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Homogeneous variational problems and Lagrangian
sections

D.J. Saunders

Abstract. We define a canonical line bundle over the slit tangent bundle
of a manifold, and define a Lagrangian section to be a homogeneous section
of this line bundle. When a regularity condition is satisfied the Lagrangian
section gives rise to local Finsler functions. For each such section we demon-
strate how to construct a canonically parametrized family of geodesics, such
that the geodesics of the local Finsler functions are reparametrizations.

Gennadi A. Sardanashvily

On 15 August 2016 Gennadi Sardanashvily gave the first of three lectures on
‘Noether Theorems and Applications’ at the 21st International Summer School
on Global Analysis and its Applications, in Poprad, Slovakia. There were two
other series of lectures at this summer school; I gave one and Salvatore Capozziello
gave the other. Gennadi discussed with some of us the volume of Communications
in Mathematics which he was planning to edit; we could not possibly imagine that
two weeks later he would no longer be with us and that the volume would be issued
in his memory.

1 Introduction
Some years ago Massa et al. proposed an approach to the study of time-dependent
Lagrangian mechanics where the Lagrangian specifying the variational problem,
rather than being a function or a 1-form defined on the first jet bundle, was in-
stead a section of a line bundle [6]. A claimed advantage of this approach was
that equivalent Lagrangians in the usual sense, namely Lagrangians differing by
a total derivative and therefore giving rise to the same Euler-Lagrange equations,
all corresponded to the same Lagrangian section.
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In this paper we consider how a similar approach of using a section of a line
bundle might provide an insight into ‘pre-Finsler’ geometry, where the function
specifying the variational problem, now defined on a slit tangent manifold, is re-
quired to be positively homogeneous. True Finsler geometry requires, of course,
that the Finsler function be positive and strongly convex; initially we do not im-
pose these extra conditions and simply require the line bundle section to give rise
to positively homogeneous functions. We are, however, able to specify a suitable
regularity condition such that locally the section gives rise to Finsler functions
(see [2], [3]), and we are also able to construct a family of parametrized geodesics
such that the local Finsler geodesics are reparametrizations.

The background to our approach involves the construction of a manifold with
an additional coordinate, proposed originally by T. Y. Thomas [8] and considered
more recently in [5], [7]; we largely follow the construction and notations of [4],
and summarise the details in Section 2. In Section 3 we introduce the idea of
Lagrangian sections, and in Section 4 we explain the construction of geodesics by
using sprays.

2 Preliminaries
Let M be a differentiable manifold (supposed as usual to be smooth, finite-dimen-
sional, Hausdorff and paracompact); put n = dimM . The bundle

∧n
T ∗M → M ,

the bundle of ‘oriented’ volume elements, has a global section precisely when M is
orientable. We shall construct from this a new bundle ν : VM →M of ‘unoriented’
volume elements which we shall call simply the volume bundle and which will
always admit global sections.

Define an equivalence relation on the nonzero elements ω ∈
∧n

T ∗M → M by
ω1 ∼ ω2 if, and only if, ω1 = ±ω2, and write [ω] for the equivalence class containing
ω; then put

VM = {[ω] : ω ∈
∧n

T ∗M, ω 6= 0}

and
ν([ω]) = x , ω ∈

∧n
T ∗xM .

Any Riemannian metric g on M gives rise to its Riemannian ‘volume form’ σg which
is determined only up to sign and is therefore a global section of the volume bundle
VM → M rather than of the oriented volume bundle. Furthermore, M admits
Riemannian metrics (by, for example, using the Whitney Embedding Theorem and
restricting the canonical Euclidean metric on R2n+1 to M) so that VM → M
admits global sections.

We note also that
∧n

T ∗M supports a tautological n-form Θ given by Θω = ν∗ω,
and that dΘ is a natural volume form on this (n + 1)-dimensional manifold; we
therefore obtain an odd scalar density [dΘ] on VM .

There is a natural (right) action µ1 of R+ on the fibres of the volume bundle,
given by multiplication, so that µ1([ω], s) = [sω]; we may also consider weighted
actions µp given by µp([ω], s) = [spω] for p ∈ R+. For each s ∈ R+ we may consider
the tangent map Tµps : TVM → TVM ; the relation v1 ∼ v2 if Tµps(v1) = v2 for some
s ∈ R+ defines an equivalence relation on the fibres of TVM → VM (independently
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of the choice of p) giving a quotient manifold WM fibred over M . We shall write
χ : TVM →WM and τ : WM →M for the projections.

Regarding R as the Lie algebra of R+, the fundamental vector field Υp on
VM corresponding to 1 ∈ R does, of course, depend on the choice of weight p;
it is, however, projectable under the bundle map (χ, ν) to a global section ep of
WM → M . Where the choice of weight makes no difference to the discussion we
shall omit the superscript and write µ, Υ and e.

Some of the geometric objects on VM may be lifted to TVM . We shall, in
particular, need the complete lift Υc and the vertical lift Υv of the fundamental
vector field Υ, and also the ‘squared volume’ dΘ2; the latter is a genuine (2n+ 2)-
form on the orientable manifold TVM .

Let (xi) be local coordinates on M , and (xi, ui) the induced coordinates on TM .
Define a coordinate x0 in VM (depending on the weight p) by setting

x0([ω]) = s , [ω] = µps([dx
1 ∧ dx2 ∧ · · · ∧ dxn]) .

We shall write (xa) = (x0, xi) for these local coordinates on VM , and (ua) =
(u0, ui) for the induced fibre coordinates on TVM . In these coordinates the fun-
damental vector field Υ on VM appears as x0 ∂/∂x0. We may also define fibre
coordinates (w, ui) on WM by setting

w ◦ χ =
u0

x0
, ui ◦ χ = ui

so that w ◦ e = 1 and ui ◦ e = 0. A local basis for the sections of WM → M is
given by (e, ei) where ei is the projection under (χ, ν) of the vector field ∂/∂xi on
VM .

Finally, we shall write T ◦M → M for the slit tangent bundle, obtained by
deleting the zero section from TM , and we shall put W◦M = ρ−1(T ◦M) and
T ◦VM = (Tν)−1(T ◦M), so that the latter are proper submanifolds of the corre-
sponding slit vector bundles.

3 Lagrangian sections
Let L : T ◦M → W◦M be a section of ρ : W◦M → T ◦M satisfying the positive
homogeneity condition that L(λv) = λL(v) for all λ ∈ R+ and all v ∈ T ◦M . We
shall say that L is a Lagrangian section on T ◦M .

If σ : M → VM is a section of the volume bundle then σ gives rise to a La-
grangian section σ̂ by σ̂ = χ◦Tσ|T◦M . Certainly σ̂ is positively homogeneous, and
indeed it is linear (it is the composition of two linear maps). We shall call such
a section a trivial Lagrangian section.

Suppose that σ̂ is a fixed trivial Lagrangian section. Any other Lagrangian
section L then gives rise to a function FL,σ on T ◦M in the following way. For
any v ∈ T ◦M , the difference L(v) − σ̂(v) is a multiple of the global section e
of WM → M ; so set FL,σ(v)e = L(v) − σ̂(v). The function FL,σ is positively
homogeneous because both L and σ̂ are positively homogeneous sections; we shall
say that FL,σ is a pre-Finsler function on T ◦M .

Now suppose that ς̂ is another trivial Lagrangian section. This gives rise to an-
other pre-Finsler function FL,ς ; but the difference FL,ς−FL,σ is a total derivative, so
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that FL,σ and FL,ς are ‘gauge-equivalent’ and give rise to the same Euler-Lagrange
equations. Indeed, let f be the function defined on M by µ(ς(x), f(x)) = σ(x);
then

FL,ς − FL,σ =
d(log f)

dt
.

To see this in coordinates, put L0 = w ◦ L. If v ∈ T ◦xM , v = vi∂/∂xi, then

Tσ(v) = vi
(
∂σ0

∂xi
∂

∂x0
+

∂

∂xi

)
σ(x)

so that

χ(Tσ(v)) = vi
(

1

σ0

∂σ0

∂xi
e+ ei

)
x

and hence

w ◦ σ̂ = w ◦ χ ◦ Tσ =
ui

σ0

∂σ0

∂xi
=

1

σ0

dσ0

dt
=

d(log σ0)

dt
;

thus

FL,σ = w ◦ (L − σ̂) = L0 − d(log σ0)

dt
.

Similarly

FL,ς = w ◦ (L − ς̂) = L0 − d(log ς0)

dt

so that

FL,ς − FL,σ =
d(log σ0)

dt
− d(log ς0)

dt
=

d(log σ0/ς0)

dt
=

d(log f)

dt
.

Similar arguments show that two pre-Finsler functions on M differing by a total
derivative df/dt will correspond to the same Lagrangian section by taking sections
of VM →M related by f using the action µ. In this respect, therefore, the use of a
section to correspond to an equivalence class of pre-Finsler functions (modulo total
derivatives) is similar to the result obtained by Massa et al. in the affine case. In
general, though, one cannot obtain a unique Lagrangian section from a pre-Finsler
function, and the most appropriate formulation of the result is as follows.

Proposition 1. There is a bijection, given by the procedure outlined above, be-
tween equivalence classes of pre-Finsler functions, differing by total derivatives,
and equivalence classes of Lagrangian sections, differing by multiples (by total
derivatives) of the canonical global section e : M →W◦M .

There is, however, a special case where specific Lagrangian section may be
chosen to correspond to a (genuine) Finsler function F on T ◦M , and that is when
F is the Finsler function of a Riemannian metric g on M , so that F (v) =

√
g(v, v).

In such a case we can make a specific choice of volume bundle section σg : M → VM
and therefore a specific choice of Lagrangian section L.
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Proposition 2. If g is a Riemannian metric M with corresponding Finsler func-
tion F , then the section L : T ◦M →W◦M defined by

L(v) = σ̂g(v) + F (v)e

is a canonical choice of section in the equivalence class corresponding to F .

4 Sprays and geodesics
In this section we consider pre-Finsler functions, such as those obtained from La-
grangian sections, satisfying a regularity condition. For any pre-Finsler function F
on T ◦M we put L = 1

2F
2.

The function L obtained from a Riemannian metric is necessarily quadratic
in the velocity variables, whereas in general Finsler geometry is, famously, ‘just
Riemannian geometry without the quadratic restriction’ [1]. Indeed, each pre-
-Finsler function F on T ◦M defines a symmetric type (0, 2) tensor field gL along
the projection T ◦M →M (rather than on the manifold M) by setting

gL(X,Y ) = Xv
(
Y v(L)

)
=

1

2
Xv
(
Y v(F 2)

)
where X, Y are vector fields on M and V v, Y v are their vertical lifts as vector
fields on T ◦M . It is evident that gL is well-defined on tangent vectors, and so is
indeed tensorial; in Finsler geometry it is known as the fundamental tensor of F .
In coordinates, if X = Xi ∂/∂xi and Y = Y j ∂/∂xj then Xv = Xi ∂/∂ui and
Y v = Y j ∂/∂uj so that

gL(X,Y ) = gijX
iY j , gij =

∂2L

∂ui∂uj
=

1

2

∂2(F 2)

∂ui∂uj
.

If L is quadratic then the functions gij will be projectable to M , but in general they
are defined locally on T ◦M . The pre-Finsler function F will be a Finsler function
if it is positive (so that F (v) > 0 for all v ∈ T ◦M) and strongly convex (so that gL
is positive definite at each point of T ◦M).

We may, of course, apply the same construction to F itself, rather than to L,
giving another tensor field gF along T ◦M → M . It is, however, a consequence of
the homogeneity of F that gF can never be non-degenerate: indeed gF |v(v, v) = 0
for any v ∈ T ◦xM with x ∈M . So we shall say that gF is positive quasi-definite at
x if this is the worst that can happen, and that gF |v(w,w) ≥ 0 for all v ∈ T ◦xM ,
w ∈ TxM and all x ∈ M , with equality only when w is a scalar multiple of v. We
shall say that F is a pseudo-Finsler function if gF is positive quasi-definite at each
x ∈M .

Proposition 3 (see [3], Theorem 1). Let F be a pseudo-Finsler function on T ◦M .
Then for each x ∈ M there is a neighbourhood U of x and a function F̂ defined
on T ◦U such that F̂ is a Finsler function and F̂ − F is a total derivative df/dt for
some function f defined on U .

We shall say that a Lagrangian section L : T ◦M → W◦M is regular if its cor-
responding equivalence class of pre-Finsler functions, differing by total derivatives,
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contains a pseudo-Finsler function. It is immediate that if the pre-Finsler functions
F1, F2 differ by a total derivative then gF1

= gF2
, so that every pre-Finsler function

in the equivalence class of a regular Lagrangian section must be a pseudo-Finsler
function.

Corollary 1. If L : T ◦M → W◦M is a regular Lagrangian section then for each
x ∈M there is a neighbourhood U of x such that the equivalence class of pseudo-
Finsler functions corresponding to the restriction L|T◦U contains a Finsler function.

We may use this observation to associate geodesics with regular Lagrangian
sections.

Every (genuine) Finsler function F is associated with a vector field Γ on T ◦M ,
its geodesic spray, satisfying the condition

iΓdθL = −dL

where θL, the Poincaré-Cartan form of L, is defined by θL = S(dL) where S is the
‘almost tangent structure’ on TM ; θL is expressed in coordinates as

θL =
∂L

∂ui
dxi .

One may check, using the fact that gL is positive definite and that dθL(Xv, Y c) =
gL(X,Y ) and dθL(Xv, Y v) = 0 for any vector fields X, Y on M , that dθL is a
symplectic form; thus Γ exists and is unique. It is called a ‘spray’ because it is

• second-order, so that S(Γ) = ∆, where ∆ is the dilation vector field defined
on TM but restricted to T ◦M ; and

• homogeneous, so that [∆,Γ] = Γ.

The second-order property of Γ implies that each of its integral curves is the natural
lift of a curve in M . We shall call these curves in M the geodesics of Γ, and they
are the extremals of L when it is regarded as the Lagrangian of a variational
problem. It is, though, a consequence of the homogeneity of F (and hence of L)
that the extremals of the variational problem are invariant under sense-preserving
reparametrization, and so may be regarded as oriented geometric curves in M ,
whereas the geodesics of Γ come with a specific parametrization. Indeed, any
spray of the form Γ +α∆, where α is a function on T ◦M satisfying ∆(α) = α, will
be another spray whose geodesics are reparametrizations of those of Γ: the sprays
are said to be projectively equivalent. Such projectively equivalent sprays span the
kernel of dθF where θF , the Hilbert form of F , is constructed from F in the same
way as the Poincaré-Cartan form θL is constructed from L. The distinguishing
feature of the geodesic spray Γ is that Γ(F ) = 0; we say that the geodesics γ of this
particular spray have constant speed, because d/dt(F ◦ γ̇) = 0. It is easy to see
that if F̂ is a pseudo-Finsler function differing from F by a total derivative then
there is a spray Γ̂ = Γ + α∆ in the same projective class (and so with the same
geometric geodesics) satisfying Γ̂(F̂ ) = 0.
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Now let L be a regular Lagrangian section, so that locally we may find Finsler
functions corresponding to L and hence construct well-defined geometric geodesics.
There is, however, no guarantee that a global Finsler function can be found (the
positivity condition needs to be satisfied, and even then there is no guarantee of
uniqueness) so we need to consider other approaches to the construction of canon-
ically parametrized geodesics. We shall adopt the approach of looking for a single
spray on T ◦VM (rather than on T ◦M) which incorporates all the information
about a projective class of sprays on T ◦M . Following [4] we define a ‘BTW -spray’
to be a spray Γ̃ on T ◦VM satisfying the conditions

• [Υc, Γ̃] = 0

• [Υv, Γ̃] = Υc − 2∆̃

• LΓ̃(dΘ2) = 0

• R̃ = 0

where we adopt the weight p = n+1 for the fundamental vector field Υ, and where
R̃ is the trace of the Jacobi endomorphism of Γ̃; the initials ‘BTW’ acknowledge the
pioneering work of L. Berwald, J. Douglas and J.H.C. Whitehead. The coordinate
expression of a spray on T ◦VM satisfying these conditions is

u0 ∂

∂x0
+ ui

∂

∂xi
− 2x0Γ0 ∂

∂u0
− 2(Γi + (x0)−1u0ui)

∂

∂ui

where the functions Γ0, Γi are pulled back by Tν from functions defined locally on
T ◦M and which also satisfy the conditions

∂Γi

∂ui
= 0 , Γ0 = − 1

2(n− 1)

(
2
∂Γi

∂xi
− ∂Γi

∂uj
∂Γj

∂ui

)
[4, Section 3.5]. We also note that [Υc, Γ̃] = 0 implies the projectability of any such
spray to a vector field on W◦M with coordinate expression

ui
∂

∂xi
− (w2 + 2Γ0)

∂

∂w
− 2(Γi + wui)

∂

∂ui
;

thus we may restrict this latter vector field to the image of the Lagrangian section L
and hence obtain a vector field ΓL on T ◦M .

The global existence of BTW -sprays is a consequence of the following result.

Proposition 4 (see [4]). Each projective equivalence class [Γ] of sprays on T ◦M
determines a unique BTW-spray Γ̃ on T ◦VM such that the vector field ΓL on T ◦M
obtained by the method described above is a spray in that equivalence class.

We may therefore use the following procedure to define parametrized geodesics
of a regular Lagrangian section L.

• The section L defines an equivalence class of pseudo-Finsler functions [F ].
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• Each x ∈ M has a neighbourhood U such that the restriction of [F ] to T ◦U
contains a Finsler function FU .

• Each such Finsler function FU defines a spray ΓU on T ◦U , and hence a
projective class of sprays [ΓU ] on T ◦U . Any other Finsler function in the
same class determines the same projective class of sprays.

• The projective class [ΓU ] determines a unique BTW -spray Γ̃U on T ◦VU .
If U ′ is the neighbourhood of x′ ∈M with Finsler function FU ′ and projective
class [ΓU ′ ], and if U∩U ′ 6= ∅, then by uniqueness Γ̃U = Γ̃U ′ on T ◦VU∩T ◦VU ′,
so that there is a unique global BTW -spray Γ̃ on T ◦VM whose restriction to
each T ◦VU is Γ̃U .

• The global spray ΓL on T ◦M constructed from Γ̃ and L has the property
that its restriction to each T ◦M is in the projective class [ΓU ].

• The geodesics of ΓL, restricted to U , are parametrized geodesics of the local
Finsler function FU . Thus the images of the geodesics of ΓL are the geomet-
ric geodesics of the regular Lagrangian section L, so that we may use the
parametrization of the former to define a canonical parametrization of the
latter.

Thus we obtain our main result.

Theorem 1. Each regular Lagrangian section L : T ◦M → W◦M determines a
canonical family of geodesics on M , such that the geodesics of any local Finsler
function associated with L are reparametrizations of the canonical geodesics.
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