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On the critical determinants of certain star bodies

Werner Georg Nowak

Abstract. In a classic paper [14], W.G. Spohn established the to-date
sharpest estimates from below for the simultaneous Diophantine approx-
imation constants for three and more real numbers. As a by-result of his
method which used Blichfeldt’s Theorem and the calculus of variations, he
derived a bound for the critical determinant of the star body

|x1|
(
|x1|3 + |x2|3 + |x3|3

)
≤ 1 .

In this little note, after a brief exposition of the basics of the geometry
of numbers and its significance for Diophantine approximation, this latter
result is improved and extended to the star body

|x1|
(
|x1|3 +

(
x2
2 + x2

3

)3/2) ≤ 1 .

1 Introduction
In a recent survey paper [12], the author has expressed his regret that at least in
certain parts of the geometry of numbers, research has essentially been terminated
in the second half of the 20th century. In particular, this concerns evaluations,
resp., estimations of critical determinants of star bodies, and applications thereof
to Diophantine approximation. In the author’s opinion, this is even more regret-
table, since only a short time later personal computers became available, along
with a wealth of software for symbolic calculations and for graphics. At least for
the heuristic part of attacking problems in the area, these are very helpful.

Therefore, the present little note is intended to continue the tradition from the
“Golden Age” of the geometry of numbers, making use of symbolic computation
support and graphics tools, and appealing to an earlier result established by the
author around the turn of the millennium [11].
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We indicate briefly how the present little problem is linked to classic work in
the field. Before doing so, we recall the basic concepts of the geometry of numbers:
A lattice in Rs, s ≥ 2, is defined as Γ = AZs , where A is a non-singular real
(s× s)-matrix. Its lattice constant is d(Γ) = |detA|.

A star body K in Rs, is a non-empty o-symmetric closed subset of Rs, with
the property that, for any point p ∈ K, the closed straight line segment joining p
with o is contained in the interior of K, with the possible exception of p itself.

Further, a lattice Γ in Rs is called admissible for a star body K, if o is the only
lattice point of Γ contained in the interior of K.

Finally, the critical determinant ∆(K) of a star body K is the infimum of all
lattice constants d(Γ), where Γ ranges over all lattices which are admissible for K.
See also the monograph by Gruber and Lekkerkerker [5].

2 Simultaneous Diophantine approximation, and its connection
to the geometry of numbers

The classic Hurwitz’s Theorem tells us that, for every irrational number α, there
exist infinitely many reduced fractions p

q , where p ∈ Z, q ∈ Z+, such that∣∣∣∣α− p

q

∣∣∣∣ < 1√
5 q2

, (1)

and that the constant
√

5 is best possible. See, e.g., [9, p. 189 and p. 221].
More generally, for each positive integer s, one can define θs as the supremum

of all values c with the following property: For every α ∈ Rs \ Qs, there exist
infinitely many (p, q) ∈ Zs × Z+ with gcd(p, q) = 1, such that∥∥∥∥α− 1

q
p

∥∥∥∥
∞
<

1

q(cq)1/s
. (2)

However, the determination of θs remains an open problem to date, for any s ≥ 2.
In fact, on the case s = 2 already Charles Hermite (1822–1901) has written:

La recherche des fractions p′/p, p′′/p qui approchent le plus de deux
nombres donnés n’a cessé depuis plus de 50 ans de me préoccuper et aussi de
désespérer.

In 1955, H. Davenport [4] established a result connecting the simultaneous Dio-
phantine approximation problem with the geometry of numbers: For any positive
integer s,

θs = ∆(Ks) , (3)

where
Ks =

{
(x0, . . . , xs) ∈ Rs+1 : |x0| ‖(x1, . . . , xs)‖s∞ ≤ 1

}
.

The case s = 2 is somewhat exceptional, since it admits some finer analysis,
using intrinsic geometric considerations of very special planar domains. Based on
earlier work by Mullender [8], Davenport [3] showed that θ2 = ∆(K2) ≥ 4

√
46 =

2.604 . . . . This was refined later by Mack [6] and the author [10] who obtained

θ2 = ∆(K2) ≥
(
13
8

)2
= 2.64062 . . . . In the opposite direction, Cassels [2] showed

that θ2 = ∆(K2) ≤ 3.5 .
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3 The approach by Blichfeldt and Spohn’s Theorem
For s ≥ 3, however, the sharpest lower bounds for θs are contained in a deep and
(among experts) celebrated result by Spohn [14]. This in turn was based on a
classic theorem of Blichfeldt [1] (see also [5, p. 123]): For any starbody K in Rs

and any measurable set M ⊆ Rs whose difference set

DM = {m1 −m2 : m1,m2 ∈M}

is contained in K, it follows that

∆(K) ≥ vol(M) . (4)

Blichfeldt’s approach was sharpened by Mullender [7] and made perfect by Spohn
[14] who used the calculus of variations to determine, for each star body Ks, the
set Ms+1 ⊂ Rs+1 with maximal volume such that DMs+1 ⊆ Ks. Evaluating this
volume and using (3) and (4), one obtains

θs ≥ s2s+1

∫ 1

0

ws−1

(1 + w)s(1 + ws)
dw .

Numerically,
θ3 ≥ 2.449 . . . , θ4 ≥ 2.559 . . . , θ5 ≥ 2.638 . . . .

For s ≥ 3, these are the sharpest explicit lower bounds for the constants θs known
to date.

4 Another special star body
In his paper [14, p. 887], Spohn makes the remark that his method, based on
Blichfeldt’s Theorem and the calculus of variations, can also be applied to the
three-dimensional star body

K∗ : |x|
(
|x|3 + |y|3 + |z|3

)
≤ 1 , (5)

to obtain the estimate
∆(K∗) ≥ 1.425 . (6)

This improves upon the bound ∆(K∗) ≥
√

2 which follows by inscribing an ellipsoid
into K∗ and using the value ∆(S3) = 1√

2
of the unit ball S3 in R3. The details of

Spohn’s analysis can be found in another one of his works [13].
The aim of this little note is to improve upon the estimate (6). Our main tool

is a result proved some time ago by the author [11]: The critical determinant of
the double paraboloid in R3

P : |x|+ y2 + z2 ≤ 1

equals

∆(P) =
1

2
. (7)
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The idea is to inscribe into K∗ a suitable body of rotation K∗∗, and to fit into K∗∗

a double paraboloid

Pa : |x|+
(y
a

)2
+
(z
a

)2
≤ 1 , (8)

with optimal a > 0.

Theorem 1. Let K∗ be defined as in (5), and let

K∗∗ : |x|
(
|x|3 +

(
y2 + z2

)3/2) ≤ 1 .

Then K∗∗ ⊆ K∗ and 1

∆(K∗) ≥ ∆(K∗∗) ≥ 1.5044 . . .

Proof. The first part is obvious, by the elementary inequality(
|y|3 + |z|3

)2
≤
(
y2 + z2

)3
which is true for all reals y, z. To estimate ∆(K∗∗) from below, we inscribe into
K∗∗ a double paraboloid Pa with maximal a. The critical determinant of the latter
equals a2

2 . Since both are bodies of rotation about the x-axis, it suffices to consider
the intersections of K∗∗, Pa with the (x, y)-plane: Call these planar domains

R∗∗ : |x|
(
|x|3 + |y|3

)
≤ 1 ,

Ra : |x|+
(y
a

)2
≤ 1 .

(9)

See Figure 1 below.
Of course, we may restrict the calculations to the first quadrant. Our aim is to

calculate a maximal so that Ra ⊆ R∗∗, and the point (x0, y0) ∈ R2
+, x0 < 1, which

is common to both ∂Ra and ∂R∗∗. In this point, both curves obviously have the
same slope y′. We conclude that

y30 = −x30 +
1

x0
, y20 = a2(1− x0) , (10)

and, taking derivatives,

3y20y
′ = −3x20 −

1

x20
, 2y0y

′ = −a2 . (11)

Dividing the first eq. of (11) by the second one, we get

3

2
y0 =

1

a2

(
3x20 +

1

x20

)
. (12)

1As will be evident from the proof, the numerical constant in principle can be expressed
explicitly by radicals (nested roots of integers).
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Figure 1: The intersections of the non-convex body K∗∗ and the double paraboloid
Pa with the (x, y)-plane

Multiplying this by the second part of (10) gives

y30 =
2

3
(1− x0)

(
3x20 +

1

x20

)
. (13)

Setting this equal to the first part of (10), multiplying by x20, dividing by 1 − x0,
and simplifying, we arrive at

3x40 − 3x30 − 3x20 − 3x0 + 2 = 0 . (14)

This biquadratic polynomial equation has only one real positive root < 1, namely

x0 = 0.43306989 . . . . (15)

From this and the first part of (10),

y0 = 1.3060612 . . . . (16)

Finally, from the second part of (10),

a = 1.7345976 . . . . (17)

It remains to show that actually Ra ⊆ R∗∗. Going back again to the definitions of
the curves ∂Ra and ∂R∗∗, it obviously suffices to verify that, for 0 < x ≤ 1,((

−x3 +
1

x

)2

− a6(1− x)3

)
x2 ≥ 0 . (18)
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By construction, the left-hand side here is a polynomial of degree eight which has
double zeros at x = x0 and also at x = 1. Hence, the left-hand side of (18) can be
written in the form

(x− x0)2(x− 1)2p4(x− x0) . (19)

The calculation shows that the biquadratic polynomial p4(x−x0) has only positive
coefficients. In fact, with the numerical values rounded,

p4(x− x0) = (x− x0)4 + 4.598(x− x0)3 + 10.14(x− x0)2 + 41.81(x− x0) + 21.87 .

This establishes the assertion (18). The conclusion that ∆(K∗∗) ≥ ∆(Pa) = 1
2a

2,
together with (17), completes the proof of the theorem. �
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