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An approximation theorem for solutions of degenerate
semilinear elliptic equations

Albo Carlos Cavalheiro

Abstract. The main result establishes that a weak solution of degenerate
semilinear elliptic equations can be approximated by a sequence of solutions
for non-degenerate semilinear elliptic equations.

1 Introduction
Let L be a degenerate elliptic operator in divergence form

Lu = −
n∑

i,j=1

Dj(aij(x)Diu(x)), Dj =
∂

∂xj
, (1)

where the coefficients aij are measurable, real-valued functions whose coefficient
matrix A = (aij) is symmetric and satisfies the degenerate ellipticity condition

λ|ξ|2ω(x) ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ|ξ|2ω(x), (2)

for all ξ ∈ Rn and almost everywhere x ∈ Ω ⊂ Rn a bounded open set, ω is a
weight function, λ and Λ are positive constants.

The main purpose of this paper (see Theorem 1) is to establish that a weak
solution u ∈W 1,2

0 (Ω, ω) for the semilinear Dirichlet problem

(P)

{
Lu(x)− γu(x)g1(x) + h(u(x))g2(x) = f(x) in Ω,

u(x) = 0 on ∂Ω,

where γ ∈ R, can be approximated by a sequence of solutions of non-degenerate
semilinear elliptic equations.
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By a weight, we shall mean a locally integrable function ω on Rn such that
ω(x) > 0 for a.e. x ∈ Rn. Every weight ω gives rise to a measure on the measurable
subsets on Rn through integration. This measure will be denoted by µ. Thus,
µ(E) =

∫
E
ω(x) dx for measurable sets E ⊂ Rn.

In general, the Sobolev spaces W k,p(Ω) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degenerate
partial differential equations, i.e., equations with various types of singularities in
the coefficients, it is natural to look for solutions in weighted Sobolev spaces (see
[1], [2], [4], [3], [5], [6], [7], [9] and [13]).

A class of weights, which is particularly well understood, is the class of Ap-
-weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt (see [11]).
These classes have found many useful applications in harmonic analysis (see [12]).
Another reason for studying Ap-weights is the fact that powers of the distance
to submanifolds of Rn often belong to Ap (see [10]). There are, in fact, many
interesting examples of weights (see [9] for p-admissible weights).

The following lemma can be proved in exactly the same way as Lemma 2.1
in [7] (see also, Lemma 3.1 and Lemma 4.13 in [1]). Our lemma provides a general
approximation theorem for Ap-weights (1 ≤ p < ∞) by means of weights which
are bounded away from 0 and infinity and whose Ap-constants depend only on the
Ap-constant of ω. Lemma 1 is the key point for Theorem 1, and the crucial point
consists of showing that a weak limit of a sequence of solutions of approximate
problems is in fact a solution of the original problem.

Lemma 1. Let α, β > 1 be given and let ω ∈ Ap (1 ≤ p < ∞), with Ap-constant
C(ω, p) and let aij = aji be measurable, real-valued functions satisfying

λω(x)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λω(x)|ξ|2, (3)

for all ξ ∈ Rn and a.e. x ∈ Ω. Then there exist weights ωαβ ≥ 0 a.e. and measurable
real-valued functions aαβij such that the following conditions are met.

(i) c1(1/β) ≤ ωαβ ≤ c2α in Ω, where c1 and c2 depend only on ω and Ω.

(ii) There exist weights ω̃1 and ω̃2 such that ω̃1 ≤ ωαβ ≤ ω̃2, where ω̃i ∈ Ap and
C(ω̃i, p) depends only on C(ω, p) (i = 1, 2).

(iii) ωαβ ∈ Ap, with constant C(ωαβ , p) depending only on C(ω, p) uniformly on
α and β.

(iv) There exists a closed set Fαβ such that ωαβ ≡ ω in Fαβ and ωαβ ∼ ω̃1 ∼ ω̃2 in
Fαβ with equivalence constants depending on α and β (i.e., there are positive
constants cαβ and Cαβ such that cαβω̃i ≤ ωαβ ≤ Cαβω̃i, i = 1, 2). Moreover,
Fαβ ⊂ Fα′β′ if α ≤ α′, β ≤ β′, and the complement of

⋃
α,β≥1

Fαβ has zero
measure.

(v) ωαβ → ω a.e. in Rn as α, β →∞.
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(vi) λωαβ(x)|ξ|2 ≤
n∑

i,j=1

aαβij (x)ξiξj ≤ Λωαβ(x)|ξ|2, for every ξ ∈ R and a.e. x ∈ Ω.

Proof. See [1], Lemma 3.1 or Lemma 4.13. �

The following theorem will be proved in Section 3.

Theorem 1. Suppose that

(H1) The function h : R → R is Lipschitz continuous (i.e., there exists a constant
Ch > 0 such that |h(t1)− h(t2)| ≤ Ch|t1 − t2| for all t1, t2 ∈ R) and h(0) = 0;

(H2) ω ∈ A2;

(H3) g1/ω ∈ L∞(Ω), g2/ω ∈ L∞(Ω) and f/ω ∈ L2(Ω, ω);

(H4) γ > 0 is not an eigenvalue of the linearized problem

(LP)

{
Lu(x)− γu(x)ω(x) = 0 in Ω,

u(x) = 0 on ∂Ω;

(H5) The constant M = λ− γC2
Ω‖g1/ω‖L∞(Ω) − ChC

2
Ω‖g2/ω‖L∞(Ω) > 0 (with CΩ

as in Theorem 2).

Then the problem (P) has a unique solution u ∈ W 1,2
0 (Ω, ω) and there exists a

constant C > 0 such that

‖u‖W 1,2
0 (Ω,ω) ≤ C

∥∥∥∥ fω
∥∥∥∥
L2(Ω,ω)

. (4)

Moreover, u is the weak limit in W 1,2
0 (Ω, ω̃1) of a sequence of solutions um ∈

W 1,2
0 (Ω, ωm) of the problems

(Pm)

{
Lmum(x)− γum(x)g1m(x) + h(um(x))g2m(x) = fm(x) in Ω,

um(x) = 0 on ∂Ω,

with Lmum = −
n∑

i,j=1

Dj(a
mm
ij (x)Dium(x)), g1m = g1ωm/ω, g2m = g2ωm/ω,

fm = f(ω/ωm)−1/2 and ωm = ωmm (where ωmm, ammij and ω̃1 are as Lemma 1).

2 Definitions and basic results
Let ω be a locally integrable nonnegative function in Rn and assume that 0 <
ω(x) <∞ almost everywhere. We say that ω belongs to the Muckenhoupt class Ap,
1 < p <∞, or that ω is an Ap-weight, if there is a constant C = C(p, ω) such that(

1

|B|

∫
B

ω(x) dx

)(
1

|B|

∫
B

ω1/(1−p)(x) dx

)p−1

≤ C,
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for all balls B ⊂ Rn, where |·| denotes the n-dimensional Lebesgue measure in Rn.
If 1 < q ≤ p, then Aq ⊂ Ap (see [8], [9] or [13] for more information about Ap-
weights). The weight ω satisfies the doubling condition if there exists a positive
constant C such that µ(B(x; 2r)) ≤ Cµ(B(x; r)) for every ball B = B(x; r) ⊂ Rn,
where µ(B) =

∫
B
ω(x) dx. If ω ∈ Ap, then µ is doubling (see Corollary 15.7 in [9]).

As an example of Ap-weight, the function ω(x) = |x|α, x ∈ Rn, is in Ap if and
only if −n < α < n(p− 1) (see Corollary 4.4, Chapter IX in [12]).

If ω ∈ Ap, then

(
|E|
|B|

)p
≤ C

µ(E)

µ(B)
whenever B is a ball in Rn and E is

a measurable subset of B (see 15.5 strong doubling property in [9]). Therefore,
µ(E) = 0 if and only if |E| = 0; so there is no need to specify the measure
when using the ubiquitous expression almost everywhere and almost every, both
abbreviated a.e.

Definition 1. Let ω be a weight, and let Ω ⊂ Rn be open. For 0 < p < ∞ we
define Lp(Ω, ω) as the set of measurable functions f on Ω such that

‖f‖Lp(Ω,ω) =

(∫
Ω

|f(x)|pω(x) dx

)1/p

<∞.

If ω ∈ Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have
Lp(Ω, ω) ⊂ L1

loc(Ω) for every open set Ω (see Remark 1.2.4 in [13]). It thus makes
sense to talk about weak derivatives of functions in Lp(Ω, ω).

Definition 2. Let Ω ⊂ Rn be open, k be a nonnegative integer and ω ∈ Ap
(1 < p < ∞). We define the weighted Sobolev space W k,p(Ω, ω) as the set of
functions u ∈ Lp(Ω, ω) with weak derivatives Dαu ∈ Lp(Ω, ω) for 1 ≤ |α| ≤ k. The
norm of u in W k,p(Ω, ω) is defined by

‖u‖Wk,p(Ω,ω) =

(∫
Ω

|u(x)|p ω(x) dx+
∑

1≤|α|≤k

∫
Ω

|Dαu(x)|pω(x) dx

)1/p

. (5)

We also define W k,p
0 (Ω, ω) as the closure of C∞0 (Ω) with respect to the norm (5).

If ω ∈ Ap, then W k,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm (5)
(see Theorem 2.1.4 in [13]). The spaces W k,p(Ω, ω) and W k,p

0 (Ω, ω) are Banach
spaces.

It is evident that the weight function ω which satisfies 0 < c1 ≤ ω(x) ≤ c2 for
x ∈ Ω (c1 and c2 positive constants), gives nothing new (the space W k,p

0 (Ω, ω) is
then identical with the classical Sobolev space W k,p

0 (Ω)). Consequently, we shall
be interested above in all such weight functions ω which either vanish in somewhere
Ω ∪ ∂Ω or increase to infinity (or both).

The dual space of W 1,p
0 (Ω, ω) is the space

[W 1,p
0 (Ω, ω)]∗ = W−1,p′(Ω, ω)

= {T = f0 − divF : F = (f1, . . . , fn),
fj
ω
∈ Lp

′
(Ω, ω)}.
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Definition 3. We say that an element u ∈ W 1,2
0 (Ω, ω) is weak solution of problem

(P) if∫
Ω

aij(x)Diu(x)Djϕ(x) dx−
∫

Ω

γu(x)g1(x)ϕ(x) dx+

∫
Ω

h(u(x))g2(x)ϕ(x) dx

=

∫
Ω

f(x)ϕ(x) dx ,

for every ϕ ∈W 1,2
0 (Ω, ω).

Theorem 2. (The weighted Sobolev inequality) Let Ω be an open bounded set
in Rn and ω ∈ Ap (1 < p <∞). There exist positive constants CΩ and δ such that
for all u ∈W 1,p

0 (Ω, ω) and all θ satisfying 1 ≤ θ ≤ n/(n− 1) + δ,

‖u‖Lθp(Ω,ω) ≤ CΩ‖∇u‖Lp(Ω,ω). (6)

Proof. Its suffices to prove the inequality for functions u ∈ C∞0 (Ω) (see Theo-
rem 1.3 in [6]). To extend the estimates (6) to arbitrary u ∈ W 1,p

0 (Ω, ω), we let
{um} be a sequence of C∞0 (Ω) functions tending to u in W 1,p

0 (Ω, ω). Applying the
estimates (6) to differences um1

−um2
, we see that {um} will be a Cauchy sequence

in Lkp(Ω, ω). Consequently the limit function u will lie in the desired spaces and
satisfy (6). �

3 Proof of Theorem 1
Step 1. The existence of solution u ∈ W 1,2

0 (Ω, ω) for the problem (P) has been
demonstrated in [2], Theorem 1. In particular, for ϕ = u in Definition 3, we have∫

Ω

aij(x)Diu(x)Dju(x) dx−
∫

Ω

γu2(x)g1(x) dx+

∫
Ω

h(u(x))g2(x)u(x) dx

=

∫
Ω

f(x)u(x) dx. (7)

(i) By (2) we have ∫
Ω

aij(x)Diu(x)Dju(x) dx ≥ λ
∫

Ω

|∇u|2ω dx.

(ii) By (H3) and Theorem 2 (with p = 2 and θ = 1) we obtain∣∣∣∣∫
Ω

γu2g1 dx

∣∣∣∣ ≤ γ ∫
Ω

u2 |g1|
ω
ω dx

≤ γ‖g1/ω‖L∞(Ω)

∫
Ω

u2ω dx

≤ γC2
Ω‖g1/ω‖L∞(Ω)

∫
Ω

|∇u|2ω dx,
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and ∣∣∣∣∫
Ω

fudx

∣∣∣∣ ≤ ∫
Ω

|f |
ω
|u|ω dx

≤ ‖f/ω‖L2(Ω,ω)‖u‖L2(Ω,ω)

≤ CΩ‖f/ω‖L2(Ω,ω)‖∇u‖L2(Ω,ω).

(iii) By (H1), since h(0) = 0, then |h(t)| ≤ Ch|t| for all t ∈ R. By (H3) and
Theorem 2, we obtain∣∣∣∣ ∫

Ω

h(u)ug2 dx

∣∣∣∣ ≤ ∫
Ω

|h(u)||u| |g2|
ω
ω dx

≤ Ch‖g2/ω‖L∞(Ω)

∫
Ω

|u|2ω dx

≤ ChC2
Ω‖g2/ω‖L∞(Ω

∫
Ω

|∇u|2ω dx.

Hence, in (7), we obtain

λ

∫
Ω

|∇u|2ω dx− γC2
Ω‖g1/ω‖L∞(Ω)

∫
Ω

|∇u|2ω dx

− ChC2
Ω‖g2/ω‖L∞(Ω)

∫
Ω

|∇u|2ω dx ≤ CΩ‖f/ω‖‖∇u‖L2(Ω,ω).

Therefore,

‖∇u‖L2(Ω,ω) ≤
CΩ

M
‖f/ω‖L2(Ω,ω)

where
M = λ− γC2

Ω‖g1/ω‖L∞(Ω) − ChC
2
Ω‖g2/ω‖l∞(Ω) > 0 .

Consequently, we obtain

‖u‖2W 1,2
0 (Ω,ω) =

∫
Ω

u2ω dx+

∫
Ω

|∇u|2ω dx

≤ (C2
Ω + 1)

∫
Ω

|∇u|2ω dx

≤ (C2
Ω + 1)

C2
Ω

M2
‖f/ω‖2L2(Ω,ω).

Therefore,

‖u‖W 1,2
0 (Ω,ω) ≤ (C2

Ω + 1)1/2CΩ

M
‖f/ω‖L2(Ω,ω)

= C‖f/ω‖L2(Ω,ω). (8)
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Step 2. Uniqueness.
If u1, u2 ∈W 1,2

0 (Ω, ω) are solutions of the problem (P), then∫
Ω

aijDiukDjϕdx− γ
∫

Ω

ukg1ϕdx+

∫
Ω

h(uk)g2ϕdx =

∫
Ω

fϕdx, (k = 1, 2).

Hence,∫
Ω

aij(Diu1−Diu2)Djϕdx− γ
∫

Ω

(u1− u2)g1ϕdx+

∫
Ω

(h(u1)− h(u2))g2ϕdx = 0,

(9)
for all ϕ ∈W 1,2

0 (Ω, ω). In particular, for ϕ = u1 − u2 in (9) we obtain:

(i) By (2), ∫
Ω

aijDi(u1 − u2)Dj(u1 − u2) dx ≥ λ
∫

Ω

|∇(u1 − u2)|2ω dx.

(ii) By (H3) and Theorem 2 (with p = 2 and θ = 1),∣∣∣∣ ∫
Ω

(u1 − u2)2g1 dx

∣∣∣∣ ≤ ∫
Ω

|u1 − u2|2
|g1|
ω
ω dx

≤ ‖g1/ω‖L∞(Ω)

∫
Ω

|u1 − u2|2ω dx

≤ C2
Ω‖g1/ω‖L∞(Ω)

∫
Ω

|∇(u1 − u2)|2ω dx.

(iii) By (H1), (H3) and Theorem 2,∣∣∣∣ ∫
Ω

(h(u1)− h(u2))(u1 − u2)g2 dx

∣∣∣∣ ≤ ∫
Ω

|h(u1)− h(u2)||u1 − u2|
|g2|
ω
ω dx

≤ Ch
∫

Ω

|u1 − u2|2
|g2|
ω
ω dx

≤ ChC2
Ω‖g2/ω‖L∞(Ω)

∫
Ω

|∇(u1 − u2)|2ω dx.

Hence,(
λ− γC2

Ω‖g1/ω‖L∞(Ω) − ChC
2
Ω‖g2/ω‖L∞(Ω)

)∫
Ω

|∇(u1 − u2)|2ω dx ≤ 0,

and since M = λ− γC2
Ω‖g1/ω‖L∞(Ω) − ChC

2
Ω‖g2/ω‖L∞(Ω) > 0, then∫

Ω

|∇(u1 − u2)|2ω dx = 0,

and
∫

Ω

|u1 − u2|2ω dx = 0.. Therefore, u1 = u2 a.e.
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Step 3. First, if fm = f(ω/ωm)−1/2, g1m = g1ωm/ω and g2m = g2ωm/ω, we note
that ∥∥∥∥ fmωm

∥∥∥∥
L2(Ω,ωm)

=

∥∥∥∥ fω
∥∥∥∥
L2(Ω,ω)

,

∥∥∥∥g1m

ωm

∥∥∥∥
L∞(Ω)

=

∥∥∥∥g1

ω

∥∥∥∥
L∞(Ω)

,

and

∥∥∥∥g2m

ωm

∥∥∥∥
L∞(Ω)

=

∥∥∥∥g2

ω

∥∥∥∥
L∞(Ω)

.

Then, we have

Mm = λ− γC2
Ω‖g1m/ωm‖L∞(Ω) − ChC

2
Ω‖g2mωm‖L∞(Ω)

= λ− γC2
Ω‖g1/ω‖L∞(Ω) − ChC

2
Ω‖g2/ω‖L∞(Ω) = M > 0.

If um ∈W 1,2
0 (Ω, ωm) is a solution of problem (Pm) we have (by (8))

‖um‖W 1,2
0 (Ω,ωm) ≤

(C2
Ω + 1)1/2CΩ

Mm
‖fm/ωm‖L2(Ω,ωm)

=
(C2

Ω + 1)1/2CΩ

M
‖f/ω‖L2(Ω,ω) = C1.

Using Lemma 1, ω̃1 ≤ ωm, we obtain

‖um‖W 1,2
0 (Ω,ω̃1) ≤ ‖um‖W 1,2

0 (Ω,ωm) ≤ C1. (10)

Consequently, {um} is a bounded sequence in W 1,2
0 (Ω, ω̃1). Therefore, there is a

subsequence, again denoted by {um}, and ũ ∈W 1,2
0 (Ω, ω̃1) such that

um ⇀ ũ in L2(Ω, ω̃1), (11)

∇um ⇀ ∇ũ in L2(Ω, ω̃1), (12)

um → ũ a.e. in Ω, (13)

where the symbol “⇀” denotes weak convergence (see Theorem 1.31 in [9]).

Step 4. We have that ũ ∈ W 1,2
0 (Ω, ω). In fact, for Fk fixed, we have by (11)

and (12), for all ϕ ∈W 1,2
0 (Ω, ω̃1),∫

Ω

umϕω̃1 dx→
∫

Ω

ũϕω̃1 dx,∫
Ω

DiumDiϕω̃1 dx→
∫

Ω

DiũDiϕω̃1 dx.

If ψ ∈ W 1,2
0 (Ω, ω), then ϕ = ψχFk ∈ W

1,2
0 (Ω, ω̃1) (since ω ∼ ω̃1 in Fk, i.e., there

is a constant c > 0 such that ω̃1 ≤ cω in Fk, and χE denotes the characteristic
function of a measurable set E ⊂ Rn) and∫

Ω

ϕ2ω̃1 dx =

∫
Fk

ψ2ω̃1 dx ≤ c
∫
Fk

ψ2ω dx ≤ c
∫

Ω

ψ2ω dx <∞,∫
Ω

(Diϕ)2ω̃1 dx =

∫
Fk

(Diψ)2ω̃1 dx ≤ c
∫
Fk

(Diψ)2ω dx ≤ c
∫

Ω

(Diψ)2ω dx <∞.
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Consequently, ∫
Ω

umψχFk ω̃1 dx→
∫

Ω

ũψχFk ω̃1 dx,∫
Ω

DiumDiψχFk ω̃1 dx→
∫

Ω

DiũDiψχFk ω̃1 dx,

for all ψ ∈ W 1,2
0 (Ω, ω), that is, the sequence {umχFk} is weakly convergent in

W 1,2
0 (Ω, ω). Therefore, we have

‖∇ũ‖2L2(Fk,ω) =

∫
Fk

|∇ũ|2ω dx ≤ lim sup
m→∞

∫
Fk

|∇um|2ω dx,

and for m ≥ k we have ω = ωm in Fk. Hence, by (10), we obtain

‖∇ũ‖2L2(Fk,ω) ≤ lim sup
m→∞

∫
Fk

|∇um|2ω dx

= lim sup
m→∞

∫
Fk

|∇um|2ωm dx

≤ lim sup
m→∞

∫
Ω

|∇um|2ωmdx ≤ C2
1 .

By the Monotone Convergence Theorem we obtain ‖∇ũ‖L2(Ω,ω) ≤ C1. Therefore,

we have ũ ∈W 1,2
0 (Ω, ω).

Step 5. We need to show that ũ is a solution of problem (P), i.e, for every ϕ ∈
W 1,2

0 (Ω, ω) we have∫
Ω

aij(x)Diũ(x)Djϕ(x) dx−
∫

Ω

γũ(x)g1(x)ϕ(x) dx+

∫
Ω

h(ũ(x))g2(x)ϕ(x) dx

=

∫
Ω

f(x)ϕ(x) dx.

Using the fact that um is a solution of (Pm), we have∫
Ω

ammij (x)Dium(x)Djϕ(x) dx−
∫

Ω

γum(x)g1m(x)ϕ(x) dx

+

∫
Ω

h(um(x))g2m(x)ϕ(x) dx =

∫
Ω

fm(x)ϕ(x) dx,

for every ϕ ∈ W 1,2
0 (Ω, ωm). Moreover, over Fk (for m ≥ k) we have the following

properties:

(i) ω = ωm;

(ii) g1m = g1;
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(iii) g2m = g2;

(iv) fm = f ;

(v) ammij (x) = aij(x).

For ϕ ∈W 1,2
0 (Ω, ω) and k > 0 (fixed), we define G1, G2 : W 1,2

0 (Ω, ω̃1)→ R by

G1(u) =

∫
Ω

aij(x)Diu(x)Djϕ(x)χFk dx− γ
∫

Ω

u(x)g1(x)ϕ(x)χFk(x) dx,

G2(u) =

∫
Ω

h(u(x))g2(x)ϕ(x)χFk(x) dx.

(a) We have that G1 is linear and continuous functional. In fact, since the matrix
A = (aij) is symmetric, we have

|〈A∇u,∇ϕ〉| ≤ 〈A∇u,∇u〉1/2〈A∇ϕ,∇ϕ〉1/2 ,

where 〈·, ·〉 denotes here the Euclidian scalar product in Rn. We also have
ω ∼ ω̃1 in Fk (ω ≤ cω̃1). By (2) and (H3) we obtain

|G1(u)| ≤
∫
Fk

|〈A∇u,∇ϕ〉|dx+ γ

∫
Fk

|u||g1||ϕ|dx

≤
∫
Fk

〈A∇u,∇u〉1/2〈A∇ϕ,∇ϕ〉1/2 dx+ γ

∫
Fk

|u| |g1|
ω
|ϕ|ω dx

≤
(∫

Fk

〈A∇u,∇u〉dx
)1/2(∫

Fk

〈A∇ϕ,∇ϕ〉1/2 dx

)1/2

+ γ‖g1/ω‖L∞(Ω)

(∫
Fk

|u|2ω dx

)1/2(∫
Fk

|ϕ|2ω
)1/2

≤ Λ

(∫
Fk

|∇u|2ω dx

)1/2(∫
Ω

|∇ϕ|2ω dx

)1/2

+ γ

(∫
Fk

|u|2ω dx

)1/2(∫
Ω

|ϕ|2ω dx

)1/2

≤ Λ

(∫
Fk

c|∇u|2ω̃1 dx

)1/2(∫
Ω

|∇ϕ|2ω dx

)1/2

+ γ

(∫
Fk

c|u|2ω̃1 dx

)1/2(∫
Ω

|ϕ|2ω dx

)1/2

≤ (Λc1/2 + γc1/2)‖ϕ‖W 1,2
0 (Ω,ω)‖u‖W 1,2

0 (Ω,ω̃1).
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(b) We have that G2 is continuous functional. In fact, if u1, u2 ∈ W 1,2
0 (Ω, ω̃1),

we obtain by (H1) and (H3)

|G2(u2)−G2(u1)| ≤
∫
Fk

|h(u2)− h(u1)||g2||ϕ|dx

≤
∫
Fk

Ch|u1 − u2|
|g1|
ω
|ϕ|ω dx

≤ Ch‖g2/ω‖L∞(Ω)

(∫
Ω

|ϕ|2ω dx

)1/2(∫
Fk

c|u1 − u2|2ω̃1 dx

)1/2

≤ c1/2Ch‖g2/ω‖L∞(Ω)‖ϕ‖W 1,2
0 (Ω,ω)‖u1 − u2‖W 1,2

0 (Ω,ω̃1).

Using (a), (b), properties (i), (ii), (iii), (iv) and (v), and that um is solution
of (Pm), we obtain

∫
Fk

aijDiũDjϕdx− γ
∫
Fk

ũg1ϕdx+

∫
Fk

h(ũ)g2ϕdx = lim
m→∞

[G1(um) +G2(um)]

= lim
m→∞

(∫
Fk

ammij DiumDjϕdx− γ
∫
Fk

umg1mϕdx+

∫
Fk

h(um)g2mϕdx

)
= lim
m→∞

(∫
Ω

ammij DiumDjϕdx− γ
∫

Ω

umg1mϕdx+

∫
Ω

h(um)g2mϕdx

−
∫

Ω∩F ck
ammij DiumDjϕdx+ γ

∫
Ω∩F ck

umg1mϕdx−
∫

Ω∩F ck
h(um)g2mϕdx

)
= lim
m→∞

(∫
Ω

fmϕdx−
∫

Ω∩F ck
ammij DiumDjϕdx+ γ

∫
Ω∩F ck

umg1mϕdx

−
∫

Ω∩F ck
h(um)g2mϕdx

)
, (14)

where Ec denotes the complement of a set E ⊂ Rn.

(I) By the Lebesgue Dominated Convergence Theorem we obtain

∫
Ω

fmϕdx→
∫

Ω

fϕdx. (15)

(II) Since the matrix Am = (ammij ) is symmetric, we have

|〈Am∇um,∇ϕ〉| ≤ 〈Am∇um,∇um〉1/2〈Am∇ϕ,∇ϕ〉1/2.
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Then, by (2) and (10), we obtain∣∣∣∣ ∫
Ω∩F ck

ammij DiumDjϕdx

∣∣∣∣ ≤ ∫
Ω∩F ck

|〈Am∇um,∇ϕ〉|dx

≤ Λ

(∫
Ω∩FCk

|∇um|2ωm dx

)1/2(∫
Ω∩F ck

|∇ϕ|2ωm dx

)1/2

≤ Λ‖um‖W 1,2
0 (Ω,ωm)

(∫
Ω∩F ck

|∇ϕ|2wm dx

)1/2

≤ ΛC1

(∫
Ω∩F ck

|∇ϕ|2wm dx

)1/2

. (16)

(III) By (H3) and (10), we obtain∣∣∣∣ ∫
Ω∩F ck

umg1mϕdx

∣∣∣∣ ≤ ∫
Ω∩F ck

|um|
|g1m|
ωm
|ϕ|ωm dx

≤ ‖g1m/ωm‖L∞(Ω)

(∫
Ω

|um|2ωm dx

)1/2(∫
Ω∩F ck

|ϕ|2ωm dx

)1/2

≤ ‖g1/ω‖L∞(Ω)‖um‖W 1,2
0 (Ω,ωm)

(∫
Ω∩F ck

|ϕ|2ωm dx

)1/2

≤ C1‖g1/ω‖L∞(Ω)

(∫
Ω∩F ck

|ϕ|2ωm dx

)1/2

. (17)

(IV) By (H1), (H3) and |h(t)| ≤ Ch|t| (for all t ∈ R) we have∣∣∣∣ ∫
Ω∩F ck

h(um)g2mϕdx

∣∣∣∣ ≤ ∫
Ω∩F ck

|h(um)| |g2m|
ωm
|ϕ|ωm dx

≤ Ch‖g2m/ωm‖L∞(Ω)

∫
Ω∩F ck

|um||ϕ|ωm dx

≤ Ch‖g2/ω‖L∞(Ω)

(∫
Ω∩F ck

|um|2ωm dx

)1/2(∫
Ω∩F ck

|ϕ|2ωm dx

)1/2

≤ Ch‖g2/ω‖L∞(Ω) ‖um‖W 1,2
0 (Ω,ωm)

(∫
Ω∩F ck

|ϕ|2ωm dx

)1/2

≤ ChC1‖g2/ω‖L∞(Ω)

(∫
Ω∩F ck

|ϕ|2ωm dx

)1/2

(18)

Using Lemma 1, we know that |Ω ∩ F ck | → 0 when k →∞. Then

lim
k→∞

(∫
Ω∩F ck

|ϕ|2ωm dx

)1/2

= lim
k→∞

(∫
Ω∩F ck

|∇ϕ|2ωm dx

)1/2

= 0,
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and we obtain in (16), (17) and (18)

lim
k→∞

∫
Ω∩F ck

ammij (x)Diu(x)Djϕ(x) dx = 0, (19)

lim
k→∞

∫
Ω∩F ck

umg1mϕdx = 0, (20)

lim
k→∞

∫
Ω∩F ck

h(um(x))g2m(x)ϕ(x) dx = 0. (21)

Therefore, by (14), (19), (20) and (21) we conclude, when k → ∞ (and
m ≥ k),∫

Ω

aijDiũDjϕ(x) dx− γ
∫

Ω

g1ũϕdx+

∫
Ω

h(ũ)g2ϕdx =

∫
Ω

fϕdx,

for all ϕ ∈ W 1,2
0 (Ω, ω), that is, ũ is a solution of problem (P). Therefore,

u = ũ (by the uniqueness).

Example 1. Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1} and 0 < a < b. By Theorem 1,
with h(t) = sin(t), f(x, y) = x|y|, ω(x, y) = (x2 + y2)−1/2,

g1(x, y) = (x2 + y2)−1/2 cos(xy) ,

g2(x, y) = (x2 + y2)−1/4 sin(xy)

and

A(x, y) =

(
a(x2 + y2)−1/2 0

0 b(x2 + y2)−1/2

)
,

the problem {
Lu(x)− γu(x)g1(x) + h(u(x))g2(x) = f(x) in Ω,

u(x) = 0 on ∂Ω,

where

Lu(x) = − ∂

∂x

(
a(x2 + y2)−1/2 ∂u

∂x

)
− ∂y

∂x

(
b(x2 + y2)−1/2 ∂u

∂y

)
,

has a unique solution u ∈ W 1,2
0 (Ω, ω) if γ > 0 is not an eigenvalue of linearized

problem (LP), and u can be approximated by a sequence of solutions for non-
degenerate semilinear elliptic equations.
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