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Geometry of the free-sliding Bernoulli beam

Giovanni Moreno, Monika Ewa Stypa

Abstract. If a variational problem comes with no boundary conditions
prescribed beforehand, and yet these arise as a consequence of the varia-
tion process itself, we speak of the free boundary values variational prob-
lem. Such is, for instance, the problem of finding the shortest curve whose
endpoints can slide along two prescribed curves. There exists a rigorous
geometric way to formulate this sort of problems on smooth manifolds with
boundary, which we review here in a friendly self-contained way. As an ap-
plication, we study the particular free boundary values variational problem
of the free-sliding Bernoulli beam.

This paper is dedicated to the memory of prof. Gennadi Sardanashvily.

1 Introduction
The Euler-Lagrange equations are not the only conditions satisfied by a solution to
a variational problem. In the majority of the cases we do not see these additional
conditions simply because they become trivial. There exist, however, important
and physically significant examples, where they are by no means trivial and rather
play a key role in the description of the solutions to the variational problem itself.

We shall call these conditions natural boundary conditions. Our aim is to
obtain the natural boundary conditions for a second-order one-dimensional varia-
tional problem henceforth referred to as the free-sliding Bernoulli beam. But such
a particular result will be framed against a general coordinate-free background.
The class of problems where natural boundary conditions arise and are nontrivial
is rather vast, and we may call it the class of free boundary values variational
problems (see, e.g. [5, Chapter 2, Section 4] and [20, Chapter 7], Chapter 7). The
geometric framework sketchy reviewed below is valid in the entire class.

The idea of a free-sliding Bernoulli beam is implicit in many classical treatments
of variational calculus (see, e.g. C. Lanczos [9, Chapter II, Section 15]). However,
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the problem itself has never been discussed in details and, in particular, the cor-
responding natural boundary conditions have never been derived before – to the
authors’ best knowledge. On the theoretical side, a solid geometric framework for
free boundary values variational problems can be easily obtained by generalising
any of the various modern homological approaches to variational calculus, which all
follow in spirit the original works by Janet [6] and Dedeker [3]. The key ingredient
is the so-called relative homology, i.e., the de Rham theory adapted to manifolds
with boundary (see [14] and references therein). This is a rather straightforward
step, but it may be hard to grasp for a newcomer, as it requires a minimal toolbox
of homological algebra and differential topology. This is why we review it below,
in a friendly but rigorous way, especially designed to fit the main example at hand.

1.1 Formulation of the main problem
If u = u(x) and we denote by p, q, r, s the first, second, third and fourth derivative
of u with respect to x, respectively, then the one-form

λ =

(
κ
q2

2
− ρu

)
dx (1)

may be understood as a second-order Lagrangian. It is in fact a well-known vari-
ational principle, discovered around 1750. It allows to describe a massive beam
which bends under its own weight and against its internal reaction forces (see, e.g.,
[10]). Nowadays we speak of a “Bernoulli beam”. In compliance with the terminol-
ogy used by both [20] and [9], κ is a nonzero constant, and ρ = ρ(x) is a function,
representing the elasticity of the beam and the load, respectively.

The Euler-Lagrange equations associated with (1) are easily computed, viz.

s =
1

κ
ρ . (2)

The general solution

u(x) = u0(x) + c3x
3 + c2x

2 + c1x
1 + c0 (3)

to (2) depends on four integration constants. In the most typical situations, the cir-
cumstances provide the correct number of boundary conditions, so that the solution
to (2) becomes unique (see, e.g. [20, Section 7.1] and [9, Chapter II, Section 15]).
And even when the circumstances do not prescribe enough boundary conditions,
more arise as a consequence of the variation problem itself. An important exam-
ple of such phenomena is provided by the so-called cantilever beam (see, e.g., [20,
Section 7.1, Case II]).

The free boundary values variational problem studied in this paper can be
described as follows. The endpoints of the Bernoulli beam L can slide freely, that
is frictionlessly, along a prescribed curve Γ (see Figure 1). The curve Γ is assumed
henceforth to be the boundary of a connected domain E ⊂ R2, i.e., Γ = ∂E.
Our goal is to show that the four-parametric family of solutions (3) reduces to a
generically two-parametric family of solutions as a consequence of the fact that we
have forced the endpoints of L to lie on Γ. This program is carried out in the last
Section 3.
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The problem of how the geometry of Γ can further reduce the multitude of the
solutions – possibly all the way down to uniqueness, or even to non-existence – is
an interesting one, but not touched upon here.

The reader may have noticed that, as opposed to the “classical” treatment of
the Bernoulli beam, which is described in terms of a function u, here we deal with
one-dimensional submanifolds (i.e., curves) of the two-dimensional manifold with
boundary E. This is precisely why we need a coordinate-free approach to free
boundary values variational problems on manifolds with boundary. The following
example, already worked out in [12], clarifies this important step.

Γ

E

L

u

x

Figure 1: Two arbitrary points of the closed curve Γ can be joined by a beam L ⊂ E.
If such points are assumed to be freely sliding along Γ, then the corresponding
variational problem is a free boundary values variational problem.

1.2 A motivating example

Let R2 be equipped with the Euclidean metric, and let γ : [a, b] → R2 be a curve.
Then the length of γ is given by

`(γ) =

∫ b

a

‖γ̇(t)‖ dt . (4)

It is a basic undergraduate exercise to show that γ is a critical point for ` if and
only if γ is a straight line. In particular, this means that the set of solutions to the
Euler-Lagrange equation associated with (4) is a two-parametric family.

Straight lines are the correct answer to the question “what are the shortest lines
between two arbitrary points of R2?”

But, what if we are interested in the shortest lines joining two arbitrary points
lying on the boundary Γ = ∂E of a connected domain E ⊂ R2 instead? Intuitively,
since any pair of points of Γ is a pair of points of R2, the Euler-Lagrange equations
need to be satisfied, but new equations are needed, and these extra equations must
depend on the particular choice of E. Obvious.

However, formalising this fact in a proper way requires an unexpectedly elabo-
rated framework, even if the idea behind is extremely simple (see [23], [13], [12]).
The case when E = [a, b]× R2 is particularly simple, and deserves to be discussed
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further. First of all, since we are interested1 in lines joining a point of {a}×R with
a point of {b}×R, it suffices to consider curves of the form (x, u(x)), i.e., functions
on [a, b]. Hence, (4) reads

`(u) =

∫ b

a

√
1 + p2 dx . (5)

In order to get the Euler-Lagrange equations, we compute the variation

δ`

δu
(u) =

d

dε

∣∣∣∣
ε=0

`(u+ εu)

=

∫ b

a

p√
1 + p2

u′ dx

= −
∫ b

a

d

dx

(
p√

1 + p2

)
udx+

p√
1 + p2

u

∣∣∣∣∣
b

a

. (6)

Now observe that the boundary ∂E is the “space of admissible boundary values” for
the unknown function u ∈ C∞([a, b]). Hence, we speak of a free boundary values
variational problem precisely because these values are not prescribed beforehand.
But, if a curve/function u is critical for (5) for arbitrary boundary values, then, in
particular, it must be critical for (5) for prescribed boundary values. In practice,
this means that (6) must vanish for all u such that u(a) = u(b) = 0, i.e., that the
second-order Euler-Lagrange equation q = 0 must be satisfied by u. Expectedly,
we obtain all polynomial functions of degree ≤ 1, which is a two-parametric family
(see Figure 2 below).

Needless to say, polynomial functions of degree ≤ 1 do not answer the question
“what are the shortest lines joining a point of {a} × R with a point of {b} × R?”
But the desired functions are among them, that is, the solutions to our problem
must, in particular, satisfy the equation q = 0. It remains to observe that, for
functions satisfying q = 0, (6) reads

∂`

∂u
(u) =

p√
1 + p2

u

∣∣∣∣∣
b

a

. (7)

Indeed, the variation (7) must vanish now for all u, i.e., we do not need to as-
sume anymore that u and u + εu have the same boundary values for small ε. It
follows immediately from (7) that p(a) = p(b) = 0 and we correctly get only the
constant functions. That is, the family of the solutions to our free boundary values
variational problem is one-parametric, whereas the family of the solutions of the
Euler-Lagrange equation q = 0 alone is two-parametric.

Passing to less trivial domains E, like a circle or an ellipse (see Figure 2 below),
we see that both the quantity and the nature of the solutions to the corresponding
free boundary values variational problems heavily depend on the shape of E. In

1The examples really worth studying are those where the boundary ∂E is not a solution to
the Euler-Lagrange equations.
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the case of a circle, we still get a one-parametric subfamily, but different from the
previous example, even topologically. If E is an ellipse, then we even obtain a
discrete family (two elements).

These trivial examples should make the reader suspect that there is a deeper
theory behind. A theory where the “new equations” accompanying the Euler-
Lagrange depend on E. These are precisely the natural boundary conditions.2

Unfortunately, formalising properly this dependency requires a rather heavy jet-
theoretical formalism (see [13]), which would not be in the spirit of this paper.
In Section 2 below we provide a minimalistic toolbox needed to deal with the
main problem (the one described in Section 1.1), by avoiding general theoretical
considerations and focusing on the useful results instead.

We close this introduction by proposing an analogy. The passage from the
“global” Lagrangian (4) on R2 to the “restricted” Lagrangian (5) on E is morally
the same as the passage from a differential form ω on a manifold M to its restriction
ω|E to a submanifold E ⊂ M of codimension zero. So, even symbolically, ω|E
carries a reference to the submanifold E, whereas (5) does not. But what really
matters is that the de Rham theory changes completely.

More precisely, the notion of exact forms is different. A form ω ∈ Ωk(M) is
exact if it is the differential dη of a form η ∈ Ωk−1(M). But the restricted form ω|E
is exact if it is the differential of a relative form, i.e., an element of Ωk−1(E, ∂E).
A relative form on E is a form which vanishes on ∂E. The corresponding relative
de Rham complex is indicated by (Ω(E, ∂E), drel). If k = dimE = dimE, then the
relative de Rham cohomology on E has the same k-cycles but fewer k-boundaries.
Since the Lagrangians and the corresponding Euler-Lagrange expressions can be
interpreted as suitable de Rham cohomology classes on jet prolongations of E, the
passage from (4) to (5) causes, in particular, the Euler-Lagrange expressions to
land into a larger cohomology space, which explains the appearance of the natural
boundary conditions (see [14] for a more exhaustive discussion) next to the classical
Euler-Lagrange equations.

Γ

E

L

Figure 2: Examples of free boundary values variational problems.

The profound difference between these two pieces of the same cohomological
object should always be kept in mind. The latter are just the restriction of the
2In this particular example the natural boundary conditions are usually referred to as the

transversality conditions (see [20, Section 7.3] and [11])
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Euler-Lagrange equations on M : as such, no matter which E is chosen, they will
look the same in the neighborhood of any internal point of E. The former depend
on the choice of E: the same point p ∈ M may be a boundary point of several
different domains E, and for each choice of E the corresponding equations need
not to be the same.

2 The geometry of free boundary values variational problems
Let E be a (connected) two-dimensional manifold with (connected) nonempty
boundary ∂E. In order to speak of a free boundary value variational problem
imposed on one-dimensional submanifolds (i.e., curves) in E, we need the correct
geometric counterpart of several intuitive notions, such as:

1. admissible curves in E,

2. a Lagrangian on E,

3. the Euler-Lagrange equations associated with the Lagrangian,

4. the natural boundary conditions associated with the Lagrangian.

The less familiar entry is surely the last one, which will need a special care. Together
with these indispensable gadgets, we shall also need some key property in order to
obtain our result, namely:

1. the locality of the Euler-Lagrange equations,

2. the locality of the natural boundary conditions,

3. the invariance of Euler-Lagrange equations with respect to diffeomorphisms
of E,

4. the invariance of natural boundary conditions with respect to diffeomor-
phisms of E.

Below we clarify all these points in the most direct and self-contained way. All will
be used in next Section 3 in order to obtain the desired result.

2.1 Admissible curves and coordinated patches
This is the easiest notion. A curve is admissible for a variational problem on E
if it is, roughly speaking, transversal to ∂E. The reason for that can be easily
grasped by thinking at the length Lagrangian (4): a curve hitting the boundary of
E tangentially can never be length-minimising (see Section 1.2 above). As such, it
should be ruled out from the very beginning.

Definition 1. A curve L is admissible if ∂L = L∩ ∂E and L is nowhere tangent to
∂E. The set of admissible curves is denoted by A(E).

Example 1. If E = I × R, where I ⊂ R is a closed interval, then the admissible
curves in E are just the graphs of the smooth functions on I (see Figure 2, leftmost
example).
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As a manifold with boundary, E possesses two kind of coordinate patches,
namely the ordinary (standard, internal) ones, and the boundary ones (like the
(x, u) patch depicted in Figure 1). A coordinate patch is a pair (U,x), where
U ⊆ E is open and x is a diffeomorphism between U and R2 (standard) or 〈0,∞)×R
(boundary).

2.2 Jet spaces and Lagrangians
The kth jet extension JkE is a bundle over E whose fibre JkxE at x ∈ E is defined
by

JkxE := {L | L is a curve in E}
/
∼kx , (8)

where
L ∼kx L′ ⇐⇒ L is tangent to L′ at x with order k .

Jet spaces form a natural tower of one-dimensional smooth bundles, usually denoted
by

· · · → JkE
πk,k−1−→ Jk−1E → · · · → J1E → E . (9)

According to the general theory (see, e.g., [2], [16]), π1,0 is a smooth RP1-bundle,
whereas the other are affine R-bundles.

Let (U,x) be an internal (resp. boundary) coordinate patch, with x = (x, u).
For any function u = f(x) denote by

Lf := x−1
({

(x, u)
∣∣ u = f(x) , x ∈ R

(
resp., x ∈ 〈0,∞)

)})
its graph. We define the subset

Ũ :=
{

[Lf ]kx
∣∣ x ∈ U , f ∈ C∞(R)

(
resp., f ∈ C∞(〈0,∞))

)}
⊆ JkE ,

and the map

Ũ 3 [Lf ]kx
x̃7−→
(
x, u = f(x), p = f ′(x), q = f ′′(x), r = f ′′′(x),

s = f (iv)(x), . . . , u(k) = f (k)(x)
)

between Ũ and R2 × Rk (resp., 〈0,∞) × R × Rk). Notice that we have denoted
by (p, q, r, s, u(5), u(6), . . . , u(k)) the coordinates on Rk. It can be proved that Ũ is
open in JkE.

Definition 2. The pair (Ũ , x̃) is called a ordinary (resp., boundary) affine coordi-
nate patch on JkE (induced by (U,x)).

When viewed through coordinate patches, the tower of bundles (9) is simply

. . . −→ E × Rk
πk,k−1−→ E × Rk−1 −→ . . . .

For any curve L ⊂ E, define its kth jet extension

L(k) := {[L]kx | x ∈ L} ⊂ JkE ,
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which, as a submanifold of JkE, is a curve as well (see, e.g., [2]). Plainly, not
all the curves in JkE are of the form L(k), but jet spaces come equipped with a
structure which allows precisely to tell one from another. More precisely, fix a point
θ := [L]kx ∈ JkE, and observe that the representative L is, of course, not uniquely
defined. Such an anbiguity allows us to define the nontrivial subspace

C(k)
θ := Span

〈
TθL

∣∣ [L]kx = θ
〉
⊂ TθJkE .

Definition 3. The distribution C(k) given by θ 7−→ C(k)
θ is called the contact distri-

bution on JkE.

In an affine coordinate patch, C(1) is the annihilator of the one-form

du− p dx , (10)

C(2) is the annihilator of the one-form (10), together with the one-form

dp− q dx , (11)

C(3) is the annihilator of the one-forms (10) and (11), together with the one-form

dq − r dx , (12)

and so on so forth.

Theorem 1. A curve in JkE is of the form L(k) if and only if it is an integral curve
of C(k) nondegenerately projecting over E.

Proof. See, e.g., [2]. �

By dualising the tower of projections (9), one sees that the modules of differ-
ential forms on lower-order jet spaces can be embedded into the modules of differ-
ential forms on higher-order jet spaces. In particular, Ω1(E) can be considered as
a C∞(E)-submodule in any Ω1(JkE).

Definition 4. The C∞(JkE)-submodule Ω1
h(JkE) generated by Ω1(E) within

Ω1(JkE) is called the module of kth order Lagrangians on E.

Example 2. In the setting of Example 1, the formula (1) correctly defines a second-
-order Lagrangian on E. Indeed, the one-form dx over M is multiplied by such
scalars, like p and q, which belong to C∞(J2E).

2.3 The Euler-Lagrange equation
The construction of the Euler-Lagrange equation associated to a (in our context,
second-order) Lagrangian λ ∈ Ω1

h(J2E) has been the subject of dozens of works
(see, e.g., [1], [3], [4], [6], [7], [15], [17], [18], [19], [21], [22]), each showing the same
phenomenon form a different perspective. We only stress here that the left-hand
side of Euler-Lagrange equation δλ = 0 associated with λ is a particular two-form
on J4E, called the Euler-Lagrange expression. More precisely,

δλ ∈ Ω2
h,c(J

4E) , (13)

where Ω2
h,c(J

4E) denotes the submodule of Ω2(J4E) generated by the products of
horizontal one-forms with contact one-forms.
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Example 3. In the same setting as Examples 1 and 2, the Euler-Lagrange ex-
pression can be written in terms of the so-called Euler-Lagrange derivative of the
Lagrangian density. So, formula (2) is correctly interpreted as

δλ =

(
s− 1

κ
ρ

)
⊗ (du− p dx) , (14)

where we used the contact form (10). The two-form (14) is called, in the bicomplex
terminology, a form of type (1, 1).

A second-order Lagrangian determines an action functional on the space A(E) of
admissible sections, usually denoted by

Sλ : L ∈ A(E) 7−→
∫
L(2)

λ ∈ R . (15)

Definition 5 (Main). A free boundary values variational problem is a pair (E, λ),
where λ is a Lagrangian over the manifold with boundary E. A solution of the
problem is an admissible curve L ∈ A(E), which is critical for Sλ.

Apparently, Definition 5 does not differ much from the standard notion of a vari-
ational problem,3 save for the fact that E has nonempty boundary (and it is an
abstract manifold). Its novelty is hidden in the notion of a critical point. Indeed, a
point L is critical if the derivative of Sλ along all possible infinitesimal variations
of L vanishes. But now L is allowed to range within a larger set than usual (see
Definition 1). Hence, the critical condition breaks down into more equations.

This is why a solution to a free boundary values variational problem does not
fulfil only the Euler-Lagrange equations δλ = 0, but also the natural boundary
conditions.

2.4 The natural boundary conditions

Now we can make more precise the first statement of this paper, i.e., that the
Euler-Lagrange equation is not the unique consequence of the stationarity of the
action functional (15). As already pointed out, the only way to see this globally
is by means of cohomology (i.e., spectral sequences or bicomplexes, see [8]), which
is something we wish to avoid here (see [13] for a rigorous treatment). The idea is
that the cohomology of Ω2

h,c(J
4E) (cf. (13)) should be replaced by its “relative”

analogue, in such a way that the former is but a (nontrivial) direct summand of the
latter (see [23]), as we outlined in Section 1.2 above. Rather than giving a rigorous
global definition (see [14]), we develop the particular case discussed in Example 3.

Example 4. If I = 〈a, b〉, then A = C∞(〈a, b〉), and (15) is simply

Sλ : u ∈ C∞(〈a, b〉) 7−→
∫ b

a

(
κ

(u′′)2

2
− ρu

)
dx ∈ R . (16)

3Definition 5 was originally proposed in [14].
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The classical way to derive the Euler-Lagrange equations from (16) is to compute
the variation

δSλ
δv

(u) =
d

dε

∣∣∣∣
ε=0

∫ b

a

(
κ

(u′′ + εv′′)2

2
− ρ(u+ εv)

)
dx

=

∫ b

a

(κu′′v′′ − ρv) dx

=

∫ b

a

(
κu(iv) − ρ

)
v dx+ (κu′′v′ − κu′′′v)|ba (17)

and to impose that it vanishes for all v with compact support in (a, b). However,
in our case, all values for v need to be taken into account, since u + v is always
admissible.

Nevertheless, we may start by imposing the vanishing of (17) for all v with
compact support in (a, b), i.e., by discarding the second summand (exactly as we
did for the toy model, see Section 1.2). It should also be noticed that the integrand
in (17) is the outcome of the contraction of the two-form (14) of type (1, 1) with
the vertical vector field v∂u, so that the vanishing of the integral for arbitrary v
implies (14). In other words, the Euler-Lagrange equation (2) needs to be satisfied.

But now, plugging (2) into (17), only the boundary term survives. If we take
variations with respect to arbitrary v, we immediately see that the four natural
boundary conditions

u′′(a) = u′′(b) = 0 , u′′′(a) = u′′′(b) = 0 , (18)

need to be satisfied by a stationary point of (16). If the boundary conditions
(18) are prescribed to the general solution (3), the number of integration constants
decreases, but not enough to ensure uniqueness.

The boundary conditions (18) are precisely the ones labeled by 215.5 in [9]. It is
worth noting that in [9] (see the summary at the end of Section 15 of Chapter II),
as well as in similar textbooks, it is erroneously stated that for free boundary
values problem the right amount of missing boundary conditions is provided by the
variation process itself. In fact the variation process does produce new conditions,
but not always (like here) enough to guarantee a unique solution.

In the cohomological framework presented in [23], the “relative Euler-Lagrange
expression” δrelλ (analogous to the relative de Rham differential, see Section 1.2
above) splits into two parts. One is precisely the δλ appearing in (14), and the
other is a certain object whose vanishing corresponds precisely to the four equations
(18) in local coordinates. These are the natural boundary conditions associated to
the Lagrangian (1) and the particular domain E discussed in this example.

We did not insists on the cohomological nature of (18), just because the main
feature needed here is their invariance with respect to diffeomorphisms, discussed
below. Indeed, in order to write down the natural boundary conditions for an
arbitrary domain with boundary E ⊂ R2 (like the one depicted in Figure 1), we
need to choose a coordinate patch and pull-back the variational problem to this
coordinate patch. Locality and invariance are the properties which guarantee the
correctness of the process.
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2.5 Locality of the relative Euler-Lagrange equations
The local character of the Euler-Lagrange equations is perhaps the main feature
of the equations themselves, accompanying them since their inception. It reflects
the old say that “geodesics are locally minimising curves”. This feature is almost
self-evident, and it admits a precise geometric counterpart in all the modern frame-
works for variational calculus. For example, the locality can be rendered by using
the language of sheaves (see, e.g., [8]).

The analogous property for the relative Euler-Lagrange equations, i.e., the si-
multaneous locality of the Euler-Lagrange equations and the natural boundary
conditions, is perhaps less evident. But it follows from the fact that the geometric
framework for free boundary values variational problem is the most natural gener-
alisation of the standard one. More precisely, the relative Euler-Lagrange equations
are local because the relative C-spectral sequence (or variational bicomplex) used
to define them are made of modules and module morphisms. As such, their global
behaviour is dictated by their behaviour over any open covering.

Let us agree that, if ∂E = ∅, then a free boundary variational problem in E is
just a variational problem on E in the usual sense. This convention allows ut to
give the following definition.

Lemma 1 (Locality). Let (E, λ) be a free boundary values variational problem,
and let U = {Ui} be a covering of E by coordinate patches. Then an admissible
curve L ∈ A(E) is a solution to (E, λ) if and only if each L ∩ Ui is a solution to
the free boundary value variational problem (Ui, λ|Ũi

), for all i.

Proof. See, e.g, [7]. �

In particular, one can study natural boundary conditions in a neighbourhood of
any point of the boundary ∂E.

But, since coordinates patches are linked to the Euclidean setting (that is, either
R2 or 〈0,∞) × R) by a diffeomorphism, one needs to check the invariance of the
objects involved in the study.

2.6 Lifting of transformations
In order to speak of invariance, we should recall how to lift a local diffeomorphism

E ⊃ U Φ−→ U ′ ⊂ E , (19)

(x, u) 7−→ (x(x, u), u(x, u)) ,

to a local diffeomorphisms Φ(k) : Ũ ⊂ JkE −→ Ũ ′ ⊂ JkE′, with k = 1, 2, 3. The
definition of Φ(k) is obvious (see, e.g., [2]):

Φ(k)([L]kx) := [Φ(L)]kΦ(x) . (20)

From (20) it is obvious that Φ(k) is well-defined, and that it preserves the curves
of the form L(k). By Theorem 1, this in turn implies that Φ(k) preserves the distri-
bution C(k). Interestingly enough, the last property is enough to characterise Φ(k)

entirely, as an extension of Φ.
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If

J1E ⊃ Ũ Φ(1)

−→ Ũ ′ ⊂ J1E′ ,

(x, u, p) 7−→
(
x(x, u), u(x, u), F (x, u, p)

)
, (21)

then
du− Fdx ∈ Span 〈du− p dx〉 , (22)

the one-dimensional submodule spanned by the contact form (10). In turn, (22)
means that

du− Fdx = ux dx+ uu du− F (xx dx+ xu du)

= (ux − Fxx) dx+ (uu − Fxu) du

∈ Span 〈du− p dx〉
⇐⇒ux − Fxx = −p(uu − Fxu)

⇐⇒F =
ux + puu
xx + pxu

=
D(1)(u)

D(1)(x)
,

i.e., F is uniquely determined by x, u, and their total derivatives.
We recall that

C∞(E)
D(1)

−→ C∞(J1E) ,

f = f(x, u) 7−→ D(1)(f) := fx + pfu ,

is a derivation of a sub-algebra, i.e., a vector field along the projection π1,0.
In analogy with (21) we have now

J2E ⊃ Ũ Φ(2)

−→ Ũ ′ ⊂ J2E′ ,

(x, u, p, q) 7−→ (x, u, F,G(x, u, p, q)) , (23)

but the condition (22) is somehow more involved, viz.

dF −Gdx ∈ Span 〈du− pdx, dp− q dx〉 , (24)

since also the one-form (11) comes into play. So,

dF −Gdx = Fx dx+ Fu du+ Fp dp−G(xx dx+ xu du)

= (Fx −Gxx) dx+ (Fu −Gxu) du+ Fp dp

∈ Span 〈du− pdx, dp− q dx〉

if and only if

dF −Gdx = A(dp− q dx) +B(du− p dx)

= −(Aq +Bp) dx+B du+Adp

⇐⇒ Fp = A , Fu −Gxu = B , Fx −Gxx = −(Aq +Bp)

⇐⇒ Fx −Gxx = −Fpq − Fup+Gxup

⇐⇒ G =
Fx + pFu + qFp

xx + pxu
=
D(2)(F )

D(1)(x)
,
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where now

C∞(J1E)
D(2)

−→ C∞(J2E) ,

f = f(x, y, p) 7−→ D(2)(f) := fx + pfu + qfp

is a vector field along π2,1.
Finally, having found both F and G, we let

J3E ⊃ Ũ Φ(3)

−→ Ũ ′ ⊂ J3E′ ,

(x, u, p, q, r) 7−→ (x, u, F,G,H(x, u, p, q, r)) , (25)

and obtain H as before. More precisely,

dG−H dx = Gx dx+Gudu+Gp dp+Gq dq −H(xx dx+ xu du)

= (Gx −Hxx) dx+ (Gu −Hxu) du+Gp dp+Gq dq

∈ Span 〈du− p dx, dp− q dx,dq − r dx〉

if and only if

dG−H dx = A(dq − r dx) +B(dp− q dx) + C(du− p dx)

= −(Ar +Bq + Cp) dx+ C du+B dp+Adq

⇐⇒ Gq = A , Gp = B , Gu −Hxu = C , Gx −Hxx = −(Ar +Bq + Cp)

⇐⇒ Gx −Hxx = −Gqr −Gpq −Gup+Hxup

⇐⇒ H =
Gx + pGu + qGp + rGq

xx + pxu
=
D(3)(G)

D(1)(x)
,

where finally

C∞(J2E)
D(3)

−→ C∞(J3E) ,

f = f(x, y, p, q) 7−→ D(3)(f) := fx + pfu + qfp + rfq .

Summing up, F , G and H are recursively defined by

F =
D(1)(u)

D(1)(x)
, G =

D(2)(F )

D(1)(x)
, H =

D(3)(G)

D(1)(x)
. (26)

Remark 1. Formulas (26) can be easily adapted to work with the inverse of (19),
namely the diffeomorphism

E′ ⊃ U ′ Φ−1

−→ U ⊂ E , (27)

(x, u) 7−→
(
x(x, u), u(x, u)

)
.

Indeed, it suffices to exchange x and u with x and u, respectively, in (26) and in the
definition of the total derivatives as well. We shall denote by f, g, h the analogues
of F,G,H, respectively,
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2.7 Invariance of the relative Euler-Lagrange equations under diffeomorphisms
Once again, for standard Euler-Lagrange equations, the diffeomoprhism invariance
is such an innate feature that it is virtually impossible to recall who observed it
in the first place. In modern theories this property appears as a consequence of
the naturality of the framework itself. Basically, the invariance follows from the
functorial character of the map associating to any manifold the “space of Euler-
-Lagrange expressions” on it (a sub-quotient of the module Ω2

h,c(J
4E), in our case).

Similarly, the desired invariance of both the Euler-Lagrange equations and the
natural boundary conditions follow from similar functorial considerations, where
now the underlying manifold has nonempty boundary, and we deal with the “space
of relative Euler-Lagrange expressions” instead.

Lemma 2 (Invariance). Let (E, λ) be a (second-order) free boundary values vari-
ational problem, and let Φ : E −→ E′ be a diffeomorphism. Then an admis-
sible curve L ∈ A(E) is a solution of (E, λ) if and only if Φ(L) is a solution
of (E′,Φ(2)−1∗λ).

Proof. See, e.g., [22]. �

Together, Lemma 1 and Lemma 2 allows one to write down the natural boundary
conditions associated to the arbitrary curve Γ for the problem of the free-sliding
Bernoulli beam depicted in Figure 1. We stress that none of the techniques above is
necessary (nor used) to write down the Euler-Lagrange equations: they are always
of the form (3) independently on the domain E. By Lemma 1, one obtains the
Euler-Lagrange equations on E simply by restricting those on the whole R2.

But – and this is the point of the whole paper – without the locality and the
invariance of the relative Euler-Lagrange operator (that is, without Lemma 1 and
Lemma 2) it would be impossible to write down the natural boundary conditions
determined by Γ by using the standard manipulation of the variational integral (17).
The final form of these conditions will be considerably uglier than (18) (though
geometrically equivalent): this will convince the reader of the difficulty of obtaining
them without changing coordinates.

3 The free-sliding Bernoulli beam
3.1 The two-dimensional family of solutions
Now we come back to the problem of the free-sliding Bernoulli beam formulated
in Section 1.1 and depicted in Figure 1. Let x ∈ Γ be a boundary point, and let
(x, u) be a coordinate patch, such that (x(x), u(x)) = (0, 0).

Let L be a solution of the Euler-Lagrange equation, i.e., the graph of a function
u = u(x) of the form (3). If L passes through x = (x, u), as rendered in Figure 3
below, then u(x) = u, that is,

u = u0(x) + c3x
3 + c2x

2 + c1x+ c0 . (28)

Hence, there is a three-parametric family of solutions to the variational problem
(E, λ), passing through x. In this section we show that such a family becomes one-
-parametric if L is required to be a solution to the free boundary values variational
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problem (E, λ). Hence, since x can “slide”, so to speak, one-parametrically along Γ,
we obtain a two-dimensional family of solutions, as announced in Section 1.1.

So, let us assume that L is such a solution. By Lemma 1, in the vicinity of x,
the curve L is also a solution to the local free boundary values variational problem.
Finally, by Lemma 2, this local problem is equivalent to its pull-back to the target
〈0,∞)× R of the coordinate patch.

Since localisation does not affect the form of the Lagrangian, we take (1) as the
local Lagrangian. Then, according to Remark 1, we express (1) in the coordinates
(x, u, p, q), viz.

λ := Φ(2)−1∗λ =
(κ

2
g(x, u, p, q)2 − ρ(x(x, u))u(x, u)

)
(xx + p dxu) dx . (29)

The term xx + p dxu is the “total Jacobian” naturally appearing in the trans-
formation formula for the Lagrangians (see [14, Remark 3]).

Γ

E

L

u
u

x

x

x

Figure 3: We choose a point x ∈ Γ and a boundary coordinate patch (x, u) in order
to write down the natural boundary conditions.

Since the boundary Γ “look straight” in the coordinates (x, u), we can proceed
to compute the natural boundary conditions associated to the Lagrangian (29), by
relying on the same well-known computations used in Example 4. The analogous
of equations (17) read now

∂λ

∂q
(0) = 0 , (30)(

∂λ

∂p
− d

dx

∂λ

q

)
(0) = 0 . (31)

Straightforward computations show that (30) equals

k(uxxu − uuxx)
[
−xu(p3uuu + p(2puxu + uxx)− qux)

+ uu(p3xuu + p(2pxxu + xxx)− qxx)

+ p2uxxuu − p2uuuxx − 2puxuxx + 2puxxxu − uxxxx + uxxxx
]

= 0 . (32)

Equation (32) is a polynomial equation in the two variables p, q, where x and u,
together with their derivatives, are computed in (0, 0). Similarly, (31) is a polyno-
mial equation in the three variables p, q, r. By solving this system of two equations,
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one then obtain a one-parametric family (p, q, r), which corresponds precisely to
the values at 0 of the first, second and third derivative of the function u = u(x),
whose graph is L.

Unfortunately, in order to recognise this family as a sub-family of the family
of general solutions (3), we have to switch back to the original coordinates (x, u),
and it would take an entire page to write down (31) explicitly. The only way to
show a tangible example of the technique proposed here, is to assume that the
change of coordinates is linear. This means that all the derivatives of x and u with
respect to x and u must vanish, so that the equations (30) and (31) are considerably
simplified, viz.

kq (uxxu − uuxx) 2 = 0 , (33)

k (uxxu − uuxx) 2
(
xu
(
5q2 − 2pr

)
− 2rxx

)
− 2uxuρ(x) (pxu + xx) 6 = 0 . (34)

Since

uxxu − uuxx =

∥∥∥∥∂(u, x)

∂(u, x)

∥∥∥∥ 6= 0 ,

the equation (33) admits the unique solution

q = 0 . (35)

By replacing (35) in (34), we obtain

k (uxxu − uuxx) 2 (−2prxu − 2rxx)− 2uxuρ(x) (pxu + xx) 6 = 0 . (36)

It remains to use the formulas (26) in order to recast (35) and (36) into the
(x, u)-coordinates.

To begin with observe that (35) becomes∥∥∥∥∂(u, x)

∂(u, x)

∥∥∥∥ q = 0 ,

i.e., again
q = 0 . (37)

On the other hand, (36) becomes less trivial, viz.

− 2
(
xu (puu + ux) + pxuxx + x2

x

)(
k (uxxu − uuxx)

3 (
xu
(
3q2 − pr

)
− rxx

)
+ uxuρ(x)

(
xu (puu + ux) + pxuxx + x2

x

)5)
= 0 . (38)

The two equations (37) and (38) must now be coupled with (28). To this end,
we replace

p = u′0(x) + 3c3x
2 + 2c2x+ c1 ,

q = u′′0(x) + 6c3x+ 2c2 ,

r = u′′′0 (x) + 6c3 ,
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into (37) and (38), thus obtaining

u′′0(x) + 6c3x+ 2c2 = 0 (39)

and

−2

(
xuxx

(
3x2c3 + 2xc2 + c1 + u′0(x)

)
+ xu

(
uu
(
3x2c3 + 2xc2 + c1 + u′0(x)

)
+ ux

)
+ x2

x

)
×

(
k(uxxu − uuxx)3

(
xu

(
3(6xc3 + 2c2 + u′′0(x))2

− (6c3 + u′′′0 (x))(3x2c3 + 2xc2 + c1 + u′0(x))
)
− (6c3 + u′′′0 (x))xx

)
+ uxuρ(x)(xuxx(3x2c3 + 2xc2 + c1 + u′0(x))

+ xu(uu(3x2c3 + 2xc2 + c1 + u′0(x)) + ux) + x2
x)5

)
= 0 . (40)

From (39) we obtain

c2 = −3xc3 −
1

2
u′′0(x) , (41)

whereas from (28) and (41) we obtain

c0 =
1

2
(2u− 2xc1 + 4x3c3 + x2u′′0(x)− 2u0(x)) . (42)

By replacing both (41) and (42) into (40) we finally get a single equation(
−3x2c3xu(uu + xx) + xu

(
(u′0(x)− xu′′0(x))(uu + xx) + ux

)
+ c1xu(uu + xx) + x2

x

)
×
(
uxuρ(x)

(
−3x2c3xu(uu + xx) + xu

(
(u′0(x)− xu′′0(x))(uu + xx) + ux

)
+ c1xu(uu + xx) + x2

x

)
5

− k(6c3 + u′′′0 (x))(uxxu − uuxx)3(
xu(−x(3xc3 + u′′0(x)) + c1 + u′0(x)) + xx

))
= 0 (43)

in c1 and c3. Hence, the family of solutions L to the free boundary values varia-
tional problem given by the free-sliding Bernoulli beam, passing through a given
point of Γ, is one-dimensional. Notice that in the first-order example discussed in
Section 1.2, such a family is discrete (consists of a single item). In both cases, be-
ing Γ one-dimensional, the family of all solutions has one dimension more. Finally,
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observe that the dependency of the natural boundary conditions on the “shape” of

Γ is captured by the entries of the Hessian
∂(u, x)

∂(u, x)
scattered throughout formula

(43).

3.2 Concluding remarks and perspectives
In the case of the length functional, we have seen that the actual number of solutions
to the free boundary values variational problem rendered in Figure 2 is further
reduced by the shape of the domain E. In that case, it is easy to understand such
a reduction because the natural boundary conditions possess an evident geometric
interpretation: the solution L must form a right angle with ∂E. In the case of a
free-sliding Bernoulli beam, the role of the shape of E in determining the actual
family of solutions is more complicated, since higher derivative and more involved
formulas (cf. (43)) come into play.

In this paper we have carried out a local analysis, i.e., we have looked at a
portion of ∂E, and we have computed the natural boundary conditions therein.
Global aspects of the problem, namely the relationship between the family of global
solutions and the geometry of the whole E, cannot be addressed without exploiting
the corresponding jet-theoretic framework. This fascinating line of research will be
pursued in a future work.
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[4] I. M. Gel’fand and L. A. Dikĭı: The calculus of jets and nonlinear Hamiltonian systems.
Funkcional. Anal. i Priložen. 12 (2) (1978) 8–23. ISSN 0374-1990

[5] M. Giaquinta, S. Hildebrandt: Calculus of variations. I. Springer-Verlag, Berlin (1996).
ISBN 3-540-50625-X. The Lagrangian formalism
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