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Variations by generalized symmetries of local Noether
strong currents equivalent to global canonical Noether
currents

Marcella Palese

Abstract. We will pose the inverse problem question within the Krupka
variational sequence framework. In particular, the interplay of inverse prob-
lems with symmetry and invariance properties will be exploited considering
that the cohomology class of the variational Lie derivative of an equivalence
class of forms, closed in the variational sequence, is trivial. We will focal-
ize on the case of symmetries of globally defined field equations which are
only locally variational and prove that variations of local Noether strong
currents are variationally equivalent to global canonical Noether currents.
Variations, taken to be generalized symmetries and also belonging to the
kernel of the second variational derivative of the local problem, generate
canonical Noether currents – associated with variations of local Lagrangians
– which in particular turn out to be conserved along any section. We also
characterize the variation of the canonical Noether currents associated with
a local variational problem.

1 Introduction
In a series of papers [31], [5], [32], [19], [3], [4], [33] Gennady Sardanashvily ded-
icated to the study and the extension of Noether Theorems, in particular of the
Second Noether Theorem and of Noether identities in quite general geometric con-
texts involved in classical and quantum physics, particularly within (variational)
differential bicomplexes.

As well known, the paper Invariante Variationsprobleme by Amalie (Emmy)
Noether [24] has been a cornerstone in the history of the calculus of variation. The
relevance of her work is testified by the widespread literature dedicated to the ap-
plications in Physics, Statistics and Engineering. However, the very importance of
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Noether Theorems principally consists of the new ideas concerning the structure it-
self of the calculus of variations. Those aspects have been deeply studied in a recent
work by Y. Kosmann-Schwarzbach, who, besides providing a fine French and En-
glish translation of the celebrated 1918 Emmy Noether paper, thoroughly analyzed
the inception and the influence in Physics as well as the historical developments of
Noether Theorems during the XXth Century [20].

Physical theories of the fundamental interactions can be all formulated as gauge-
-natural field theories in terms of invariant Lagrangians with respect to symme-
tries (gauge-natural lifts of infinitesimal principal automorphisms) satisfying the
hypotheses of the Second Noether Theorem. The epistemological base [28] of the
Noether Theorems became therefore a basic requirement for the meaningfulness of
a physical theory and admissible symmetries.

The first important novelty introduced by Noether is the relevance of boundary
terms versus Euler-Lagrange field equations. The second main novelty is Noether’s
concept of a variation field, i.e. of what ‘virtual displacements’ (i.e. variation fields)
should be in field theory. She takes as variation field the vertical parts of infinites-
imal generator of invariant transformations of the Lagrangian.

In particular, she concentrates on the term obtained by contraction of the La-
grange expressions with the generators of invariant transformations and formulate
about properties of variation fields such that this terms could be put in the form
of a divergence.

She first splits the term above in a summand containing vertical parts of gener-
ators of the invariance transformation contracted with Lagrange expressions and a
summand going under a divergence which contains the horizontal part of generators
of the invariance transformation contracted with the Lagrangian. By applying the
standard variation calculus by variation fields which are generated by the invari-
ance transformation gives a ‘work’ term (as it is called by physicists) plus a further
divergence term (the momentum term) which sum up with the contribution due to
the horizontal part of the symmetry.

The meaning of the First Noether Theorem is in relating, by invariance prop-
erties of the Lagrangian, Lagrangian expressions (thus ‘equations’), more precisely
the ‘work’ term, with conservation laws. Equations obtained from invariant La-
grangians can be related to conserved quantities if and only if they derive varia-
tionally from an invariant Lagrangian.

The Second Theorem is a further investigation of the ‘work term’ containing the
Lagrange expressions. Once realized that such a term can be related to conserved
quantities, under which conditions can we further transform it in such a way that it
becomes a divergence itself (independently from the invariance of the Lagrangian)?
The answer found by Noether is: it is possible to make the ‘work term’ become
a divergence – independently from the invariance of the Lagrangian – if and only
if the group of symmetry transformations is an infinite continuous group (i.e. de-
pends on a given number of functions rather than just parameters) satisfying a
few other requirements. In this case the existence of identities among Lagrange
expressions and their derivatives guarantees that the ‘work term’ reduces to a fur-
ther divergence. At a further step, if invariance is required for the Lagrangian a
divergence vanishes identically (along any section, not necessarily critical) and it
thus generates an ‘improper’ conservation law.
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Taking as variations the generators of transformations of independent and de-
pendent coordinates of a specific type, always guarantees that contractions of La-
grangian expressions with vertical parts of transformations become divergences and
vice versa. If, and only if, the Lagrangian is invariant under such transformations
we can further characterize such divergences as conserved quantities also off shell
(so-called ‘strong’ conserved quantities). Notice that this means that when such
symmetries are given, due to Noether identities we can always transform the dy-
namical content in a component of the strongly conserved quantity.

Equations obtained from Lagrangians invariant with respect to symmetries ac-
cording to the Second Theorem always can be put in the form of an ‘improper’
conservation law; more specifically what changes ‘is’ part of what remains un-
changed if and only if it derives variationally from an invariant Lagrangian with
respect to an infinite group of transformation.

The two statements are in fact determinations of conditions on invariant trans-
formations in order that a specific (variational) form – the ‘work’ form – be (locally)
exact.

In this paper we first review some cohomological aspects concerned with local
variational problems (Section 2), investigate when such local problems are equiv-
alent to global ones (Section 3), then study currents associated with symmetries
of locally variational dynamical forms (Section 4); in particular we concentrate
on the case of symmetries of globally defined field equations which are only lo-
cally variational and prove that the variations of local Noether strong currents
are variationally equivalent to global canonical Noether currents (Proposition 2).
Variations, taken to be generalized symmetries and also belonging to the kernel of
the second variational derivative of the local problem, generate canonical Noether
currents – associated with variations of local Lagrangians – which in particular turn
out to be conserved along any section. We also characterize the variation of the
canonical Noether currents associated with a local variational problem (Remark 3).

2 Local variational problems and cohomology
In this paper we shall concentrate on the issues of the Second Noether Theorem,
which are independent of the invariance of the Lagrangian. In fact we shall be inter-
ested in generalized symmetries, i.e. symmetries of global dynamical form defining
non trivial cohomology classes (i.e. only locally variational). Note that even if
the Lagrangian is not invariant a (local) strong Noether current is always defined
provided that the equations are invariant. Such a strong current however is not
conserved since generated by a generalized symmetry.

The modern geometrical formulations of the calculus of variations on fibered
manifolds include a large class of theories for which the Euler-Lagrange operator is a
morphism of an exact sequence [2], [22], [34], [35], [36]. The module in degree (n+1),
contains dynamical forms; a given equation is globally an Euler-Lagrange equation
if its dynamical form is the differential of a Lagrangian and this is equivalent to the
dynamical form being closed in the complex, i.e. Helmholtz conditions hold true,
and its cohomology class being trivial.

Dynamical forms which are only locally variational, i.e. which are closed in
the complex and define a non trivial cohomology class, admit a system of local
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Lagrangians. We shall consider global projectable vector field on a jet fiber man-
ifold which are symmetries of dynamical forms, in particular of locally variational
dynamical forms. It is clear the relevant role played by the variational Lie deriva-
tive, a differential operator acting on equivalence classes of variational forms in the
variational sequence [9], [25], by which Noether theorems can be formulated. In
particular, variations of currents can be recognized in this approach.

We consider the cohomology defined by a system of local Lagrangian and in-
vestigate under which conditions the variational Lie derivative of associated local
strong Noether currents is a system of global conserved currents.

We shall consider the variational sequence [22] defined on a fibered manifold
π : Y → X, with dimX = n and dimY = n + m. For r ≥ 0 we have the r-jet
space JrY of jet prolongations of sections of the fibered manifold π. We have also
the natural fiberings πrs : JrY → JsY , r ≥ s, and πr : JrY →X; among these the
fiberings πrr−1 are affine bundles which induce the natural fibered splitting

JrY ×Jr−1Y T ∗Jr−1Y ' JrY ×Jr−1Y (T ∗X ⊕ V ∗Jr−1Y ) ,

which, in turn, induces also a decomposition of the exterior differential on Y in the
horizontal and vertical differential, (πr+1

r )∗ ◦ d = dH + dV . By (jrΞ, ξ) we denote
the jet prolongation of a projectable vector field (Ξ, ξ) on Y , and by jrΞH and
jrΞV the horizontal and the vertical part of jrΞ, respectively.

Let ρ be a q-form on JrY ; in particular we obtain a natural decomposition of
the pull-back by the affine projections of ρ, as

(πr+1
r )∗ρ =

q∑
i=0

piρ ,

where piρ is the i-contact component of ρ (by definition a contact form is zero
along any holonomic section of JrY ).

Starting from this splitting one can define sheaves of contact forms Θ∗r , suitably
characterized by the kernel of pi [22]; the sheaves Θ∗r form an exact subsequence of
the de Rham sequence on JrY and one can define the quotient sequence

0 −→ RY −→ . . .
En−1−−−→ Λnr /Θ

n
r
En−−→ Λn+1

r /Θn+1
r

En+1−−−→ Λn+2
r /Θn+2

r

En+2−−−→ . . . −→ 0

the r-th order variational sequence over the fibered manifold Y →X. It turns out
that it is a soft sheaf resolution of the constant sheaf RY over Y .

The quotient sheaves (the sections of which are classes of forms modulo contact
forms) in the variational sequence can be represented as sheaves Vkr of k-forms on
jet spaces of the higher order; see e.g. [25] for a review.

Currents are sheaf sections ε of Vn−1
r and the quotient morphism En−1 = dH

is represented by a total divergence; Lagrangians are sections λ of Vnr , while En is
called the Euler-Lagrange morphism; sections η of Vn+1

r are called source forms or
also dynamical forms, while En+1 is called the Helmholtz morphism.

The cohomology groups of the corresponding complex of global sections

0→ RY → . . .
En−1−−−→ (Λnr /Θ

n
r )Y

En−−→ (Λn+1
r /Θn+1

r )Y
En+1−−−→ (Λn+2

r /Θn+2
r )Y

En+2−−−→ . . .
d−→ 0
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will be denoted by H∗VS(Y ).
Since the variational sequence is a soft sheaf resolution of the constant sheaf RY

over Y , the cohomology of the complex of global sections is naturally isomorphic
to both the Čech cohomology of Y with coefficients in the constant sheaf R and
the de Rham cohomology Hk

dRY [22].
Let now Kp

r := ker Ep. We have the short exact sequence of sheaves

0 −→Kp
r

i−−→ Vpr
Ep−−→ Ep(Vpr ) −→ 0 .

In particular En(Vnr ) is the sheaf of Euler-Lagrange morphisms: for a global section
η ∈ (Vn+1

r )Y we have η ∈ (En(Vnr ))Y if and only if En+1(η) = 0, which are the
Helmholtz conditions of local variationality.

The above exact sequence gives rise to the long exact sequence in Čech coho-
mology

0 −→ (Kp
r)Y −→ (Vpr )Y −→ (Ep(Vpr ))Y

δp−−→ H1(Y ,Kp
r) −→ 0 .

Hence, every η ∈ (En(Vnr ))Y (i.e. locally variational) defines a cohomology class

δn(η) ∈ H1(Y ,Kn
r ) ' Hn+1

V S (Y ) ' Hn+1
dR (Y ) .

Furthermore, every µ ∈ (dH(Vn−1
r ))Y (i.e. variationally trivial) defines a cohomol-

ogy class δn−1(µ) ∈ H1(Y ,Kn−1
r ) ' Hn

V S(Y ) ' Hn
dR(Y ).

The above gives rise to a well known diagram of cochain complexes:

0 0 0y y y
0 −−−−→ C0(Y,Kp

r )
i−−−−→ C0(Y,Vpr )

Ep−−−−→ C0(Y, Ep(Vpr )) −−−−→ 0yd

yd

yd

0 −−−−→ C1(Y,Kp
r )

i−−−−→ C1(Y,Vpr )
Ep−−−−→ C1(Y, Ep(Vpr )) −−−−→ 0y y y

...
...

...

whereby we recognize the connecting homomorphism δp = i−1 ◦ d ◦ E−1
p as a

mapping of cohomologies (here d is the coboundary operator).
Note that η is globally variational if and only if δn(η) = 0.
We are therefore interested to the non trivial case where

En+1(η) = 0 dη 6= 0

δn(η) 6= 0 ⇐⇒ dλi 6= 0 ,

whereby η = En(λ) can be solved only locally, i.e. for any countable good covering of
Y there exists a local Lagrangian λi over each subset U i ⊂ Y such that ηi = En(λi).
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A system of local sections λi of (Vnr )Ui such that En((λi − λj)|Ui∩Uj ) = 0, is what
we call a local variational problem [13]; every nontrivial cohomology class gives rise
to local variational problems.

For any countable open covering of Y , λ = {λi}i∈I is then a 0-cochain of
Lagrangians in Čech cohomology with values in the sheaf Vnr . By an abuse of
notation we shall denote by ηλ the 0-cochain formed by the restrictions ηi = En(λi)
(and so will do at any degree of forms). Of course, dλ ≡ {λij} ≡ (λi−λj)|Ui∩Uj = 0
if and only if λ is globally defined on Y ; analogously dη = 0 if and only if η is
global. Note that dλ = 0 implies dηλ = 0, while by R-linearity we only have
dηλ = ηdλ = 0 i.e. dλ is 1-cochain of Lagrangians. Two systems of local Lagrangians
represent the same local variational problem if they differ by a Čech-cochain of
trivial Lagrangians on a common refinement.

Definition 1. Two local variational problems of degree p are equivalent if and only
if their difference is in the kernel of the corresponding morphism Ep in the varia-
tional sequence.

3 Local variational problems equivalent to global ones
As well known Noether Theorems relate symmetries of a variational problem to
conserved quantities. In [9], [25] we formulated the Noether Theorems in terms of
variational Lie derivatives of classes of forms modulo the contact structure.

• The case q ≤ n− 1

In [9] formulae for the Lie derivative of classes of q-forms have been obtained.

Theorem 1. Let α ∈ Vqr , 0 ≤ q ≤ n− 1, and let Ξ be a π-projectable vector
field on Y ; the following holds locally

LΞα = ΞH Eq(α) + Eq−1(ΞV p̃dV α + ΞH α) .

Here p̃ is a generalized momentum associated with a horizontal p-form.

• The case q = n

Theorem 2. (Noether’s Theorem I)

Let α ∈ Vnr and Ξ be a π-projectable vector field on Y ; the following holds
(locally):

LΞα = ΞV En(α) + En−1(ΞV pdV α + ΞH α) .

Here p is a momentum associated with the Lagrangian.

• The case q ≥ n+ 1

In [25] it was proved the following variational Cartan formula for classes of
forms of degree q ≥ n+ 1.

The case q = n + 1 for locally variational dynamical forms encompasses
Noether’s Theorem II, or so-called Bessel-Hagen symmetries.
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Theorem 3. Let q = n+k, with k ≥ 1 and α ∈ Vqr . Let Ξ be a π-projectable
vector field on Y ; we have

LΞα = ΞV Eq(α) + Eq−1(ΞV α) .

Let now ηλ be the Euler-Lagrange morphism of a local variational problem and
let jrΞ be a generalized symmetry; the Noether Theorems imply that

0 = ΞV ηλ + dH(εi − βi) ,

where εi = jrΞV pdV λi + ξ λi is the usual canonical Noether current; the
Noether-Bessel-Hagen current ε(λi,Ξ) − βi is a local object and it is conserved
along the solutions of Euler-Lagrange equations (local conservation law) [9], [17],
[18], [30].

Note that, since 0 = LjrΞη = En(ΞV ηλ), the horizontal n-form ΞV ηλ defines
a cohomology class and we have that the local currents are the restrictions of
a global conserved current if and only if the cohomology class δn−1(ΞV ηλ) ∈
Hn
dR(Y ) vanishes.

As a consequence of linearity and naturality properties, independently from the
fact that Ξ be a generalized symmetry or not, the variational Lie derivative trivial-
izes cohomology classes [16], [17], [18], [29]. We could write this fact defining an op-
erator acting trivially on the de Rham cohomology as L̂jrΞ([ρ]dR) = [LjrΞρ]dR ≡ 0.
Since the variational Lie derivative with respect to projectable vector fields defines
variations, therefore variations trivialize cohomology classes.

In particular, we have ηLΞλi = En(ΞV ηλ) = LΞηλ; this implies that

δ(LΞηλ) = δ(ηLΞλi) = 0

although δ(ηλ) 6= 0 and thus we get that Euler-Lagrange equations of the local
problem defined by LΞλi are equal to Euler-Lagrange equations of the global prob-
lem defined by ΞV ηλ.

An analogous result holds true also at any degree k ≤ n in the variational
sequence; specifically for local potentials of variationally trivial classes of horizontal
forms. Let µ be a variationally trivial Lagrangian, i.e. such that En(µ) = 0, this
means that we have a 0-cocycle of currents νi such that µ = dHνi and dµν = 0
but we suppose δn−1(µν) 6= 0. We can consider the Lie derivative LΞνi and the
corresponding µLΞνi . We have

µLΞνi = dH(ΞH µν + ΞV pdV µν ) = LΞµν ,

so that δn−1(LΞµν) = 0, although δn−1(µν) 6= 0.
In particular, the local problem defined by LΞνi is variationally equivalent to

the global problem defined by ΞH µν + ΞV pdV µν . Recall that µν = dHνi is
assumed to satisfy dµν = 0, i.e. it is a global object.

Remark 1. We note that, as a consequence of Theorem 1, we get the interesting
relation ΞV p̃dV νi = ΞV pdV µν + dHφi, with φi a 0-cocycle.
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Example 1. Let us assume Ξ be a symmetry of dynamical forms: we have LΞηλ = 0
then, in particular, δ(LΞηλ) ≡ 0; furthermore, under the same assumption, we
have En(ΞV ηλ) = 0 then there exists a 0-cocycle νi as above, defined by µν =
ΞV ηλ := dHνi. In this case, divergence expressions of the local problem defined
by LΞνi coincide with divergence expressions for the global current

ΞH ΞV ηλ + ΞV pdV (ΞV ηλ) ;

see [16].

4 Currents associated with locally variational dynamical forms
As we saw, each ρ such that Ep+1(ρ) = 0, i.e. ρ =loc. Ep(τ) defines a cohomology
class δp(ρ). Let us then consider symmetries of global dynamical forms locally
variational.

LjrΞη = 0, En+1η = 0 =⇒ η = ηλi .

Noether Th. (I) implies LjrΞλi = ΞV ηλi + dHελi . On the other hand LjrΞη =
0 =⇒ En(ΞV ηλi) = 0, and we saw that if δn−1(ΞV η) 6= 0 then ΞV η = dHνi,
with dνi 6= 0, therefore Noether Th. (I) implies

LjrΞλi = dH(νi + εi) ,

and under the conditions δn(η) 6= 0 and δn−1(ΞV ηλi) 6= 0 we have necessarily

d(νi + εi) 6= 0 .

If LjrΞλi = 0 would hold true, then we would have a Noether strong (in the words
of Noether ‘improper’) conservation law dH(νi + εi) = 0.

4.1 Variations of strong Noether currents
We are here particularly concerned with the case when LjrΞλi 6= 0 i.e. jrΞ is a
generalized symmetry, that means LjrΞλi =loc. dHβi. In fact, since En(LjrΞλi) = 0
then LjrΞλi defines a cohomology class and we have δn−1(LjrΞλi) 6= 0 iff and only
if dβi 6= 0. Notice that if dLjrΞλi = 0 then 0 = ddHβi = dHdβi.

Remark 2. It turns out that LjrΞλi is closed; therefore, since the variational Lie
derivative of closed classes trivializes cohomology classes,

δn−1(LjrΞLjrΞλi) = 0 =⇒ LjrΞLjrΞλi = dHψi ,

therefore
dHLjrΞ(νi + εi) = dHψi ,

with dψi = 0, Thus the variation of the strong Noether current LjrΞ(νi + εi) is
necessarily variationally equivalent to a global current as a consequence of the
invariance of field equations.

In the following we characterize more precisely this fact and we find that a
global representative is given by the canonical Noether current associated with the
Lagrangian LjrΞλi.

As a preliminary fact, we first show that a condition assumed in [29] is in fact
always satisfied for generalized symmetries of global dynamical forms.
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Proposition 1. Let jrΞ be a generalized symmetry. The coboundary of the strong
Noether currents is locally exact, i.e. dH(d(νi + εi)) = 0.

Proof. To get the assertion it is enough to prove that dLjrΞλi = 0. This is equiv-
alent to prove that

δn+1En(dLjrΞλi) = 0 .

By linearity

δn+1En(dLjrΞλi) = δn+1dEn(LjrΞλi) = δn+1dLjrΞEn(λi)

and being jrΞ a generalized symmetry LjrΞEn(λi) = 0, thus we get immediately
the result. �

Proposition 2. The variation of a local strong Noether current by a generalized
symmetry is variationally equivalent to the canonical Noether current associated
to the variation of the local Lagrangians by the same symmetry, i.e. we have

LjrΞ(νi + εi) ' εLjrΞλi .

Proof. Let γφi =loc. dHφi be a locally variationally trivial Lagrangian. As a con-
sequence of Theorem 1 and Theorem 2 and by naturality we have

dHεγφi = LjrΞγφi
.
= γLjrΞφi = dH(LjrΞφi) .

We have 0 = δn−1(LjrΞγφi) = δn−1(γLjrΞφi), i.e. LjrΞφi is equivalent to a global
current and in particular LjrΞφi ' εγ , i.e. the (local) current LjrΞφi is variationally
equivalent to the global current εγ .

Since, as a consequence of the global invariance of field equations, the cobound-
ary of the strong Noether currents is locally exact, by applying the above to
γ = dH(νi + εi) we get the statement. �

Let Ξ be a symmetry of the Euler-Lagrange form ηλ. If we then require that the
current be a current variationally associated [16] to the generalized symmetry (i.e. if
the second variational derivative by a generalized symmetry of the local problems
is vanishing) then we have the conservation law dHLΞ(νi + εi) = 0. This means
that the current εLjrΞλi is also conserved and the corresponding conservation laws
reads dH(εLjrΞλi) = 0.

Notice that this canonical Noether current is conserved along any section.

Remark 3. Comparing the latter Proposition with Example 1 we characterize the
Lie derivative of the local canonical Noether current εi

.
= ελi . Specifically we have

LjrΞελi ' εdHελi .
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