ remain as open problems. Each of the algebras A and DQ is
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a ‘classical’ algebra (though possibly in different senses of the word ‘classical’) with
CCR being an intermediate quantum algebra of interest. The Toeplitz algebra T
is also a quantum algebra with its own intrinsic interest.

8 Toeplitz Operators with Symbols in SUq(2)
In this section we give an example of Toeplitz operators whose symbols are in
A = SUq(2), a real form of SLq(2). These operators act on the Manin quantum
plane, which is realized as a dense sub-space of a Hilbert space. (See [17], p. 131

where the notation A2|0
q is used for this quantum plane.) As far as I am aware, this

is the first example of Toeplitz operators defined with symbols in SUq(2), though
for the well studied case q = 1 it is difficult to imagine that this has not been done
before, though perhaps is a disguised form. Anyway, this example leads me to
conjecture that similar examples also exist for the q-deformations of other compact
Lie groups.

This example shows that none of the definitions of the ∗-operation on SLq(2),
the inner product on A and the sub-algebra P is unique. The moral, as indicated
earlier, is that we need more structure than the algebra itself in order to quantize
the algebra SLq(2).

First, we review in this paragraph some known properties of SUq(2). There are
many fine references for this material, one of which is [25]. We define SUq(2) as
the universal ∗-algebra over C on the generators a and c satisfying these relations:

ac = qca ac∗ = qc∗a cc∗ = c∗c

a∗a+ c∗c = 1 aa∗ + q2c∗c = 1,

where q ∈ R \ {0}. This space has the structure of a ∗-Hopf algebra, but for now
we consider it just as a ∗-algebra. This vector space has a useful basis, which we
now discuss. For k ∈ Z and l,m ∈ N we define

εklm :=

 ak cl (c∗)m = qkm (c∗)m ak cl for k ≥ 0,

(a∗)−k cl (c∗)m = (a∗)−k (c∗)m cl for k < 0.

Then it is known that the set {εklm | k ∈ Z, l,m ∈ N} is a vector space basis of
SUq(2).

To define Toeplitz operators we need to define a sub-algebra (but not a sub-
∗-algebra) of A = SUq(2). So, to achieve this we define P to be the sub-algebra
generated by the elements a and c. Since ac = qca, this is a copy of a Manin quan-
tum plane. It has a Hamel basis given by {aicj | i, j ∈ N}. Also, the expressions
given above for εklm show that A = P∗P. Finally, notice that P∗ is a sub-algebra
isomorphic to a Manin quantum plane and that P ∩ P∗ = C1. So, a and c can be
viewed as holomorphic variables while a∗ and c∗ as anti-holomorphic variables.

We also need an inner product on A = SUq(2). We first define this on pairs of
basis vectors and then extend to the unique sesquilinear form on SUq(2). We use
the convention that sesquilinear means anti-linear in the first entry and linear in
the second. So for k, r ∈ Z and l,m, s, t ∈ N we define

〈εklm, εrst〉A := w(l + t) δk,r δl+t,m+s.
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Here w : N → (0,∞) is any strictly positive, real function whose values are called
weights. Also, we are using the standard notation for the Kronecker delta. This
definition is motivated by similar definitions in the references [22], [21] and orig-
inally in [3]. This choice for the inner product is not unique. The theory goes
through just fine with appropriate changes for other choices.

Whether this inner product is non-degenerate is a question that need not be
considered for now. What is important in this paper is its restriction to the sub-
algebra P. So for k, l, r, s ∈ N we have

〈akcl, arcs〉A = 〈εk,l,0, εr,s,0〉A = w(l) δk,r δl,s = w(s) δk,r δl,s

This shows that the inner product restricted to P is positive definite. So, we define

ϕkl := (w(l))−1/2εk,l,0 = (w(l))−1/2akcl.

Then Φ := {ϕk,l | k, l ∈ N} is an orthonormal Hamel basis of P. The completion
of the pre-Hilbert space P with respect to this positive definite inner product is
denoted by H, a Hilbert space. It follows that Φ is an orthonormal basis of H. We
have one remaining condition to check, namely Condition 3 which we repeat in this
context:

3. For every f ∈ A, the set Φf = {ϕi,j ∈ Φ | 〈ϕi,j , f〉A 6= 0} is finite.

We first consider the case when f = εklm for given values k ∈ Z and l,m ∈ N.
Then for integers i, j ≥ 0 we have

〈ϕi,j , εklm〉A =
〈
(w(j))−1/2εi,j,0, εklm

〉
A = (w(j))−1/2w(j +m) δj+m,l δi,k.

This inner product is non-zero if and only if k = i ≥ 0 and l−m = j ≥ 0. Thus we
see that there is at most one solution i, j ∈ N for k, l,m as given above. Therefore,
the set Φf is finite provided that f = εklm. But any f ∈ A is equal to a finite linear
combination of the εklm’s, since these form a basis. So, a necessary condition for
〈ϕi,j , f〉A 6= 0 is that

〈ϕi,j , εklm〉A 6= 0 (15)

for at least one of the εklm’s appearing in that finite linear combination. Hence,
there are only finitely many (possibly zero) pairs i, j given a specific f ∈ A such
that (15) hold. We conclude that Condition 3 is satisfied.

We now have all the ingredients needed for defining the projection operator
PK : A → P. We recall that the formula in this setting becomes

PKf =
∑
i,j≥0

〈ϕi,j , f〉A ϕi,j (16)

for all f ∈ A. Moreover, the Toeplitz operator associated to the symbol g ∈ A =
SUq(2) is Tg = PKMg as in the general theory. Also, Tg : P → P, that is it maps
the Manin quantum plane to itself, and is a densely defined linear operator in the
Hilbert space H. Recall that Mg is multiplication from the right by g.
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The creation operators associated to the two ∗-algebra generators a and c are
Ta = Ma and Tc = Mc. These both raise the degree by 1 when acting on homoge-
neous elements of P. And each of these homogeneous elements is a multiple of a
basis element ϕi,j . Explicit calculations easily give

Ta(ϕi,j) = q−jϕi+1,j and Tc(ϕi,j) =

(
w(j + 1)

w(j)

)1/2

ϕi,j+1.

Specifically, Ta has bi-degree (1, 0) in the variables a, c and Tc has bi-degree (0, 1)
in a, c. A curious fact here is that the formula for Ta does not involve the weights,
while that for Tc does not involve q. These identities in turn immediately imply
the q-commutation relation

[Tc, Ta]q = TcTa − q TaTc = 0.

The corresponding annihilation operators Ta∗ and Tc∗ are degree −1 linear maps
on homogeneous elements. Explicit formulas, proved below, are given for i, j ≥ 0
by

Ta∗(ϕi,j) = qj
(

1− q2w(j + 1)

w(j)

)
ϕi−1,j

Tc∗(ϕi,j) =

(
w(j)

w(j − 1)

)1/2

ϕi,j−1,

where the right side of either identity is taken to be 0 if one of the sub-indices of
ϕ is −1. Again, the bi-degrees with respect to a, c are as expected: (−1, 0) for Ta∗
and (0,−1) for Tc∗ .

However, with our choice of inner product the annihilation operators are not
necessarily the adjoints of the creation operators as we shall see a little later on.
It is an open problem to find another inner product for which the annihilation
operators are the adjoints of the creation operators and everything else works out
well.

So, we compute the annihilation operators directly from the definition. In the
following we use 〈·, ·〉 to mean 〈·, ·〉A. For example, to get the formula for Ta∗ we
start as follows:

Ta∗(ϕij) = PK(ϕija
∗)

= w(j)−1/2
∑
k,l≥0

〈ϕkl, aicja∗〉ϕkl

= w(j)−1/2
∑
k,l≥0

w(l)−1/2〈εk,l,0, qjaia∗cj〉ϕkl. (17)

As before, this is valid for i, j ≥ 0. At this point, we see that the case i = 0 leads
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to

Ta∗(ϕ0,j) = w(j)−1/2
∑
k,l≥0

w(l)−1/2qj〈εk,l,0, a∗cj〉ϕkl

= w(j)−1/2
∑
k,l≥0

w(l)−1/2qj〈εk,l,0, ε−1,j,0〉ϕkl

= w(j)−1/2
∑
k,l≥0

w(l)−1/2qjw(l) δk,−1 δl,j ϕkl

= 0.

So, we consider the remaining case i ≥ 1. Then we have to consider this expression
which appears in (17):

〈εk,l,0, qjaia∗cj〉 = qj〈εk,l,0, ai−1aa∗cj〉
= qj〈εk,l,0, ai−1(1− q2c∗c)cj〉
= qj

(
〈εk,l,0, ai−1cj〉 − q2〈εk,l,0, ai−1cj+1c∗〉

)
= qj

(
〈εk,l,0, εi−1,j,0〉 − q2〈εk,l,0, εi−1,j+1,1〉

)
= qj

(
w(l)δk,i−1 δl,j − q2w(l + 1)δk,i−1 δl+1,j+1

)
= qj

(
w(l)− q2w(l + 1)

)
δk,i−1 δl,j .

Substituting this back into (17) we now obtain

Ta∗(ϕi,j) = w(j)−1/2
∑
k,l≥0

w(l)−1/2〈εk,l,0, qjaia∗cj〉ϕkl

= w(j)−1/2
∑
k,l≥0

w(l)−1/2qj
(
w(l)− q2w(l + 1)

)
δk,i−1 δl,j ϕkl

= w(j)−1/2w(j)−1/2qj
(
w(j)− q2w(j + 1)

)
ϕi−1,j

= qj
w(j)− q2w(j + 1)

w(j)
ϕi−1,j .

For Tc∗ the calculation is much simpler.

Tc∗(ϕij) = PK(ϕijc
∗)

= w(j)−1/2
∑
k,l≥0

〈ϕkl, aicjc∗〉ϕkl

= w(j)−1/2
∑
k,l≥0

w(l)−1/2〈εk,l,0, εi,j,1〉ϕkl

= w(j)−1/2
∑
k,l≥0

w(l)−1/2w(l + 1)δk,i δl+1,j ϕkl

= w(j)−1/2w(j − 1)−1/2w(j)ϕi,j−1

=

(
w(j)

w(j − 1)

)1/2

ϕi,j−1,
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provided that j ≥ 1 and i ≥ 0. Clearly, this argument also shows that Tc∗(ϕi,0) = 0.
So we see that the formula for Tc∗ does not depend on q, but does depend on the
weights.

Next, we include for the record the formulas for the adjoints of the two creation
operators (as linear operators on the pre-Hilbert space P) considered above:

T ∗a (ϕij) = q−jϕi−1,j and T ∗c (ϕij) =

(
w(j)

w(j − 1)

)1/2

ϕi,j−1.

These are easy enough to check out and so are left to the reader. Note that, as
previously mentioned, this shows that Ta∗ is not equal in general to T ∗a . However,
it does turn out that Tc∗ is equal to T ∗c on the domain P. This asymmetry in the
roles of a and c follows, of course, from the asymmetries in the defining relations
for these elements and their conjugates. Nonetheless, there should be a deeper
understanding of the structure of this asymmetry.

This example could be augmented with more formulas for the creation operators
Takcl , the corresponding annihilation operators, the adjoints of all of these as well
as all possible commutation relations among these operators. For now, we content
ourselves with just some commutation relations. For example, the q-commutation
relation for the adjoint operators is

[T ∗a , T
∗
c ]q = 0.

Mixing creation operators with their adjoints operators we easily calculate that

[T ∗a , Ta] = 0,

[Tc, T
∗
a ]q = 0,

[Ta, T
∗
c ]q = 0,

[T ∗c , Tc]q ϕi,j = κj ϕi,j , (18)

where

κj =
w(j + 1)

w(j)
− q w(j)

w(j − 1)
.

So, in general, the q-commutator [T ∗c , Tc]q is diagonalized in the basis {ϕi,j} and
the exact eigenvalues κj depend on q and the weights. We can clean up the for-
mula by defining K to be that particular diagonalized operator, in which case we
get [T ∗c , Tc]q = K. If K = I, which does occur for appropriate choices of the
weights, then we get a ‘standard’ q-commutation relation whose quantization is
[T ∗c , Tc]q = ~I. The first three commutation relations in (18) are homogeneous
relations of degree 2, and so they are classical relations which therefore remain
unchanged under quantization. In a colloquial manner of speaking one could say
that a is a ‘classical’ variable and that c is a ‘quantum’ variable. This again indi-
cates an asymmetry between a and c. We remind the reader that both a and c are
holomorphic variables.
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9 Concluding Remarks
There are many papers, especially in the physics literature, dedicated to the study
of a given deformation of the canonical commutation relations (CCRs). Realiza-
tions of these deformed CCRs can be a non-trivial problem. Often the solution is
given not by using a Toeplitz quantization but rather some other approach. Also
the approach in those papers typically involves the definition of the algebra under
study in terms of generators and relations. This leads to highly specific studies of
rather concrete mathematical structures. A ‘slight’ change of the presentation in
terms of generators and relations can entail a rather different theory. Also, one is
faced with the often intractable problem of identifying when two presentations in
terms of generators and relations define isomorphic objects.

As mentioned earlier the approach in this paper is quite the opposite. Here
we start with the Toeplitz quantization of an algebra and then look for the cor-
responding generalized CCR’s. And we have not imposed many restrictions on
the algebra A besides the quite standard ones of associativity and existence of a
unit. Also we require a ∗-operation and an inner product. We have avoided the
use of generators and relations as a starting point. Of course, one can generalize
or modify any theory, and for this theory one could drop the associativity condi-
tion or the existence of the unit. Or these could be replaced by other conditions.
Similar comments apply to the ∗-operation and the inner product. While these
are possibilities for further research, we think that the theory as presented here is
still quite rudimentary and merits further study. For example, we look forward to
an understanding of how to find the (best?) generators of the generalized CCR’s
associated with a given Toeplitz quantization.

Finally, here are some comments on other Toeplitz quantizations which use
non-commuting symbols. First there is the impressive monograph [9] by Böttcher
and Silbermann. These authors, and the researchers associated with them, have
produced a significant body of work on Toeplitz operators whose symbols are ma-
trices with entries in various function spaces or in an algebra. In this regard also
see the papers [13] and [14] by Karlovich. These works can hardly be described in
a few words, but it seems that they always use measures and that their Toeplitz
operators act on functions, albeit vector-valued functions. Their works include the
study of Toeplitz operators in Banach spaces, such as Lp and Hp. Of course, in
the present paper we do not use measures but we do use an inner product. And
our Toeplitz operators are only defined in a Hilbert space. A major difference
in emphasis is that the Böttcher-Silbermann school takes an operator theory ap-
proach, whereas we are also treating topics because of their interest in physics and
non-commutative geometry as well as in analysis and operator theory.

The papers [1] and [2] by Ali and Englis use matrix valued symbols. So again,
these symbols are functions but with values in a non-commutative algebra. Their
results are in the setting of L2 spaces, so there is a measure being used. Their papers
are concerned with Berezin-Toeplitz quantization, where one has quantum Hilbert
spaces H~ indexed by Planck’s constant ~ > 0. These two papers are concerned
with the asymptotics as ~ → 0. That is a mathematical-physics approach, but
treats themes complementary of those of this paper. The paper [15] of Kerr is
similar to the work of Ali and Englis, but now the symbols are matrices with
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entries in a scalar valued Bergman space. So this is based on a measure, and it
also has more of a flavor of functional analysis and operator theory.

The papers [8] by Borthwick et al. and [12] by Iuliu-Lazaroiu et al. study
super-Toeplitz operators, that is, those that arise naturally in super-manifold the-
ory. The symbols are super-functions, meaning they have commuting and anti-
commuting parts. This theory arose from Berezin’s work in quantum physics and
has become a research area in and of itself in geometry. However, we find it to be
rather complementary to the current approach.

None of these prior works was known to me until I was finishing up this paper.
Those works may have superficial similarities to this paper, but are not sources
for it. A major, important feature of this paper is that it provides a quantization
scheme without using a measure, or some sort of generalization of a measure as is
done in [4]. And this is a significant difference of this paper from those mentioned
above. Also, this theory applies to a rather wide class of non-commutative algebras.
Finally, we are presenting a theory intended to be applicable in operator theory, in
mathematical physics as well as in non-commutative geometry.
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