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Existence of solutions for a coupled system with
φ-Laplacian operators and nonlinear coupled boundary
conditions

Konan Charles Etienne Goli, Assohoun Adjé

Abstract. We study the existence of solutions of the system{
(φ1(u

′
1(t)))

′ = f1(t, u1(t), u2(t), u
′
1(t), u

′
2(t)), a.e. t ∈ [0, T ],

(φ2(u
′
2(t)))

′ = f2(t, u1(t), u2(t), u
′
1(t), u

′
2(t)), a.e. t ∈ [0, T ],

submitted to nonlinear coupled boundary conditions on [0, T ] where
φ1, φ2 : (−a, a) → R, with 0 < a < +∞, are two increasing homeomor-
phisms such that φ1(0) = φ2(0) = 0, and fi : [0, T ]×R4 → R, i ∈ {1, 2} are
two L1-Carathéodory functions. Using some new conditions and Schauder
fixed point Theorem, we obtain solvability result.

1 Introduction
The aim of this paper is to study the existence of solutions for the quasilinear
system of differential equations{

(φ1(u′1(t)))′ = f1(t, u1(t), u2(t), u′1(t), u′2(t)), a.e. t ∈ [0, T ],

(φ2(u′2(t)))′ = f2(t, u1(t), u2(t), u′1(t), u′2(t)), a.e. t ∈ [0, T ],
(1)

under nonlinear coupled boundary conditions{
g(u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )) = (0, 0)

(u1(T ), u2(T )) = h(u1(0), u2(0)),
(2)

where g : R6 → R2 and h : R2 → R2 are two continuous functions, fi : [0, T ]×R4 →
R, i ∈ {1, 2} are two L1-Carathéodory functions, and φ1, φ2 : (−a, a) → R, with
0 < a < +∞, are two increasing homeomorphisms such that φ1(0) = φ2(0) = 0.

2010 MSC: 34B15
Key words: φ-Laplacian; L1-Carathéodory function; Schauder fixed-point Theorem.
DOI: 10.1515/cm-2017-0008



80 Konan Charles Etienne Goli, Assohoun Adjé

The study of system (1)–(2) was justified by the applications of the nonlinear
differential equations with singular φ-Laplacian operator to the areas of mechanics
and physics (see [4], [5]).

In 2015, Naseer Ahmad Asif and Imran Talib studied in [1], problem (1)–(2),
for fi, i ∈ {1, 2} continuous and φ1(x) = φ2(x) = x, ∀x ∈ R. They proved under
some monotony conditions upon g and h, an existence result using a new concept
of coupled lower and upper solutions.

The concept of coupled lower and upper solutions was used by several authors
(see [2], [6], [7], [8]).

In our study, we use some new conditions given only on the boundary condi-
tions. These new conditions allow us to construct two coupled of ordered functions
which do not check necessarily the definitions of lower and upper solutions, but
which makes it possible to obtain a solution located between them. In addition
monotonicity of g and h are not required.

After introducing notations and preliminaries in section 2, we prove in section 3,
existence of solutions of the problem (1)–(2) using a new conditions.

In section 4, we give an example of application of this new result.

2 Notations and preliminaries
We denote:

• 〈·, ·〉 the usual inner product in R2

• ‖ · ‖, the Euclidian norm of R2

• {e1, e2} the canonical basis of R2

• (x, y), (a, b) ∈ R2, (x, y) ≤ (a, b) if x ≤ a and y ≤ b

• (x, y), (a, b) ∈ R2, (x, y) ≥ (a, b) if x ≥ a and y ≥ b

• C = C([0, T ]), the Banach space of continuous functions on [0, T ]

• ‖u‖C = ‖u‖∞ = max{|u(t)|; t ∈ [0, T ]}, the norm of C

• C1 = C1([0, T ]), the Banach space of continuous functions on [0, T ] having
continuous first derivative on [0, T ]

• ||u||C1 = ||u||C + ||u′||C , the norm of C1

• ||(u1, u2)||C1×C1 = ||u1||C1 + ||u2||C1 , the norm of C1 × C1

• AC = AC([0, T ]), the set of absolutely continuous functions on [0, T ]

• L1 = L1(0, T ), the Banach space of functions Lebesgue integrable on [0, T ]

• || · ||L1 , the norm of L1

• Br, the corresponding open ball of C1 × C1 of center 0 and radius r

• For u = (u1, u2) ∈ C × C, ∀t ∈ [0, T ],
∫ t
0
u(s)ds =

(∫ t
0
u1(s)ds,

∫ t
0
u2(s)ds

)
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Definition 1. (u1, u2) ∈ C1 × C1 is a solution of problem (1)–(2) if ‖u′1‖∞ < a,
‖u′2‖∞ < a, (φ1 ◦ u′1, φ2 ◦ u′2) ∈ AC ×AC and satisfies (1)–(2).

Definition 2. f : [0, T ]× R4 → R is L1-Carathéodory if:

1. f(·, x1, x2, y1, y2) : [0, T ]→ R is measurable for all (x1, x2, y1, y2) ∈ R4;

2. f(t, ·, ·, ·, ·) : R4 → R is continuous for a.e. t ∈ [0, T ];

3. For each compact set A ⊂ R4 there is a function µA ∈ L1 such that

|f(t, x1, x2, y1, y2)| ≤ µA(t)

for a.e. t ∈ [0, T ] and all (x1, x2, y1, y2) ∈ A.

3 Existence result
Theorem 1. Assume that there exist (α1, α2), (β1, β2) ∈ C × C such that

αi(0) < βi(0), and αi(T ) < βi(T ), ∀i ∈ {1, 2},

max
{
|βi(T )− αi(0)|; |αi(T )− βi(0)|

}
< aT, ∀i ∈ {1, 2},

g(α1(0), t, w, x, y, z) ≥ (0, 0), ∀(t, w, x, y, z) ∈ [α2(0), β2(0)]× [−a, a]4,

g(t, α2(0), w, x, y, z) ≥ (0, 0), ∀(t, w, x, y, z) ∈ [α1(0), β1(0)]× [−a, a]4,

g(β1(0), t, w, x, y, z) ≤ (0, 0), ∀(t, w, x, y, z) ∈ [α2(0), β2(0)]× [−a, a]4,

g(t, β2(0), w, x, y, z) ≤ (0, 0), ∀(t, w, x, y, z) ∈ [α1(0), β1(0)]× [−a, a]4,

(α1(T ), α2(T ))− h(x, y) ≤ (0, 0), ∀(x, y) ∈ [α1(0), β1(0)]× [α2(0), β2(0)]

and

(β1(T ), β2(T ))− h(x, y) ≥ (0, 0) ∀(x, y) ∈ [α1(0), β1(0)]× [α2(0), β2(0)].

Then the problem (1)–(2) admits at least one solution (u1, u2), with

αi(0)− at ≤ ui(t) ≤ βi(0) + at, ∀t ∈ [0, T ] for each i ∈ {1, 2}.

Consider the functions γi : [0, T ]× R→ R, i ∈ {1, 2}, given by

γi(t, x) = max
{
αi(0)− at,min{x, βi(0) + at}

}
.

Let us define the functions ϑi, θi : R→ R i ∈ {1, 2} by

ϑi(x) = max
{
αi(0),min{x, βi(0)}

}
and θi(x) = max

{
αi(T ),min{x, βi(T )}

}
Consider δ : R→ R and F : C1 × C1 → L1 × L1 defined by

δ(x) = max
{
−a,min{x, a}

}
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and ∀(u1, u2) ∈ C1 × C1 and a.e. t ∈ [0, T ],

F (u1, u2)(t) =
(
f1(t, γ1(t, u1(t)), γ2(t, u2(t)), δ(u′1(t)), δ(u′2(t))),

f2(t, γ1(t, u1(t)), γ2(t, u2(t)), δ(u′1(t)), δ(u′2(t)))
)
.

Let A,B : C1 × C1 → R2 given by

A(u1, u2) =

(
ϑ1

(
u1(0) +

〈
g
(
u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, e1
〉)
,

ϑ2

(
u2(0) +

〈
g
(
u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, e2
〉))

and

B(u1, u2) =

(
θ1

(1

2
u1(T ) +

1

2

〈
h(u1(0), u2(0)), e1

〉)
,

θ2

(1

2
u2(T ) +

1

2

〈
h(u1(0), u2(0)), e2

〉))
.

A and B are bounded and continuous in C1 × C1.
Let φ defined from (−a, a)× (−a, a) onto R× R by

φ(x1, x2) = (φ1(x1), φ2(x2)).

φ is an homeomorphism from (−a, a)× (−a, a) onto R× R and

∀(y1, y2) ∈ R2, φ−1(y1, y2) = (φ−11 (y1), φ−12 (y2)).

With the previous notations, we consider the modified problem
(φ(u′1(t), u′2(t)))′ = F (u1, u2)(t), a.e. t ∈ [0, T ],

(u1(0), u2(0)) = A(u1, u2),

(u1(T ), u2(T )) = B(u1, u2).

(3)

A solution of problem (3) is a couple of functions (u1, u2) ∈ C1 × C1 such that
‖u′1‖∞ < a, ‖u′2‖∞ < a, (φ1 ◦ u′1, φ2 ◦ u′2) ∈ AC ×AC, and satisfies (3).

Lemma 1. For each (k, q) ∈ C × (−aT, aT ), ∀i ∈ {1, 2}, there exists a unique
bi = Σφi(k, q) such that ∫ T

0

φ−1i (k(t)− bi) dt = q.

Moreover, the function Σφi
: C × (−aT, aT )→ R is continuous, and, for each fixed

q ∈ (−aT, aT ), Σφi
(·, q) takes bounded sets of C into bounded sets of R.

Proof. See [3] proof of Lemma 1. �



Solutions for a coupled system with φ-Laplacian operators 83

Lemma 2. For every (v1, v2) ∈ C1 × C1 there exists a unique (τv1 , τv2) ∈ R × R
such that∫ T

0

(
φ−1

[
(τv1 , τv2) +

∫ t

0

F (v1, v2)(s) ds
])

dt = B(v1, v2)−A(v1, v2).

Proof. It is an easy consequence of Lemma 1. In fact, ∀i ∈ {1, 2}, let

ki(t) =

∫ t

0

〈F (v1, v2)(s), ei〉ds

and qi = 〈B(v1, v2)−A(v1, v2), ei〉. We have, ∀i ∈ {1, 2}, ki ∈ C and

|qi| ≤
∣∣〈B(v1, v2)−A(v1, v2), ei〉

∣∣ ≤ max
{
|βi(T )− αi(0)|; |αi(T )− βi(0)|

}
< aT.

By Lemma (1), we get the existence of (τv1 , τv2). �

Lemma 3. Any solution (u1, u2) of (3) is such that αi(0)−at < ui(t) < βi(0) +at,
∀t ∈ [0, T ] and for each i ∈ {1, 2}.

Proof. Let (u1, u2) be a solution of (3). By definition of the boundary conditions,
we have

αi(0) ≤ ui(0) ≤ βi(0) and αi(T ) ≤ ui(T ) ≤ βi(T ) ∀i ∈ {1, 2}. (4)

As ‖u′1‖∞ < a and ‖u′2‖∞ < a, we have

ui(0)− at < ui(t) < ui(0) + at, ∀t ∈ [0, T ] and for each i ∈ {1, 2} . (5)

Therefore, by (4) and (5), we have αi(0)− at ≤ ui(t) ≤ βi(0) + at, ∀t ∈ [0, T ] and
for each i ∈ {1, 2}. �

Lemma 4. If (u1, u2) is a solution of (3) then

g(u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )) = (0, 0)

and

(u1(T ), u2(T ))− h(u1(0), u2(0)) = (0, 0).

Proof. Let (u1, u2) be a solution of problem (3).
Step 1: (u1(T ), u2(T ))− h(u1(0), u2(0)) = (0, 0).
Suppose that for some j ∈ {1, 2},

βj(T ) <
1

2
uj(T ) +

1

2

〈
h(u1(0), u2(0)), ej

〉
.

Then

uj(T ) = θj

(1

2
uj(T ) +

1

2

〈
h(u1(0), u2(0)), ej

〉)
= βj(T ). (6)
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Therefore we obtain the contradiction

0 = βj(T )− uj(T )

<
1

2
〈h(u1(0), u2(0)), ej〉+

1

2
uj(T )− uj(T )

≤ 1

2
〈h(u1(0), u2(0)), ej〉 −

1

2
βj(T ) ≤ 0.

It follows that(
β1(T ), β2(T )

)
≥ 1

2

(
u1(T ), u2(T )

)
+

1

2
h
(
u1(0), u2(0)

)
. (7)

Suppose that for some j ∈ {1, 2},

αj(T ) >
1

2
uj(T ) +

1

2

〈
h(u1(0), u2(0)), ej

〉
.

Then

uj(T ) = θj

(1

2
uj(T ) +

1

2

〈
h(u1(0), u2(0)), ej

〉)
= αj(T ).

Therefore we obtain the contradiction

0 = αj(T )− uj(T )

>
1

2

〈
h(u1(0), u2(0)), ej

〉
+

1

2
uj(T )− uj(T )

≥ 1

2

〈
h(u1(0), u2(0)), ej

〉
− 1

2
αj(T ) ≥ 0.

It follows that(
α1(T ), α2(T )

)
≤ 1

2

(
u1(T ), u2(T )

)
+

1

2
h
(
u1(0), u2(0)

)
. (8)

(7) and (8) show that(
u1(T ), u2(T )

)
=

1

2

(
u1(T ), u2(T )

)
+

1

2
h
(
u1(0), u2(0)

)
.

Therefore
(
u1(T ), u2(T )

)
− h
(
u1(0), u2(0)

)
= (0, 0).

Step 2: g(u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )) = (0, 0).
Suppose that for some j ∈ {1, 2},

βj(0) < uj(0) +
〈
g(u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )), ej

〉
.

Then

uj(0) = ϑj

(
uj(0) +

〈
g
(
u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, ej

〉)
= βj(0).

Therefore we obtain the contradiction

0 = β1(0)− u1(0) <
〈
g
(
β1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, e1

〉
≤ 0.
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or

0 = β2(0)− u2(0) <
〈
g
(
u1(0), β2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, e2

〉
≤ 0.

It follows that(
β1(0), β2(0)

)
≥
(
u1(0), u2(0)

)
+ g
(
u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
. (9)

Suppose that for some j ∈ {1, 2},

αj(0) > uj(0) +
〈
g
(
u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, ej

〉
.

Then

uj(0) = ϑj

(
uj(0) +

〈
g
(
u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, ej

〉)
= αj(0).

(10)
Therefore we obtain the contradiction

0 = α1(0)− u1(0) >
〈
g
(
α1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, e1

〉
≥ 0.

or

0 = α2(0)− u2(0) >
〈
g
(
u1(0), α2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
, e2

〉
≥ 0.

It follows that(
α1(0), α2(0)

)
≤
(
u1(0), u2(0)

)
+ g
(
u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
. (11)

(9) and (11) show that(
u1(0), u2(0)

)
=
(
u1(0), u2(0)

)
+ g
(
u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )

)
.

Therefore
g(u1(0), u2(0), u′1(0), u′2(0), u′1(T ), u′2(T )) = (0, 0) .

�

Proof. [Proof of Theorem 1] Let Θ : C1 × C1 → C1 × C1 defined by

Θ(u1, u2)(t) = A(u1, u2)+

∫ t

0

φ−1
[
(τu1

, τu2
)+

∫ s

0

F (u1, u2)(x) dx
]

ds, ∀t ∈ [0, T ] ,

where (τu1
, τu2

) is the value associated to (u1, u2) in Lemma 2. We can see that
problem (3) is equivalent to the fixed point problem (u1, u2) = Θ(u1, u2).

Using Lemma 1, Lemma 2 and Arzelá-Ascoli’s Theorem, we can see that Θ is
completely continuous. Moreover, for all (u1, u2) in C1 × C1, we have

‖Θ(u1, u2)‖C1×C1 < max
{
‖α1‖∞, ‖β1‖∞

}
+ max

{
‖α2‖∞, ‖β2‖∞

}
+ 2a(1 + T ) .

By a straightforward application of Schauder fixed point Theorem and the proper-
ties of the degree, Θ has a fixed point (U1, U2) on Bµ with

µ > max
{
‖α1‖∞, ‖β1‖∞

}
+ max

{
‖α2‖∞, ‖β2‖∞

}
+ 2a(1 + T ) .

Consequently (U1, U2) is a solution of (3). Therefore, using Lemmas 3 and 4,
(U1, U2) is also a solution of problem (1)–(2). �
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Remark 1. The approach used in this paper can be:

• generalized to n equations n ≥ 3;

• used when we have only one equation.

4 Example
Consider the system

(
u′
1(t)√

1−(u′
1(t))

2

)′
= max{0,u1(t)}√

t
+
(
u2(t)

)2
+
−|u′

1(t)|
2
√
t
−
√
t for a.e. t ∈ [0, 1];(

u′
2(t)√

1−|u′
2(t)|

)′
=
(
u1(t)

)3
+ u2(t)√

t
+ sin

(
u′1(t)

)
−eu′

2(t) for a.e. t ∈ [0, 1];(
u1(0)u2(0)

(
u′1(0) + u′2(0) + u′1(1) + u′2(1)− 4

)
,

u1(0)u2(0)
(
u′1(0)− u′2(0)− u′1(1) + u′2(1)− 4

))
= (0, 0);(

u1(1), u2(1)
)

=
(
u1(0), u2(0)

)
.

(12)
We have a = 1, T = 1, φ1(x) = x√

1−(x)2
, φ2(x) = x√

1−|x|
,

f1(t, x1, x2, y1, y2) =
max{0, x1}√

t
+ (x2)2 +

−|y1|
2
√
t
−
√
t ,

f2(t, x1, x2, y1, y2) = (x1)3 +
x2√
t

+ sin(y1)− ey2 ,

g(u, v, w, x, y, z) =
(
uv(w + x+ y + z − 4), uv(w − x− y + z − 4)

)
and

h(x, y) = (x, y) ,

where fi : [0, 1] × R4 → R, i ∈ {1, 2} are two L1-Carathéodory functions and
g : R6 → R2 and h : R2 → R2 are two continuous functions. Taking

α1(t) = α2(t) = 0 and β1(t) = β2(t) =
1

2
, ∀t ∈ [0, 1] ,

we have
(α1, α2), (β1, β2) ∈ C × C ,

αi(0) < βi(0) and αi(T ) < βi(T ), ∀i ∈ {1, 2},

max
{
|βi(T )− αi(0)|; |αi(T )− βi(0)|

}
=

1

2
< 1 = aT, ∀i ∈ {1, 2},

g(α1(0), t, w, x, y, z) = (0, 0), ∀(t, w, x, y, z) ∈
[
α2(0), β2(0)

]
× [−a, a]4,

g(t, α2(0), w, x, y, z) = (0, 0), ∀(t, w, x, y, z) ∈
[
α1(0), β1(0)

]
× [−a, a]4,

g(β1(0), t, w, x, y, z) ≤ (0, 0), ∀(t, w, x, y, z) ∈
[
α2(0), β2(0)

]
× [−a, a]4,
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g(t, β2(0), w, x, y, z) ≤ (0, 0), ∀(t, w, x, y, z) ∈
[
α1(0), β1(0)

]
× [−a, a]4,(

α1(T ), α2(T )
)
− h(x, y) ≤ (0, 0), ∀(x, y) ∈

[
α1(0), β1(0)

]
×
[
α2(0), β2(0)

]
and(

β1(T ), β2(T )
)
− h(x, y) ≥ (0, 0), ∀(x, y) ∈

[
α1(0), β1(0)

]
×
[
α2(0), β2(0)

]
.

By Theorem 1, we deduce existence of at least one solution of the system (12).
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