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Diophantine Approximations of Infinite Series and
Products

Ondřej Kolouch, Lukáš Novotný

Abstract. This survey paper presents some old and new results in Diophan-
tine approximations. Some of these results improve Erdos’ results on irra-
tionality. The results in irrationality, transcendence and linear indepen-
dence of infinite series and infinite products are put together with idea of
irrational sequences and expressible sets.

1 Introduction
In number theory, the field of Diophantine approximation is the study of the ap-
proximation of real or complex numbers by rational or algebraic numbers. It has
its early sources in astronomy, with the study of movement of the celestial bodies,
and in the computations of π.

The first problem was to know how well a real number can be approximated by
rational numbers. A real number x has a “good” rational approximation p

q if the
absolute value of the difference between x and p

q may not decrease if p
q is replaced

by another rational number p′

q′ with q′ < q.
The Diophantine approximations give methods how to find “the best” rational

approximation of a given real number.
The techniques from Diophantine approximations have been vastly generalized,

and today there are many applications to Diophantine equations, Diophantine in-
equalities, and Diophantine geometry.

2 Infinite series
A real number can be expressed as a sum of an infinite series. The character
of a real number (rationality, irrationality or algebraicity and transcendence) de-
pends on conditions for the infinite series representing the number.
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If the series converges very fast, it is easier to decide about its algebraic char-
acter. Erdős proved that if {an}∞n=1 is an increasing sequence of positive integers
such that

lim
n→∞

a
1
2n
n =∞

then the infinite series
∞∑
n=1

1

an
(1)

is irrational.
Erdős and Straus in [7] proved deeper results. They showed that if {an}∞n=1 is

an increasing sequence of positive integers such that

lim sup
n→∞

a2
n

an+1
≤ 1,

and

lim sup
n→∞

lcm(a1, . . . , an)

an+1
<∞

then the series (1) is irrational. This holds except if an+1 = a2
n − an + 1 for all n

large enough, in which case

∞∑
n=1

1

an
=

1

a1
+ · · ·+ 1

an0−1
+

1

an0
− 1

.

In 1975 Erdős [5] found a new result on the algebraic character of the series
connected with its speed of convergence. Firstly, Erdős took an increasing sequence
of positive integers {an}∞n=1 such that

an > n1+ε (2)

with ε > 0 holds for all sufficiently large n. This guarantees the convergence of the
series (1). Erdős also assumed that the sequence {an}∞n=1 satisfies the condition

lim sup
n→∞

a
1
2n
n =∞ . (3)

This condition tells that there exists a “quickly” divergent subsequence {ank}∞k=1

such that for any given real number R there exists an index nk0 such that for all
nk > nk0 , ank > R2nk . Using these conditions Erdős proved that the sum of the
series (1) is irrational.

Let us note that if we omit a finite number of the terms in the above sequence
then it does not have any influence on the irrationality.

In the same paper Erdős proved that for every sequence {cn}∞n=1 of positive
integers (not necessarily monotonic) the sum of the series

∞∑
n=1

1

22ncn
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is irrational.
Erdős also gave a definition of an irrational sequence of positive integers. A

sequence {an}∞n=1 is called irrational if for all sequences {cn}∞n=1 of positive integers
the sum of the series

∞∑
n=1

1

ancn
(4)

is an irrational number. If the sequence {an}∞n=1 is not irrational then we call this
sequence rational sequence.

This definition was extended for sequences {an}∞n=1 of real numbers by Hančl [9]
in 1993.

From the text above we know that the sequence {22n}∞n=1 is an irrational se-
quence.

On the other hand, the sequence {n!}∞n=1 is rational. Take for example cn = n+2
for all n. Then

∞∑
n=1

1

ancn
=

∞∑
n=1

1

n!(n+ 2)
=

∞∑
n=1

n+ 2− 1

(n+ 2)!
=

∞∑
n=1

(
1

(n+ 1)!
− 1

(n+ 2)!

)
=

1

2

is a rational number.
Erdős [6] asked if the number

∞∑
n=1

1

(22n + 1)cn

is irrational for all sequences {cn}∞n=1 of positive integers.
This question was partially answered by Duverney in [3]. Duverney proved that

the number
∞∑
n=1

1

(22n + 1)cn

is irrational for nondecreasing sequences {cn}∞n=1 of positive integers such that

log cn = o(2n) .

From the Duverney’s result we know that the number

∞∑
n=1

1

22n + 1

is irrational.
Another partial solution was given by Badea in [2], where he proved that if we

have two sequences {an}∞n=1 and {bn}∞n=1 of positive integers such that

an+1 >
bn+1

bn
a2
n −

bn+1

bn
an + 1
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for all large n then the sum of the series

∞∑
n=1

bn
an

is an irrational number.
Erdős in [5] modified the condition (3). He made this condition stronger and

he proved that if we replace this condition by

lim sup
n→∞

a
1
tn
n =∞ for all t ∈ R+,

then the sum of series (1) is irrational, and moreover it is a Liouville number.
The speed of divergence of the sequence {an}∞n=1 (the speed of convergence of

the series (1)) can be expressed in a different way.
In another paper [4] Erdős proved that for an increasing sequence {an}∞n=1 of

positive integers with

lim
n→∞

an
a1 . . . an−1

=∞ (5)

the sum of series (1) is irrational.
This idea was improved by Romanian mathematician Sándor. In 1984 Sándor

in [23] proved a criterion for irrationality of the series

∞∑
n=1

bn
an

. (6)

If we have two sequences {an}∞n=1 and {bn}∞n=1 of positive integers such that

lim sup
n→∞

an
a1a2 . . . an−1

· 1

bn
=∞ (7)

and

lim inf
n→∞

an
an−1

· bn−1

bn
> 1 (8)

then the sum of the series (6) is an irrational number.
Condition (7) in the theorem above tells us that there exists a subsequence

in the sequence {an}∞n=1 such that its speed of divergence is similar as in (5).
Condition (8) guarantees the convergence of the series.

We can also ask, how big is the set of all real numbers in the form (4) for a
given sequence {an}∞n=1 and an arbitrary sequence {cn}∞n=1. Let {an}∞n=1 be a
given sequence of nonzero real numbers. Then the set of all real numbers x for
which the sum (4) equals to x for some sequence {cn}∞n=1 is called the expressible
set and we denote it

EΣ{an}∞n=1 =

{
x ∈ R;∃{cn}∞n=1 ⊂ Z+ : x =

∞∑
n=1

1

ancn

}
.

It is obvious, that if expressible set EΣ{an}∞n=1 contains only irrational numbers,
then the sequence {an}∞n=1 is irrational.



Diophantine Approximations of Infinite Series and Products 75

In [8] Hančl proved, that if sequence of positive real numbers {an}∞n=1 satisfies

1

2an
≤

∞∑
i=n+1

1

ai
(9)

then the expressible set

EΣ{an}∞n=1 =

(
0,

∞∑
n=1

1

an

]
if
∑∞
n=1

1
an

converges and
EΣ{an}∞n=1 = (0,∞)

if the sum diverges.
The condition (9) holds only for sequences slower than {3n}∞n=1. In [19] Hančl,

Schinzel and Šustek showed, that for A > 3(
0,

1

(A− 1)(dAe − 2)

]
⊂ EΣ{An}∞n=1 .

This result holds only for geometric sequences, i.e. for sequences much slower than
{22n}∞n=1.

It appears to be the case that in general calculating the set EΣ{an}∞n=1 is not
easy. For this reason it is sometimes better to take a metrical approach and at-
tempt to calculate the size of the expressible set, rather than describing it exactly.
For sequences of positive integers faster than {22n}∞n=1 the expressible set has zero
Lebesgue measure. In [10] Hančl and Filip proved, that if {an}∞n=1 is a nondecreas-
ing sequence of positive integers satisfying (2) such that

lim sup
n→∞

a
1
Tn
n > 1

for T > 3, then Lebesgue measure of the expressible set EΣ{an}∞n=1 is zero.
In [18] we can find results related to the Lebesgue measure of expressible set. Let

{an}∞n=1 and {bn}∞n=1 be sequences of positive integers with {an}∞n=1 nondecreasing
and satisfying (2), such that

lim sup
n→∞

a
1
3n
n =∞ ,

and
bn ≤ 2logα2 an

for 0 < α < 1 and for every sufficiently large n. Then the Lebesgue measure of
EΣ

{
an
bn

}∞
n=1

is zero.
If the Lebesgue measure of expressible set is zero, we can study the Hausdorff

measure or Hausdorff dimension of such sets, which need not to be zero. Hančl,
Nair, Novotný and Šustek in [17] proved for a nondecreasing sequence of positive
integers {an}∞n=1 with (2) and

P = sup
{
R; lim sup

n→∞
a

1
Rn
n =∞

}
> 3
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that the Hausdorff dimension satisfies

dimH EΣ{an}∞n=1 ≤
2

P − 1
.

So we have for example

dimH EΣ{24n}∞n=1 ≤
2

3
and dimH EΣ{2n

n

}∞n=1 = 0 .

3 Infinite products
We can also express a real number as an infinite product. It is a well-known fact
that for a sequence {an}∞n=1 of positive real numbers the product

∞∏
n=1

(1 + an) (10)

converges if and only if the series
∞∑
n=1

an

converges.
Deciding whether a real number given as an infinite product (10) is rational or

irrational is a very difficult problem similar to the same question for infinite series.
It is easy to see that

∞∏
n=2

(
1 +

2

n3 − 1

)
=

3

2
and

∞∏
n=1

(
1 +

3

4(2n − 1)

)
=

8

3
.

For all positive integers K > 1 we have

∞∏
n=1

(
1 +

1

K2n

)
=

K2

K2 − 1
.

But one can prove that
∞∏
n=1

(
1 +

1

K2n − 1

)
is irrational for all positive integers K > 1. If we slightly change this infinite
product, we get the following open problem. We do not know if for a positive
integer K > 1 the number

∞∏
n=1

(
1 +

1

(K2n + 1)cn

)
,

is irrational for all sequences {cn}∞n=1 of positive integers.
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As in the case of infinite series, we can use the idea of Erdős for products and
define Π-irrational sequences. A Π-irrational sequence is a sequence {an}∞n=1 such
that for all sequences {cn}∞n=1 of positive integers the product

∞∏
n=1

(
1 +

1

ancn

)
(11)

is an irrational number.
Hančl and Kolouch in [11] gave the first result in this topic and proved that if

{an}∞n=1 is a nondecreasing sequence of positive integers such that (2) and

lim sup
n→∞

a
1
2n
n =∞

then the sequence {an}∞n=1 is Π-irrational.

4 Irrationality and transcendence
The irrationality and transcendence of infinite products has a great history. Badea
[1] proved that if {an}∞n=1 and {bn}∞n=1 are two sequences of positive integers such
that

an+1 >
bn+1

bn
a2
n +

bn+1(bn − 1)

bn
an + 1− bn+1

holds for every sufficiently large n then the number

∞∏
n=1

(
1 +

bn
an

)
is irrational.

Some approximations of the numbers

∞∏
n=1

(
1 +

z

qn

)
can be found in the paper of Väänänen [24].

Nyblom [22] constructed a certain set of transcendental valued infinite products
with the help of second order linear recurrence sequences. He proved that if we
have a sequence {an}∞n=1 of positive integers greater than one and such that

lim inf
n→∞

an+1

aλ+1
n

> 2

for a fixed λ > 2 then the infinite product

∞∏
n=1

(
1 +

1

an

)
(12)

is a transcendental number.
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Hančl and Kolouch in [11] proved, that if {an}∞n=1 is a sequence of positive
integers satisfying (2) and

lim
n→∞

a
1
2n
n =∞ ,

then the number (12) is irrational. In the same paper they proved a more general
result. They work with two sequences of positive integers {an}∞n=1 and {bn}∞n=1

satisfying (2),

lim sup
n→∞

a
1
2n
n =∞

and

bn ≤ a
1

log1+ε log an
.

n (13)

Under these conditions the number (12) is irrational.
Note that the upper bound in (13) satisfies

logK an < a
1

log1+ε log an
n < aδn

for every δ, ε,K > 0 and every large n.
From this result we can show that the number

∞∏
n=1

(
1 +

1

p2n
n

)
,

where pn is the n-th prime number, is irrational.
Hančl and Kolouch in [12] proved another results on irrationality of infinite

products. Let ε > 0. Assume that (an,m)m,n≥1 and (bn,m)m,n≥1 are two infinite
matrices of positive integers. Suppose that the sequence {an,1}∞n=1 is nondecreasing
with

lim sup
n→∞

a
1
n!
n,1 =∞

and for all sufficiently large n
n1+ε ≤ an,1,

n∑
j=1

bn−j+1,j

an−j+1,j
≤ a

1

log3+ε log an,1
−1

n,1

and
n∏
j=1

an−j+1,j ≤ a
1

log3+ε log an,1
+n

n,1 .

Then the number
∞∏
m=1

(
1 +

∞∑
n=1

bn,m
an,m

)
is irrational.

As a consequence they got that if {an}∞n=1 is an increasing sequence of positive
integers such that

lim
n→∞

a
1
n!
n =∞
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then the number
∞∏
m=1

(
1 +

∞∑
n=0

1

an+m + n

)
is irrational.

We can illustrate this result on several examples of irrational numbers.
∞∏
m=1

(
1 +

∞∑
n=m

1

2(n+1)!

)
=

∞∏
m=1

(
1 +

∞∑
n=1

1

2(n+m)!

)
∞∏
m=1

(
1 +

∞∑
n=m

1

2(n+1)! + 1

)
=

∞∏
m=1

(
1 +

∞∑
n=1

1

2(n+m)! + 1

)
∞∏
m=1

(
1 +

∞∑
n=m

n

2(n+1)! +m

)
=

∞∏
m=1

(
1 +

∞∑
n=1

n+m

2(n+m)! +m

)
∞∏
m=1

(
1 +

∞∑
n=m

1

2nn

)
=

∞∏
m=1

(
1 +

∞∑
n=1

1

2(n+m)n+m

)
∞∏
m=1

(
1 +

∞∑
n=m

n!

2nn +mn

)
=

∞∏
m=1

(
1 +

∞∑
n=1

(n+m)!

2(n+m)n+m +mn+m

)
5 Linear and algebraic independence
The concept of irrationality can be extended and we can deal with linear indepen-
dence of real numbers, especially with linear independence of real numbers in the
form (10) and number 1 over rationals numbers.

In [13] it is shown that for a sequence {an}∞n=1 of positive integers satisfying

1 < lim inf
n→∞

a
1

(K+2)n

n < lim sup
n→∞

a
1

(K+2)n

n <∞

the numbers

1,

∞∏
n=1

(
1 +

1

an + 1

)
,

∞∏
n=1

(
1 +

1

nan + 1

)
, . . . ,

∞∏
n=1

(
1 +

1

nKan + 1

)
are linearly independent over the rational numbers.

As a consequence the authors found a criterion for irrationality of infinite prod-
ucts. If the sequence of positive integers {an}∞n=1 satisfies

1 < lim inf
n→∞

a
1
2n
n < lim sup

n→∞
a

1
2n
n <∞ ,

then the number (12) is irrational.
Some authors deal with algebraic independence of infinite products. Let Fn

denote the n-th Fibonacci number. Luca and Tachiya [21] proved that if d ≥ 2 is
an integer and γ 6∈ {0, 1} is a rational number then the infinite products

∞∏
k=1

(
1 +

1

Fdk

)
and

∞∏
k=1

F
dk
6=−γ

(
1 +

γ

Fdk

)
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are algebraically independent over Q.
Kurosawa, Tachiya and Tanaka in [20] showed that the numbers

∞∏
n=0

(
1 +

1

F2·3n

)
and

∞∏
n=0

(
1 +

1

F2·5n

)
are algebraically independent.

6 Linearly independent sequences and expressible set
We can join the concept of linear independence and the concept of irrational se-
quences and define linearly independent sequences. It means the sequences of
positive real numbers {a1,n}∞n=1, {a2,n}∞n=1, . . . , {aK,n}∞n=1, where K is a positive
integer, for which the numbers

1,

∞∏
n=1

(
1 +

1

a1,ncn

)
,

∞∏
n=1

(
1 +

1

a2,ncn

)
, . . . ,

∞∏
n=1

(
1 +

1

aK,ncn

)
are linearly independent over Q for any sequence {cn}∞n=1 of positive integers.

It is easy to show that the concept of linearly independent sequences is a gen-
eralization of linear independence, irrationality and irrational sequences. If we set
cn = 1 for all n, we get the definition of linear independence over Q. If we set
K equal to 1, we obtain the concept of irrational sequences and at last if we set
K = 1 and cn = 1 for all n, we get irrationality. Some results in this topic can be
found in works of Hančl, Kolouch, Korčeková and Novotný ([13], [15]), from where
the following example of linearly independent sequences comes:{

n6·9n + 5

n9n + 3

}∞
n=1

and

{
n3·9n + 7

n8n + 5

}∞
n=1

.

The concept of irrational sequence is close to special subset of real numbers.
Let {an}∞n=1 be a sequence of nonzero real numbers. The set of all real numbers x,
for which exists a sequence {cn}∞n=1 of positive integers such that the product (11)
converges and is equal to x, is called Π-expressible set, thus

EΠ{an}∞n=1 =

{
x ∈ R;∃cn ∈ Z+ : x =

∞∏
n=1

(
1 +

1

ancn

)}
.

It is easy to see, that if EΠ{an}∞n=1 ⊂ R \ Q, then the sequence {an}∞n=1 is
irrational. In [16] it is shown that if the sequence {an}∞n=1 of positive real numbers
satisfies the conditions (2) and

1 +
1

2an
≤

∞∏
j=n+1

(
1 +

1

aj

)
,

then

EΠ{an}∞n=1 =

(
1,

∞∏
j=1

(
1 +

1

aj

)]
.
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In the same work it is also shown, that if {an}∞n=1 is a sequence of real numbers
such that the series (1) is convergent but not absolutely convergent, then

EΠ{an}∞n=1 = R+ .

We can mention that there is no known result about Π-expressible set having
zero Lebesgue measure.
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