
Communications in Mathematics 24 (2016) 173–193
Copyright c© 2016 The University of Ostrava

173

The calculus of variations on jet bundles as a universal
approach for a variational formulation of fundamental
physical theories

Jana Musilová, Stanislav Hronek

Abstract. As widely accepted, justified by the historical developments of
physics, the background for standard formulation of postulates of physical
theories leading to equations of motion, or even the form of equations of
motion themselves, come from empirical experience. Equations of motion
are then a starting point for obtaining specific conservation laws, as, for
example, the well-known conservation laws of momenta and mechanical en-
ergy in mechanics. On the other hand, there are numerous examples of
physical laws or equations of motion which can be obtained from a certain
variational principle as Euler-Lagrange equations and their solutions, mean-
ing that the “true trajectories” of the physical systems represent stationary
points of the corresponding functionals.

It turns out that equations of motion in most of the fundamental theories
of physics (as e.g. classical mechanics, mechanics of continuous media or
fluids, electrodynamics, quantum mechanics, string theory, etc.), are Euler-
Lagrange equations of an appropriately formulated variational principle.
There are several well established geometrical theories providing a general
description of variational problems of different kinds. One of the most
universal and comprehensive is the calculus of variations on fibred manifolds
and their jet prolongations. Among others, it includes a complete general
solution of the so-called strong inverse variational problem allowing one not
only to decide whether a concrete equation of motion can be obtained from
a variational principle, but also to construct a corresponding variational
functional. Moreover, conservation laws can be derived from symmetries of
the Lagrangian defining this functional, or directly from symmetries of the
equations.

In this paper we apply the variational theory on jet bundles to tackle
some fundamental problems of physics, namely the questions on existence of
a Lagrangian and the problem of conservation laws. The aim is to demon-
strate that the methods are universal, and easily applicable to distinct phys-
ical disciplines: from classical mechanics, through special relativity, waves,
classical electrodynamics, to quantum mechanics.
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1 Introduction
It is obvious and widely accepted in physics that experiments serve as the starting
point for formulation of hypotheses or postulates lying in the foundations of phys-
ical theories. The postulates either lead to equations of motion of corresponding
physical systems, or they represent the equations of motion themselves.

The former of the two mentioned situations can be demonstrated e.g. on elec-
trodynamics: the empirical physical laws lead to Maxwell equations, i.e. equations
of motion in electrodynamics representing the differential form of the empirical
integral laws:

• Coulomb law for the electrostatic interaction of particles with charges q1 and
q2 separated by a vector ~r12 = ~r1 − ~r2:

−~F12 = ~F21 =
q1q2

4πε

~r12

r3
12

⇒
∫
S

~E d~S =
Q

ε
⇒ div ~E =

%

ε
,

where ~E(~r) or ~E(t, ~r) is the intensity of the electrostatic, or, electric field in
general, at the point ~r, S is a closed surface surrounding the charge Q, ε is
the electric permeability.

• The law of continuity of the magnetic flow which states that here exist no
magnetic monopoles: ∫

S

~B d~S = 0 ⇒ div ~B = 0,

where ~B is the magnetic induction.

• Faraday law of electromagnetic induction stating that the variable magnetic
flow induces between the ends of a closed loop the voltage

Uind = − d

dt

∫
S

~B d~S ⇒ rot ~E = −∂
~B

∂t
.

• Ampère law concerning the interaction of static magnetic fields with elec-
tric currents generalized for variable magnetic fields and combined with the
continuity equation representing the conservation law for the electric charge:

d~F = I d~̀× ~B ⇒
∫
C

~B d~̀= µI, rot ~H =
∂ ~D

∂t
+~j,

where d~F is the elementary force acting on the length element ~d` of an electric
conductor with total current I placed in a magnetic field, ~H is the magnetic
intensity, ~j is the current density and µ the magnetic permeability. (In a
general situation I represents the total current, i.e. the free current and the
magnetization current together.)
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Examples when equations of motion themselves are formulated as postulates, are
e.g. the following:

• In Newtonian mechanics the second Newton law for a mass particle (one of
the postulates of the theory) represents the equation of motion of a particle
with mass m,

d~p

dt
= ~F ,

where ~p = m~v is the momentum of the particle, ~v is its velocity and ~F is the
total force acting on the particle.

• Some approaches of quantum mechanics present the Schrödinger equation
as a postulate,

i~
∂|ψ〉
∂t

= Ĥ|ψ〉.

(This equation describes the time development of the state vector |ψ〉 and
thus it is the equation of motion; recall that Ĥ is the Hamiltonian operator
— operator of the total energy of the quantum mechanical system).

On the other hand, it is known that in numerous cases important physical laws
and equations of motion are derived from an appropriately formulated variational
principle. In fact, this was a fascinating discovery which initiated rapid devel-
opments of the calculus of variations and its extremely fruitful interference with
physics. As a well-known example we can mention the “geometrical” rules for light
reflection (law of reflection) and transmission (Snell law) of light on the boundary
of two optical media. These laws result from the Fermat principle. Another typi-
cal example is Lagrangian mechanics concerning mechanical systems with defined
potential energy (recall that this does not concern systems of particles moving in
non-conservative fields).

In physics there are various, more or less empirical approaches to find out
whether concrete equations of motion are variational, i.e. if they can be obtained
from a certain variational principle, as well as various approaches how to obtain
conservation laws important from the point of view of physics. However, remark-
ably, there are mathematical tools which allow one to treat these questions in a
unified and systematic way, at any degree of generality (mechanics or field theory,
first order or higher order problems). Among them, one of the most powerful is the
calculus of variations on fibred manifolds. The aim of this paper is to stress that
(and how) it provides a unified, universal and general setting for solving problems
concerning variational properties of different physical theories. In particular, we
shall show how

• using results on the solution of the so-called inverse problem of the calculus
of variations one can examine whether a given equation of motion or a set
of equations of motion comes from a variational principle, and determine a
Lagrangian;



176 Jana Musilová, Stanislav Hronek

• one can find Noether symmetries of a Lagrangian defining a variational prin-
ciple, i.e. transformations leaving the Lagrangian invariant, and obtain the
corresponding quantities conserved along solutions of equations of motion, so
called Noetherian currents.

We want to demonstrate that the method is universal and easily applicable to
fundamental equations of distinct physical disciplines: from classical mechanics,
through special relativity, waves, classical electrodynamics, to quantum mechanics.

The paper is organized as follows: First, we briefly summarize basic results
of the calculus of variations in fibred manifolds required for solving the questions
above (sections 2 and 3), and then we apply them to equations of motion of selected
fundamental physical theories (section 4) to study variationality and determine the
corresponding conservation laws. We asume that the reader is familiar with basic
definitions and theorems concerning the geometry of fibred manifolds as well as with
fundamentals of the calculus of variations. For more information and systematic
study we refer to the books [2], [3], [4], [6], [8], [13], [14].

2 Basic concepts and notations
As underlying structures we consider fibred manifolds and their jet prolongations.
Geometrical concepts and notation we use are standard. We briefly summarize only
those of them we will use in the following text (without proofs of their properties).
Einstein summation is used throughout the paper.

2.1 Fibred manifolds and fibred charts
Let π : Y → X, dimY = m + n, dimX = n, be a fibred manifold, πr : JrY →
X its r-th jet prolongation, r = 0, 1, 2, . . ., where J0Y = Y . For n = 1 the
corresponding theory is called mechanics, for n > 1 field theory. Let V ⊂ Y be an
open set. Then (V, ψ), where ψ = (t, qσ), respectively, ψ = (xi, yσ), are coordinate
functions, 1 ≤ i ≤ n, 1 ≤ σ ≤ m, is a fibred chart on Y and (U, ϕ), U = π(V ),
ϕ = (t), respectively, ϕ = (xi), 1 ≤ i ≤ n, is the associated chart on X. (V1, ψ1),
ψ1 = (t, qσ, q̇σ), respectively, ψ1 = (xi, yσ, yσi ), V1 = π−1

1,0(V ), is the associated
fibred chart on J1Y . Similarly, (V2, ψ2), ψ2 = (t, qσ, qσ1 , q

σ
2 ) = (t, qσ, q̇σ, q̈σ), or

ψ2 = (xi, yσ, yσi , y
σ
ij), V2 = π−1

2,0(V ), is the associated fibred chart on J2Y . Charts
for higher order prolongations of the underlying fibred manifold are defined quite
analogously.

2.2 Sections and vector fields
A mapping γ : U → Y , π ◦ γ = idU , denotes a section of the projection π defined
on an open subset U ⊂ X, γ(t) = (t, qσγ(t)), or γ(xi) = (xi, yσγ(xi)); Jrγ,
r = 1, 2, . . ., are prolongations of γ. The set of all sections defined on U is denoted
ΓU (π); ΓΩ(π), where Ω ⊂ X is a compact connected n-dimensional submanifold of
X with boundary, denotes a set of all sections defined on open sets containing Ω.

The standard concepts of projectable and vertical vector fields (which are
adapted to the fibred structure) are used: A vector field ξ on JrY , r = 0, 1, 2, . . .,
is πr-projectable if there exists a vector field ξ0 on X (its πr-projection) such that
Tπr(ξ) = ξ0 ◦ π. A vector field ξ on JrY is πr,s-projectable, 0 ≤ s < r, if there
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exists a vector field ξr,s on JsY (its πr,s-projection) such that Tπr,s(ξ) = ξr,s ◦πr,s.
A vector field ξ on JrY is πr-vertical, respectively, πr,s-vertical if its πr-projection,
respectively, πr,s-projection is the zero vector field.

For π-projectable vector fields on Y we can define their jet prolongations for
r = 1, 2, . . .. In fibred coordinates it holds

ξ = ξ0(t)
∂

∂t
+ Ξσ(t, qν)

∂

∂qσ
, (1)

Jrξ = ξ0(t)
∂

∂t
+

r∑
j=0

Ξσj (t, qν , . . . , qνj )
∂

∂qσj
, Ξσj =

dΞσj−1

dt
− qσj

dξ0

dt
,

1 ≤ j ≤ r, for mechanics and

ξ = ξj(xi)
∂

∂xj
+ Ξσ(xi, yν)

∂

∂yσ
,

Jrξ = ξj(xi)
∂

∂xj
+

r∑
s=0

Ξσj1...js(x
i, yσ, . . . , yσi1...is)

∂

∂yσj1...js
, (2)

Ξσj1...js = djsΞ
σ
j1...js−1

− yσj1...js−1k djsξ
k, 0 ≤ j1, . . . , js ≤ n, 1 ≤ s ≤ r,

for field theory. The vector field ξ0 = ξ0(t) ∂∂t or ξ0 = ξj(xi) ∂
∂xj is the π-projection

of ξ and simultaneously πr-projection of Jrξ, r = 1, 2, . . ., and d
dt and di = d

dxi

are total derivative operators with respect to coordinates on the base X.

2.3 Horizontal and contact forms
Differential forms on fibred manifolds and their jet prolongations, adapted to the
fibred structure, are well-known. π-horizontal forms on Y , or πr-horizontal forms
on JrY , r = 1, 2, . . ., are defined by the condition iξη = 0, where iξ is the con-
traction by an arbitrary vertical vector field. The chart expressions of horizontal
forms on JrY are

η = A(t, qσ, . . . , qσr ) dt, or η = Ai1...iq (x
i, yσ, yσj1...jr ) dxi1 ∧ . . . ∧ dxiq ,

1 ≤ i1, . . . ir ≤ n, 1 ≤ q ≤ n, for mechanics or field theory, respectively. We denote

ω0 = dt, respectively, ω0 = dx1 ∧ . . . ∧ dxn

and
ωi = i ∂

∂xi
ω0, ωij = i ∂

∂xj
i ∂

∂xi
ω0, . . .

A form η on JrY is πr,s-horizontal, 0 ≤ s < r, if iξη = 0 for every πr,s-vertical
vector field on JrY .

Contact forms on JrY are defined by the condition Jrγ∗ω = 0 for every section
γ of π. Contact 1-forms on prolongations of (Y, π, X) are used to define bases
adapted to the contact structure:

(dt, ωσ, . . . , ωσr−1, dqσr ), ωσ = dqσ − qσ1 dt, ωσj = dqσj − qσj+1 dt,
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1 ≤ j ≤ r − 1, 1 ≤ σ ≤ m, for mechanics, and

(dxi, ωσ, . . . , ωσj1...jr−1
, dyσj1...jr ),

ωσ = dyσ − yσj dxj , ωσj1...js = dyσj1...js − y
σ
j1...jsi dxi,

1 ≤ j1, . . . , jr ≤ n, 1 ≤ s ≤ r − 1, 1 ≤ σ ≤ m, for field theory.
Every q-form is locally generated by forms of the adapted basis by means of the

exterior product. A q-form on JrY is called k-contact, 1 ≤ k ≤ q, if its contraction
by every πr-vertical vector field is a (k−1)-contact (q−1)-form. A horizontal form
is considered as 0-contact.

Let ω be a q-form on JrY . Then there exists a unique decomposition

π∗r+1,rω =

q∑
k=0

pkω

where hω = p0ω is the horizontal component of ω, pkω, 1 ≤ k ≤ q, is the k-contact
component of ω. Mappings h : ω → hω and p : ω → p1ω + · · · + pqω are
the horizontalization and contactization, respectively. These mappings are linear.
Moreover it holds h(ω ∧ %) = hω ∧ h%.

2.4 Lepage forms and equivalents
Lepage forms are very important objects in the geometry of the calculus of vari-
ations. A general definition of Lepage form and its properties are introduced and
discussed in [11] in terms of the finite order variational sequence with the use of
the interior Euler operator (see also [1] and [5]). In this section we recall Lepage
forms only to the extent needed in this paper.

A (n+ k)-form % on JsY , k ≥ 0, is called Lepage form if

pk+1 d% = I(d%), where I(η) =
1

k
ωσ ∧

s∑
|J|=0

(−1)|J|dJ

(
i ∂
∂yσ
J

pkη

)
(3)

defines the action of the interior Euler operator on a (n + k)-form η on JsY ,
dJ = (dj1 . . . djl), |J | = l. For our purposes Lepage n-forms and Lepage (n + 1)-
-forms will be relevant.

For Lepage n-forms we can use an equivalent definition as follows: A n-form %
on JsY is Lepage if p1 d% is πs+1,0-horizontal, i.e. p1 d% = Eσ ω

σ ∧ ω0 where Eσ
are functions on Js+1Y . Or equivalently h(iξ d%) = 0 for every πs,0-vertical vector
field ξ. The chart expression of a Lepage n-form on JsY for mechanics is

π∗2s,s% = f0 dt+

s∑
j=0

[
s−j∑
l=0

(−1)l
dl

dtl

(
∂f0

∂qσl+j+1

)]
ωσj , (4)

where ωσ0 = ωσ and f0 is a function on Js+1Y affine in variables qνs+1, 1 ≤ σ ≤ m.
For field theory it holds

π∗2s,s% = f0 ω0

+

s∑
q=0

[
s−q∑
p=0

(−1)p dl1 dl2 . . . dlp

(
∂f0

∂yσj1...jql1...lpi

)]
ωσj1...jq ∧ ωi + p1 dν + µ, (5)
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where f0 is again a function on Js+1Y affine in variables yσj1...js+1
, ν is a (n − 1)-

form with zero horizontal component, i.e. at least 1-contact form and µ is a n-
form with zero horizontal and 1-contact components, i.e. at least 2-contact form.
An analogous decomposition as for Lepage n-forms holds true for general Lepage
(n + k)-forms, k ≥ 0, i.e. π∗s+1,s% = Θ% + pk+1 dν + µ where ν is at least (k + 1)-
contact form and µ is at least (k + 2)-contact form. The chart expression of the
form Θ% can be obtained by a direct application of the interior Euler operator.

For applications, especially in physics, so-called Lepage equivalents of πr-hori-
zontal n-forms and of 1-contact πr,0-horizontal (n + 1)-forms on JrY , are of im-
portance. For a πr-horizontal n-form λ = Lω0 on JrY (r-th order Lagrangian)
we define its Lepage equivalent as a Lepage n-form %λ such that h%λ = λ up to a
possible projection. Such a form is defined on J2r−1Y in general, because f0 = L,
i.e. f0 is a function on JrY . We obtain its chart expression from (4) for mechanics
and from (5) for field theory writing L instead of f0 and setting s = r − 1. In me-
chanics the Lepage equivalent of λ (called the Cartan form) is unique and global,
while in field theory the decomposition %λ = (Θλ + p1 dν) + µ is neither unique
nor global in general, because the decomposition of the term (Θλ+p1 dν) to a sum
of Θλ and p1 dν depends on the choice of coordinates. (The form Θλ is called the
Poincaré-Cartan form.)

For a 1-contact and πr,0-horizontal (n + 1)-form E = Eσ ω
σ ∧ ω0 on JrY (r-

th order dynamical form) we define its Lepage equivalent as a Lepage form α
such that p1α = E. From the point of view of physics dynamical forms affine in
”highest”variables qσr (in mechanics) and yσj1...jr (in field theory) are highly relevant.
They are directly related to equations of motion (see the following sections).

3 Calculus of variations on fibred manifolds
In this section we give a very short summary of some basic concepts and results of
the calculus of variations on fibred manifolds and their prolongations, again only to
the extent needed for our considerations concerning variational physical theories.

3.1 Basic structures
A variational problem of order r on a fibred manifold (Y, π, X) is defined by a
variational integral

S : ΓΩ(π) 3 γ −→ S[γ] =

∫
Ω

J1γ∗λ ∈ R,

where the Lagrangian λ = Lω0 is a horizontal n-form on JrY . The pair (π, λ) is
called Lagrange structure. Let ξ be a π-projectable vector field (a variation) on Y
defined on an open set V , such that Ω ⊂ π(V ). The mapping

δS : ΓΩ(π) 3 γ −→ δS[γ] =

∫
Ω

Jrγ∗∂ξλ ∈ R

is the variational derivative of S, ∂ξ denotes the Lie derivative. The definition
of the variational derivative leads to one of the most important formulas in the
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calculus of variations, the well-known first variation formula, in its integral form
(two equivalent formulations) and the infinitesimal form, as follows:∫

Ω

Jrγ∗∂Jrξλ =

∫
Ω

J2r−1γ∗ iJ2r−1ξ d%+

∫
∂Ω

J2r−1γ∗ iJ2r−1ξ%, (6)

∫
Ω

Jrγ∗∂Jrξλ =

∫
Ω

J2rγ∗ iJ2rξ Eλ +

∫
∂Ω

J2r−1γ∗ iJ2r−1ξ%, (7)

π∗2r,r∂Jrξλ = h iJ2r−1ξ d%+ hdiJ2r−1ξ%, (8)

where % is an arbitrary Lepage equivalent of the Lagrangian and

Eλ =

[
r∑
l=1

(−1)l dj1 . . . djl

(
∂L

∂yσj1...jl

)]
ωσ ∧ ω0, 1 ≤ j1, . . . , jl ≤ n, (9)

is the Euler-Lagrange form of the r-th order Lagrangian λ. In contrast to the
Lepage equivalent, the Euler–Lagrange form is always unique, even in field theory.
Notice that it is a dynamical form defined in general on J2rY , affine in variables
yσj1...j2r . It is worth noting that the first variation formula plays a key role not only
for obtaining equations of motion of a given physical system with a Lagrangian λ
but also for finding conservation laws.

A section γ ∈ ΓΩ(π) defined on an open set U ⊂ X is an extremal, i.e. a sta-
tionary point of the r-th order Lagrange structure (π, λ), if δS[γ] = 0 for every
π-vertical vector field ξ on Y and every Ω ⊂ U . Equations for extremals (for a
physical system equations of motion) result from this definition and from the first
variation formula and take the following form:

J2r−1γ∗ iJ2r−1ξ d% = 0 or equivalently J2rγ∗ iJ2rξ Eλ = 0, (10)

for every π-projectable vector field ξ on Y (see e.g. [8]).
Recall that the Euler-Lagrange form of a r-th order Lagrangian λ is identically

zero iff λ0 = hdη where η is an arbitrary (n − 1)-form on Jr−1Y (see [7] or [11]).
Such Lagrangians are called trivial or null Lagrangians. Thus, coordinate expres-
sions of trivial Lagrangians are (djf

j)ω0 in field theory, resp. df
dt dt in mechanics,

where f j , resp. f are local functions on Jr−1Y .

3.2 The Inverse Problem of the Calculus of Variations
Equations of motion of a physical system with m degrees of freedom usually are a
system ofm second order differential equations Eσ◦J2γ = 0 (ordinary in mechanics,
partial in field theories), where Eσ, 1 ≤ σ ≤ m, are functions on J2Y affine
in “accelerations”, i.e. in the second order coordinates. The inverse problem of
calculus of variations is then based on the question whether these equations can
be derived from an appropriate variational functional S, i.e. whether there exists a
lagrangian λ (usually of the first order) such that the dynamical form E = Eσ ω

σ ∧
ω0 is its Euler-Lagrange form. This question can be answered on a completely
general level, for dynamical forms on an arbitrary prolongation of the underlying
fibred manifold. A universal and elegant approach to this problem is the use of
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properties of the finite order variational sequence see e.g. [6], [5], in details see [11].
Let us summarize basic definitions and results.

A dynamical form E on JsY is locally variational if to every point of its domain
there exists an open neighborhood W and a Lagrangian λ such that E = Eλ on W .
(Meantime let us leave ahead the question of the order of such a Lagrangian.) Let
us formulate the main theorem solving the inverse problem. It is the immediate
consequence of properties of variational sequences.

Theorem 1. A dynamical form E = Eσ ω
σ ∧ ω0, 1 ≤ σ ≤ m, on JsY is locally

variational if and only if there exists its closed Lepage equivalent.

The property formulated in Theorem 1 is the most practical one of the three
equivalent conditions for a general inverse variational problem proved in [11]. Note
that if a globally defined dynamical form E in mechanics is (at least locally) vari-
ational then its closed Lepage equivalent is unique and global.

Expressing Theorem 1 in coordinates we obtain “practical” formulas for ver-
ifying variationality of a dynamical form, so called Helmholtz conditions. They
are given in the next theorem which simultaneously presents a formula for a corre-
sponding local Lagrangian (of the same order as the equations).

Theorem 2. Let E = Eσ ω
σ ∧ ω0 be a dynamical form on JsY .

• E is (locally) variational if and only if to every point z of its domain there
exists a neighborhood and a chart (V, ψ) on Y such that this neighborhood
is a subset of π−1

s,0(V ) and the following relations hold on W :

∂Eσ
∂qνl

− (−1)l
∂Eν
∂qσl

−
s∑

j=l+1

(−1)j
(
j

l

)
dj−l

dtj−l

(
∂Eν
∂qσj

)
= 0, (11)

for mechanics and

∂Eσ
∂yνp1...pl

− (−1)l
∂Eν

∂yσp1...pl

−
s∑

j=l+1

(−1)j
(
j

l

)
dpl+1

. . . dpj
∂Eν

∂yσp1...plpl+1...pj

= 0,

(12)
for field theory, where 0 ≤ l ≤ s in both cases.

• Let E be a locally variational dynamical form defined on an open subset W
of JsY and let a mapping χ : [0, 1]×W → W be defined as follows:

χ
(
u, (xi, yµ, yµp1

, . . . yµp1...ps)
)

=
(
xi, uyµ, uyµp1

, . . . uyµp1...ps

)
. (13)

Then E is the Euler-Lagrange form of the s-th order Lagrangian

Λ = yσ

 1∫
0

(Eσ ◦ χ) du

ω0. (14)

For mechanics the formula is analogous.

• Let E be a locally variational dynamical form on JsY in mechanics. Then
locally there exists a Lagrangian of the (minimal possible) order s

2 for even
s, or of the order s+1

2 for odd s (see [8]).
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3.3 Symmetries and conservation laws
By a symmetry of a Lagrangian λ we mean a π-projectable vector field ξ on Y
such that the local isomorphisms of the one-parameter group of J1ξ are invari-
ance transformations of λ. This leads to the Noether equation and corresponding
consequences resulting from the first variation formula (6)

∂J1ξλ = 0, (15)

0 =

∫
Ω

J2r−1γ∗iJ2r−1ξ d%+

∫
Ω

dJ2r−1γ∗iJ2r−1ξ%. (16)

Because of the fact that the first term is zero along extremals, we obtain a conser-
vation law corresponding to Noether symmetry ξ,∫

Ω

J2r−1γ∗ diJ2r−1ξ% =

∫
Ω

dJ2r−1γ∗iJ2r−1ξ% = 0 =⇒

Φ(ξ) = hiJ2r−1ξ% is closed along extremals. (17)

The quantity Φ(ξ) is the Noether current corresponding to the symmetry ξ. Chart
expressions of Noether equation (15) and Noether current (17) for an r-th order
Lagrangian λ = Ldt are then

iJ1ξ dL+ L
dξi

dxi
= 0, (18)

Φ(ξ) =

[
Lξi +

r−1∑
q=0

(
r−q−1∑
p=0

(−1)pdl1 . . . dlp

(
∂L

∂yσj1...jql1...lpi

)

× (Ξσj1...jq − y
σ
j1...jqjξ

j)

)]
ωi (19)

for field theory and

iJrξ dL+ L
dξ0

dt
= 0, (20)

Φ(ξ) = Lξ0 +

r−1∑
j=0

r−j−1∑
l=0

(−1)l
dl

dtl

(
∂L

∂qσj+l+1

)
(Ξσj − qσj+1ξ

0) (21)

for mechanics. Note that the conservation law (17) now reads: (the function) Φ(ξ)
is constant along extremals.

4 Variational theories in physics
In this section we apply the variational theory on jet bundles to tackle some funda-
mental problems of physics, namely the questions on existence of a Lagrangian and
the problem of conservation laws. The aim is to demonstrate that the methods are
universal, and easily applicable to distinct physical disciplines. Here we shall deal
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with classical mechanics and special relativity, waves in continuous media, quantum
mechanics and classical electrodynamics. In classical mechanics we shall provide
the form of the so-called variational forces leading to variational equations of mo-
tion. We shall also study the Noether symmetries and corresponding conservation
laws for variational equations of motion in the individual cases.

4.1 Mechanics and special relativity
Equations of motion of a mechanical system with m degrees of freedom in classical
mechanics are second order ordinary differential equations Eσ◦J2γ = 0, 1 ≤ σ ≤ m,
where Eσ are functions on J2Y affine in accelerations qσ2 . From now on we denote
qσ1 = q̇σ and qσ2 = q̈σ, as usual in physics. We have Eσ = fσ − gσν q̈ν where the
functions fσ, gσν are defined on an open subset of J1Y , and we can interprete
the Eσ as components of a dynamical form E = Eσω

σ ∧ dt. In general E is not
variational. Helmholtz conditions (11) for a second order variational dynamical
form are

∂Eσ
∂q̈ν

− ∂Eν
∂q̈σ

= 0,

∂Eσ
∂q̇ν

+
∂Eν
∂q̇σ

− d

dt

(
∂Eσ
∂q̈ν

+
∂Eν
∂q̈σ

)
= 0, (22)

∂Eσ
∂qν

− ∂Eν
∂qσ

− 1

2

d

dt

(
∂Eσ
∂q̇ν

− ∂Eν
∂q̇σ

)
= 0.

In variational mechanics, usual equations of motion take the form

−gσν q̈ν + Γσνλq̇
ν q̇λ = 0, and −mgσν q̈ν −

∂U

∂qσ
= 0,

where g = (gσν), is a Riemannian metric (a regular symmetric matrix of functions
of coordinates qρ), Γ = (Γσνλ), 1 ≤ σ, ν, λ ≤ m, are Christoffel symbols of g and
U is a function of time and coordinates (a potential). The first of the equations, as
well as the second ones with U = 0, are equations of geodesics; the second ones, as
the consequence of constant metric (Γ = 0), have the form of Newton equations.

There is a question under what conditions a general dynamical form

E = (−gσν q̈ν + fσ)ωσ ∧ dt

is variational. In view of the above examples, assume that the functions gσν are
locally defined on Y and fσ are local functions on J1Y . The first set of Helmholtz
conditions (22) leads immediately to symmetry relations gσν = gνσ. Applying the
second and the third set of the conditions we obtain

∂fσ
∂q̇ν

+
∂fν
∂q̇σ

+ 2

(
∂gσν
∂t

+
∂gσν
∂qλ

q̇λ
)

= 0,

−
(
∂gσλ
∂qν

− ∂gνλ
∂qσ

)
q̈λ +

(
∂fσ
∂qν
− ∂fν
∂qσ

)
− 1

2

d′

dt

(
∂fσ
∂q̇ν
− ∂fν
∂q̇σ

)
− 1

2

(
∂2fσ
∂q̇λ∂q̇ν

− ∂2fν
∂q̇λ∂q̇σ

)
q̈λ = 0,
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where d′

dt = ∂
∂t+q̇

µ ∂
∂qµ . Thus, the functions fσ are of the form Γσνλq̇

ν q̇λ+aσν q̇
ν+bσ,

where Γσνλ, aσν , bσ are functions on Y and Γσνλ = Γσλν . Rewriting Helmholtz
conditions for this case we obtain

Γσνλ =
1

2

(
∂gνλ
∂qσ

− ∂gσλ
∂qν

− ∂gσν
∂qλ

)
, aσν + aνσ = 2

∂gσν
∂t

.

If in addition, (gσν) is independent of time, as usual, we can see that functions aσν
are antisymmetric. The remaining conditions

∂fσ
∂qν
− ∂fν
∂qσ

=
1

2

d′

dt

(
∂fσ
∂q̇ν
− ∂fν
∂q̇σ

)
give

aσν =

(
∂φν
∂qσ
− ∂φσ
∂qν

)
, bσ = −

(
∂φσ
∂t

+
∂ϕ

∂qσ

)
,

where φσ, 1 ≤ σ ≤ m, and ϕ are arbitrary functions on Y . Notice that addition
of a trivial Lagrangian df(t, qµ)

dt dt can affect only the functions Φσ, where Φσ =
aσν q̇

ν + bσ:

Φσ −→ Φσ +
∂f

∂qν
, ϕ −→ ϕ− ∂f

∂t
, (23)

This represents a gauge transformation. We conclude that variational forces in
mechanics are of the form

Fσ = Γσνλq̇ν q̇
λ + q̇ν

(
∂φν
∂qσ
− ∂φσ
∂qν

)
−
(
∂φσ
∂t

+
∂ϕ

∂qσ

)
. (24)

Because of the fact that metric (gσν) depends only on coordinates we can construct
directly first order Lagrangians corresponding to E. Denote pσ = ∂L

∂q̇σ . Then

∂pσ
∂q̇ν

=
∂2L

∂q̇σ∂q̇ν
= gσν .

The forms ησ = gσν dq̇ν and ω = gσν q̇
ν dq̇σ are closed along every fiber over a

fixed point in Y , ησ = d(pσ) = d
(
∂L
∂q̇σ

)
and ω = d (−L+ pσ q̇

σ) . Consider the

parametrization of the line connecting points (t, qµ, 0) and (t, qµ, q̇µ) in the fibre
π−1

1,0({(t, qµ)}) ⊂ J1Y over a point (t, qµ),

χ : [0, 1]× J1Y 3 (u, (t, qµ, q̇µ)) → χ(u, (t, qµ, q̇µ)) = (t, qµ, uq̇µ) ∈ J1Y.

We can easily obtain functions pσ and H = −L + pσ q̇
σ (momenta and Hamilton

function) integrating the forms ησ and ω along this line:

pσ =

1∫
0

(gσν ◦ χ)χ∗ dq̇ν = q̇ν
1∫

0

(gσν ◦ χ) du+ φσ(t, qµ) = gσν q̇
ν + φσ(t, qµ),

H =

1∫
0

[(gσν q̇
ν) ◦ χ]χ∗ dq̇σ = q̇σ q̇ν

1∫
0

(gσν ◦ χ)udu+ ϕ(t, qµ)

=
1

2
gσν q̇

σ q̇ν + ϕ(t, qµ),
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where φσ(t, qµ) and ϕ(t, qµ), 1 ≤ σ ≤ m, are arbitrary functions of time and
coordinates (integration “constants”). Finally L = pσ q̇

σ −H,

L =
1

2
gσν q̇

σ q̇ν + q̇σφσ − ϕ. (25)

Form = 3, Euclidean metrics and cartesian coordinates we can write the variational
forces Φσ above in a vector form (denoting the vector by ~F )

~F = ~v × rot ~φ− ∂~φ

∂t
− gradϕ.

Denoting ~φ = e ~A, rot ~A = ~B, ϕ = eU and ~E = −∂ ~A∂t − gradU we can write

~F = e~v × ~B + e ~E, div ~B = 0, rot ~E = −∂
~B

∂t
. (26)

We have obtained a Lorentz-type force and two of the well-known three-dimensional
Maxwell equations. This is purely a result of variationality!

A special example of variational forces are fictive forces connected with dynam-
ics in non-inertial reference frames:

~F ∗ = −m~a+ (−2m~ω × ~v) + (−m~ε× ~r) + (−m~ω × (~ω × ~r)).

where the vectors ~r and ~v are a position and velocity of a particle with respect to
a non-inertial reference frame moving (with respect to an inertial reference frame)
with translational acceleration ~a and rotating with angular velocity ~ω, angular
acceleration is ε = ~̇ω. Individual terms are ~F ∗T = −m~a, ~F ∗C = −2m~ω × ~v (Coriolis
force), ~F ∗E = −m~ε× ~r (Euler force), and ~F ∗o = −m~ω × (~ω × ~r) (centrifugal force).
Quantities ~a, ~ω and ~ε are only functions of time. We have

~φ = m~ω × ~r, m~ε× ~r =
∂~φ

∂t
, ϕ = m~r~a+

m

2

[
(~r~ω)2 − r2ω2

]
.

In special relativity a Minkowski metric on R4 is considered, and we have a fibred
manifold (R×R4, π, R), where a coordinate on the base X = R is a parameter of
the curves, s, without a physical meaning. As we have seen above, a Lagrangian
“corresponding to a four-dimensional observer” must be of the form (25), hence,
explicitly, it reads

λ̃ = L ds =

(
−1

2

[
(q̇4)2 −

3∑
p=1

(q̇p)2

]
+ q̇σφσ − ψ

)
ds,

where φ(qµ), ψ(qµ), 1 ≤ µ ≤ 4, are functions on the space-time. Moreover, a non-
holonomic constraint condition holds for the four-velocity, (q̇4)2 −

∑3
p=1(q̇p)2 =

m2c2, q4 = ct, where t represents the time variable, c is the speed of light in vacuum.
The thee-dimensional velocity of a particle is ~v = (vl), vl = dql

dt = cq̇l

q̇4 , 1 ≤ l ≤ 3,
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and the constraint condition in the latter coordinates reads q̇4
√

1− v2

c2 = mc. Then

q̇4 = mc√
1− v2

c2

and ds = c dt
q̇4 . Putting ψ = 0 we obtain

λ̃ =

[
−1

2

(
1− v2

c2

)
(q̇4)2 +

(
~v~φ+ cφ4

) q̇4

c

]
ds

This 1-form gives rise to the constrained Lagrangian λ̃C = Ldt = 1
2m

2c2 ds, the
first part Ldt of which is relevant as an unconstrained Lagrangian for a “three-
dimensional observer”,

λ = Ldt =

(
−mc2

√
1− v2

c2
+ ~v~φ− ϕ

)
dt, (27)

where φ4 = −ϕ. (See [12] for getting a deeper understanding of the problem of a
relativistic particle as a non-holonomic constrained system.) The Lagrangian (27)
leads, indeed, to well-known equations of motion of a relativistic particle,

d~p

dt
= ~v × rot ~φ− ∂~φ

∂t
− gradϕ, ~p =

m~v√
1− v2

c2

,

~φ = e
c
~A and ϕ = eU are proportional to vector potential ~A and scalar potential U ,

respectively, e is the charge of the particle.

4.2 Waves
Waves occur as solutions of equations of motion in various physical disciplines,
especially mechanics of continuous media (acoustic waves) and electrodynamics
(light waves). As a basic equation of motion we can consider the wave equation.
It can be obtained from a variational principle as well. Let us consider only one-
dimensional case of wave propagation with a constant phase speed v. The wave
equation for a function y(t, x) of time and x-coordinate reads

∂2y

∂x2
− 1

v2

∂2y

∂t2
= 0.

The concrete expression of the phase speed depends on a concrete physical situa-

tion. For example, for mechanical waves v =
√

E
s , where E is the Young module

and s is the density of a medium, for light waves in vacuum v = c = 1√
µ0ε0

, etc. In
what follows we consider units where the phase speed is 1.

The left-hand side of the wave equation defines a dynamical form E = E1 ω
1∧ω0

on J2Y where (Y, π, X) = (R2 × R, π, R2), i.e. n = 2, m = 1. In a chart (V, ψ),
ψ = (t, x, y) on Y , the associated chart (π(V ), ϕ), ϕ = (t, x) on X and the
associated fibred charts (π−1

1,0(V ), ψ1), ψ1 = (t, x, y, yt, yx), and (π−1
2,0(V ), ψ2),

ψ2 = (t, x, y, yt, yx, ytt, ytx, yxx), on J1Y and J2Y , respectively, we have

E = E1ω
1 ∧ dt ∧ dx = (yxx − ytt)ω1 ∧ dt ∧ dx, ω1 = dy − yt dt− yx dx.
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Helmholtz variationality conditions (12) for a second order dynamical form are in
general

∂Eσ
∂yν

− ∂Eν
∂yσ

+ di
∂Eν
∂yσi

− di dj
∂Eν
∂yσij

= 0,

∂Eσ
∂yνi

+
∂Eν
∂yσi

− 2dj
∂Eν
∂yσij

= 0, (28)

∂Eσ
∂yνij

− ∂Eν
∂yσij

= 0.

For our form E (1 ≤ i, j ≤ 2, σ = ν = 1) they are fulfilled trivially. The Vainberg-
Tonti Lagrangian is Λ = L dt ∧ dx, where

Λ =

y 1∫
0

(uyxx − uytt) du

dt ∧ dx =
y

2
(yxx − ytt)dt ∧ dx.

Subtracting the form 1
2 [dx (yyx)− dt (yyt)] dt∧ dx representing a trivial Lagrangian

we obtain the first order Lagrangian

λ =
1

2

(
y2
t − y2

x

)
dt ∧ dx.

Let us now discuss the problem of Noether symmetries and currents of this La-
grangian. Let ξ = ξt ∂∂t + ξx ∂

∂x + Ξ ∂
∂y . Noether equation (18) then reads

yt
(
dtΞ− yt dtξ

t − yx dtξ
x
)
− yx

(
dxΞ− yt dxξ

t − yx dxξ
x
)

+
1

2

(
y2
t − y2

x

) (
dtξ

t + dxξ
x
)

= 0.

We can immediately see that basic symmetries are generators of time and space
translations, ∂

∂t ,
∂
∂x (the Lagrangian λ does not depend on t and x explicitly). Other

Noether symmetries are the vector fields ∂
∂y and x ∂

∂t + t ∂∂x . The corresponding
Noether currents are (see (19))

Φ

(
∂

∂t

)
= −ytyx dt− 1

2
(y2
t + y2

x) dx,

Φ

(
∂

∂x

)
= −1

2
(y2
t + y2

x) dt− ytyx dx,

Φ

(
∂

∂y

)
= yx dt+ yt dx,

Φ

(
x
∂

∂t
+ t

∂

∂x

)
= −

[
1

2
t
(
y2
t + y2

x

)
+ xytyx

]
dt−

[
1

2
x
(
y2
t + y2

x

)
+ tytyx

]
dx.

These currents are consistent with the fact that the general solution of the wave
equation is of the form y(t, x) = f1(x− vt) + f2(x+ vt), i.e. y(t, x) = f1(x− t) +
f2(x+ t) for the phase speed v = 1 as assumed for simplicity. There f1 and f2 are
arbitrary functions of phases φ1 = x− t and φ2 = x+ t, respectively.
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4.3 Quantum mechanics
Equation of motion for a quantum mechanical system is the Schrödinger equation
i~∂|ψ〉∂t = Ĥ|ψ〉 (see sec. 1). In the coordinate representation a quantum mechanical
state of a microscopic particle (mass m) is described by a complex wave function of
time and position ψ(t, ~r). (Recall that |ψ(t, ~r)|2 is the probability density for find-
ing the particle at the moment t at the point ~r.) For simplicity let us consider only
one-dimensional motion of a free particle, i.e. ψ = ψ(t, x). Then the Schrodinger
equation reads

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
, i~ψt +

~2

2m
ψxx = 0,

using again the standard notation for partial derivatives. The left-hand side of
this equation represents two expressions, for the real and the imaginary part of
the wave function, ψ(t, x) = v(t, x) + iw(t, x). So, the corresponding fibred space
is (R2 × R2, π, R2), coordinates on the base X = R2 are (x1, x2) = (t, x) and
coordinates on fibres R2 are (y1, y2) = (v, w). The left-hand sides of the equations
of motion correspond to two components of the dynamical form

E = E1 ω
1 ∧ ω0 + E2 ω

2 ∧ ω0 =

(
~2

2m
vxx − ~wt

)
dv ∧ dt ∧ dx

+

(
~2

2m
wxx + ~vt

)
dw ∧ dt ∧ dx.

Verification of Helmholtz conditions (12) for n = 2, m = 2 and r = 2 (or (28)) is
trivial, these conditions are fulfilled.

Let us construct the corresponding Vainberg-Tonti Lagrangian using (14). We
have

Λ =

v 1∫
0

u

(
~2

2m
vxx − ~wt

)
du+ w

1∫
0

u

(
~2

2m
wxx + ~vt

)
du

dt ∧ dx

=

[
~2

4m
(vvxx + wwxx)− ~

2
(vwt − wvt)

]
dt ∧ dx.

This is not, of course, a minimal-order Lagrangian. Subtracting the trivial La-
grangian ~2

4mdx(vvx + wwx) from Λ we obtain the first-order Lagrangian

λ =

[
− ~2

4m

(
v2
x + w2

x

)
− ~

2
(vwt − wvt)

]
dt ∧ dx.

Expressing real functions v and w with help of ψ, i.e.

v =
1

2
(ψ + ψ∗) , w = − i

2
(ψ − ψ∗) ,

star denoting the complex conjugate, we finally obtain

λ =

[
− ~2

4m
(ψψ∗) +

i~
4

(ψ∗ψt − ψψ∗t )

]
dt ∧ dx.
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For a particle moving in a potential field V (t, x) the Schrodinger equation is varia-
tional as well and the term − 1

2V ψψ
∗ = − 1

2V (v2 +w2) is added to the Lagrangian.
Let us find basic symmetries of the free particle Lagrangian. Noether equation

reads

− ~2

2m
(vxΞvx + wxΞwx )− ~

2
(vΞwt + wtΞ

v − wΞvt − vtΞw)

−
[
~2

4m

(
v2
x + w2

x

)
+

~
2

(vwt − wvt)
] (

dtξ
t + dxξ

x
)

= 0.

Its basic solutions are, indeed, translation generators ∂
∂t and ∂

∂x . (Note that these
vector fields remain symmetries even for a particle in a potential field V (t, x)
if ∂V

∂t = 0, or ∂V
∂x = 0, respectively.) Noether currents corresponding to these

symmetries are obtained from the general first order expression

Φ (ξ) =

[
Lξi +

∂L

∂yσi

(
Ξσ − yσj ξj

)]
ωi, i = t, x, y1 = v, y2 = w,

and take the form

Φ

(
∂

∂t

)
=

[
− ~2

4m
(v2
x + w2

x)

]
dx−

[
~2

2m
(vxvt + wxwt)

]
dt ,

Φ

(
∂

∂x

)
=

[
~
2

(vwx − wvx)

]
dx−

[
~2

4m
(v2
x + w2

x)− ~
2

(vwt − wvt)
]

dt .

Physical interpretation of these currents can be as follows: Taking into account
that ψ = v + iw we obtain

vwt − wvt =
i

2
(ψψ∗t − ψ∗ψt), vwx − wvx =

i

2
(ψψ∗x − ψ∗ψx) =

m

~
j,

vtwx + wtvx =
1

2
(ψtψ

∗
x − ψ∗tψtx), v2

x + w2
x = ψxψ

∗
x.

The quantity j (vector~j in three-dimensional space) is the density of the probability
flow. The solution of the Schrödinger equation for a free particle is ψ(t, x) =

Ke−
i
~ (Et−kx) where E and k are constants (energy and wave number, respectively).

We can easily make sure that the obtained Noether currents are constant along
these solutions.

4.4 Classical electrodynamics
Equations of motion in electrodynamics are the Maxwell equations

ε0 div ~E = %, div ~B = 0, rot ~E = −∂
~B

∂t
, rot ~B = µ0ε0

∂ ~E

∂t
+ µ0

~j

with usual notation of physical quantities. Second and third of these equations are
of type (26), which was a consequence of the requirement of variationality of forces
in mechanics. We also have relations (notation above equations (26))

~B = rot ~A, ~E = −gradU − ∂ ~A

∂t
, (29)
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where ~A and U in electrodynamics have the meaning of vector and scalar potential,
respectively.

Now we shall show that equations (29) result from a variational principle. For
this purpose we rewrite them into a standard four-dimensional notation. As an
underlying fibred manifold consider (Y, π, X) = (R4 × R4, π, R4), where the base
X is the time-space with the Minkowski metric (signature (1, −1, −1, −1)). In
coordinates, with standard notation t = c−1x0 for time, and cartesian coordi-
nates, we have (x0, x1, x2, x3) ∈ X, i.e. g = gij dxi ⊗ dxj . Coordinates in fi-
bres are co-vectors (A) = (A0, A1, A2, A3), A0 = c−1U . Corresponding vector
(A0, A1, A2, A3) has components Ai = gijAj , i.e. Ai = gijA

j , where (gij) is the
inverse matrix to (gij). The first and last equation in four-dimensional notation
read

−1

c

(
ji +

1

µ0

∂F ij

∂xj

)
= 0, 0 ≤ i, j ≤ 3, (30)

where (j) = (c%, ~j), (F ij) and (Fij), Fij = gikgjlF
kl (and vice versa) are con-

travariant and covariant components of the electromagnetic field tensor,

Fij = Aj,i −Ai,j =
∂Aj
∂xi
− ∂Ai
∂xj

.

Coordinates on (J1Y, π, X) then are (xi, Ai, Ai,j), 0 ≤ i, j ≤ 3. Taking into
account relations between the four-potential (A) and quantities ~E, ~B and U we
can write the covariant tensor (Fij) as follows:

(Fij) =


0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

 .

The contravariant tensor (F ij) differs from (Fij) only by changing the first row to
the first column and vice versa. Equation (30) for i = 0 gives ε0div ~E = %, while

for i = 1, 2, 3 leads to a vector equation rot ~B = ε0µ0
∂ ~E
∂t + µ0

~j, where we put
c−2 = ε0µ0.

We rewrite the set of equations of motion (30) in agreement with our choice
of the underlying fibred space (Y, π, X) and its first and second prolongations.
Components of the corresponding dynamical form are then

Ei = −1

c

[
gikjk +

1

µ0
gijgkl (Al,jk −Aj,lk)

]
.

We obtain Helmholtz conditions of variationality from (28) changing σ → i, 0 ≤
i ≤ 3, and yσ → Ai, yσk → Ai,k and yσkl → Ai,kl. Let us verify the last of them,
verification of the remaining ones is trivial.

∂Ei

∂Ap,rs
= − 1

cµ0
gijgkl(δlpδrjδsk − δjpδlrδks) = − 1

cµ0

(
girgsp − gipgsr

)
,
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analogously ∂Ep

∂Ai,rs
= gprgsi− gpigsr, which equals ∂Ei

∂Ap,rs
because of the symmetry

of starting expressions in the indices r and s.
The mapping (13) is

χ :
(
u, (xi, Aj , Aj,k, Aj,kl)

)
−→

(
xi, uAj , uAj,k, uAj,kl

)
and the Vainberg-Tonti Lagrangian corresponding to our dynamical form is

Λ = Ai

1∫
0

(Ei ◦ χ) du = −1

c
Ai

[
giljl +

1

µ0
gijgkl (Al,jk −Aj,lk)udu

]

= −1

c

[
Aij

i +
1

2µ0
gijgklAi (Al,jk −Aj,lk)

]
.

Taking into account that

dk [Ai (Al,j −Aj,l)] = Ai,k(Al,j −Aj,l) +Ai (Al,jk −Aj,lk)

and Ai,kF
ik = −Ak,iF ik (due to the antisymmetry of the electromagnetic field

tensor) we finally obtain the well-known first order Lagrangian (see e.g. [10]).

λ = Lω0, L = −1

c

(
jiAi +

1

4µ0
FikF

ik

)
(31)

Finally, let us find basic Noether symmetries and the corresponding Noether cur-
rents for the electromagnetic field without charges and currents, i.e. for (ji) =
(c%, ~j) = (0). Noether equation (18) has the form

iJ1ξ

(
∂L

∂xi
dxi +

∂L

∂Ai
dAi +

∂L

∂Ai,l
dAi,l

)
+ Ldiξ

i = 0.

At first sight it is evident that generators of translations ξi = ∂
∂xi are Noether

symmetries, as well as ∂
∂As

. The Noether current corresponding to a symmetry

ξ = ξi ∂
∂xi on the base X (i.e. a linear combination of generators ξi) is

Φ(ξ) = Lξi +
∂L

∂Ar,i
(−Ar,jξj),

where

∂L

∂Ar,i
= − 1

4cµ0

∂

∂Ar,i
(FklF

kl) = − 1

4cµ0

∂

∂Ar,i
gkpglq(Al,k −Ak,l)(Aq,p −Ap,q)

= − 1

2cµ0
(gipgrq − grpgiq)(Aq,p −Aq,p) = − 1

2cµ0
(F ir − F ri) = − 1

cµ0
F ir.

Hence, the Noether current is

Φ(ξ) = − 1

cµ0

[
1

4
FklF

klξi −Ar,jF irξj
]
ωi.
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Components of the generators ξs = ∂
∂xs are ξis = δis and we have

Φ

(
∂

∂xs

)
= − 1

cµ0

(
1

4
FklF

klδis −Ar,sF ir
)
ωi

Components of these forms are components of the well-known energy-momentum
tensor. Their contravariant form (standardly used) is

T ji = − 1

cµ0

(
1

4
gjiFklF

kl − gjsgrlAlsF ir
)
.

This tensor is not symmetric but it can be symmetrized without the influence on the
total momentum. Moreover, the reasoning leading to symmetrization guarantees
the conservation of angular momentum as well.
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