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Oscillation and Periodicity of a Second Order
Impulsive Delay Differential Equation with a
Piecewise Constant Argument

Gizem S. Oztepe, Fatma Karakoc, Huseyin Bereketoglu

Abstract. This paper concerns with the existence of the solutions of a sec-
ond order impulsive delay differential equation with a piecewise constant
argument. Moreover, oscillation, nonoscillation and periodicity of the solu-
tions are investigated.

1 Introduction
The differential equations with piecewise constant arguments has been studied
widely in the literature. To understand the fundamental structure of these equa-
tions we refer the books [1] and [17]. Besides the theoretical investigations, these
equations are also used to model some biological incidents [6], [8], the stabilization
of hybrid control systems with feedback discrete controller [10], and damped oscil-
lators [19]. Studies on such equations are motivated by the fact that they represent
a hybrid of discrete and continuous dynamical systems and combine the proper-
ties of both differential and difference equations. However, solutions and qualitative
properties of second order differential equations with piecewise constant arguments
have received considerable attention by several papers such as [5], [7], [12], [13],
[15], [16], [20] and references in these papers.

On the other hand, it is well known that impulsive effect plays an important
role in the investigation of many biological, physical and economical models such
as threshold phenomena, bursting rhythm models and optimal control problems.
The studies on impulsive differential equations with piecewise constant arguments
are quite new:
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In [11], Li and Shen considered the periodic value problem

y′(t) = f
(
t, y([t− k])

)
, t 6= n, t ∈ J,

4y(n+) = In(y(n)), n = 1, 2, ..., p, y(0) = y(T ),

and using the method of upper and lower solutions, they showed the existence of
at least one solution of the given boundary value problem.

In [19], Wiener and Lakshmikantham proved existence and uniqueness of the
initial value problem

x′(t) = f
(
x(t), x(g(t))

)
, x(0) = x0,

and they gave some oscillation and stability results for the same problem, where
f is a continuous function and g : [0,∞)→ [0,∞), g(t) ≤ t, is a step function.

There are also some papers of the authors: In [9], the oscillatory and periodic
solutions of the first order linear scalar impulsive delay differential equation and
in [4], existence and uniqueness and also oscillatory and periodic solutions of a
class of first order nonhomogeneous advanced impulsive differential equations with
piecewise constant arguments were studied. The asymptotic convergence of first
order delay and advanced impulsive differential equations with piecewise constant
arguments were also considered in [2], [3] and [14].

As far as we know there is not any paper which concerns a second order impul-
sive differential equations with piecewise constant arguments. With this paper we
aim to extend our experiences in first order impulsive differential equations with
piecewise constant arguments to the second order impulsive differential equations
with piecewise constant arguments.

In 1999, Wiener and Lakshmikantham [18] studied the existence and some qual-
itative properties of the solutions of the second order differential equation of the
type

x′′(t)− a2x(t) = bx([t− 1]) . (1)

Since the solutions of the equation x′′−a2x = 0 are nonoscillatory, they show that
Eq. (1) has both oscillatory and nonoscillatory solutions. In this paper, we consider
the Eq. (1) with an impulse condition.

We study the existence and some qualitative properties of the following second
order impulsive differential equation with a piecewise constant argument:

x′′(t)− a2x(t) = bx([t− 1]), t 6= n ∈ Z+ = {1, 2, . . .}, t ≥ 0 (2)

∆x′(n) = dx′(n), n ∈ Z+ (3)

where a, b, d ∈ R \ {0}, ∆x′(n) = x′(n+)− x′(n−),

x′(n+) = lim
t→n+

x′(t), x′(n−) = lim
t→n−

x′(t),

x(t) ∈ C and [·] denotes the greatest integer function.
Now, we give the definition of a solution of (2)–(3).

Definition 1. A function x(t) defined on {−1} ∪ [0,∞) is said to be a solution of
(2)–(3) if it satisfies the following conditions:
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1. x : {−1} ∪ [0,∞)→ R is continuous on [0,∞),

2. x′(t) exists and continuous at the points t /∈ Z+,

3. x′(t) is right continuous and has left-hand limits at the points t ∈ Z+,

4. x′′(t) exists at each point t ∈ [0,∞) with the possible exception of the points
t ∈ Z+ where one-sided derivatives exist,

5. x(t) satisfies (2) for any t ∈ (0,∞) with the possible exception of the points
t ∈ Z+,

6. x′(t) satisfies (3) for every t = n ∈ Z+.

2 Existence and Uniqueness of Solutions
Theorem 1. Let d 6= 1 and λ be a root of the characteristic equation

λ3 −
(2− d

1− d
cosh a

)
λ2 +

(a2 − b(cosh a− 1)(1− d)

a2(1− d)

)
λ− b(cosh a− 1)

a2(1− d)
= 0 . (4)

Then the following function xλ(t) is a solution of (2)–(3) on [0,∞):

xλ(t) =
λ[t−1]b

a2(e−a − ea)

(
ea({t}−1) − e−a({t}−1) + e−a{t} − ea{t} − e−a + ea

)
+

λ[t]

e−a − ea
(
ea({t}−1) − e−a({t}−1)

)
+

λ[t+1]

e−a − ea
(
e−a{t} − ea{t}

)
(5)

where {t} is the fractional part of t.
Moreover,

x(t) = c1xλ1
(t) + c2xλ2

(t) + c3xλ3
(t) (6)

is a general solution of (2)–(3) on [0,∞) where ci, i = 1, 2, 3, are arbitrary constant
and λi, i = 1, 2, 3, are different roots of (4).

Proof. Assume that v : [0, 1)→ R is a continuous function with

v(0) = 1, v(1) = λ . (7)

Denote x(t) = xn(t) = λnv(s) is a solution of (2)–(3) on [n, n+1) where s := t−n,
n ∈ Z+, 0 ≤ s < 1 and λ is a constant.

On the other hand, for t ∈ [n, n+ 1) we have

x′(t) = λn
dv

ds
, x′′(t) = λn

d2v

ds2
and x([t− 1]) = λn−1 .

So, we can rewrite the Eq. (2) as

v′′ − a2v = bλ−1. (8)
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By solving the differential equation (8) with (7), we find

v(s) =
(a2(e−a − λ) + bλ−1(e−a − 1)

a2(e−a − ea)

)
eas

+
(a2(λ− ea)− bλ−1(ea − 1)

a2(e−a − ea)

)
e−as − b

a2
λ−1 . (9)

Since xn(t) = λnv(s) and s = t− n, we get

xn(t) =
λn−1b

a2(e−a − ea)

(
ea(t−n−1) − e−a(t−n−1) + e−a(t−n) − ea(t−n) − e−a + ea

)
+

λn

e−a − ea
(
ea(t−n−1) − e−a(t−n−1)) +

λn+1

e−a − ea
(e−a(t−n) − ea(t−n)) , (10)

where n ≤ t < n+ 1. If we take the derivative of (10), we obtain

x′n(t) =
λn−1b

a(e−a − ea)

(
ea(t−n−1) − e−a(t−n−1) − e−a(t−n) − ea(t−n)

)
+

λna

e−a − ea
(
ea(t−n−1) + e−a(t−n−1)

)
− λn+1a

e−a − ea
(
e−a(t−n) + ea(t−n)

)
, (11)

where n ≤ t < n+ 1. Using the impulse condition (3) at t = n+ 1, we have

x′n(n+ 1) = (1− d)x′n+1(n+ 1)

and this equality yields us to the characteristic equation (4). On the other hand, if
λ1, λ2 and λ3 are different roots of Eq. (4), then it is trivial that xλ1(t), xλ2(t) and
xλ3

(t) are independent solutions of (2)–(3). Thus, a general solution of (2)–(3) is
in the form of (6). �

Theorem 2. If λ1, λ2 and λ3 are different roots of Eq. (4) and

λ2λ3(λ2 − λ3) + λ1λ2(λ1 − λ2) 6= λ1λ3(λ1 − λ3), (12)

then (2)–(3) with the initial conditions

x(−1) = x−1, x(0) = x0, x′(0) = y0 (13)

has a unique solution on [0,∞) where x−1, x0 and y0 are given numbers.

Proof. Substituting the initial conditions (13) into (6) we have the system
x−1 = c1xλ1(−1) + c2xλ2(−1) + c3xλ3(−1)

x0 = c1xλ1(0) + c2xλ2(0) + c3xλ3(0)

y0 = c1x
′
λ1

(0) + c2x
′
λ2

(0) + c3x
′
λ3

(0)

(14)

It can be easily seen that if the determinant of coefficients of the system (14)

D =
( a

cosh a

)(λ2λ3(λ2 − λ3) + λ1λ2(λ1 − λ2)− λ1λ3(λ1 − λ3)

λ1λ2λ3

)
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is different from zero, then the system (14) has a unique solution c1, c2, c3. By the
virtue of the hypothesis (12) and a 6= 0, we get D 6= 0. This proves the theorem.

�

The above theorems are given in the case of the roots of Eq. (4) are different
from each other. In the case of two or all of them are equal, we stated the existence
and uniqueness theorems as follows:

Theorem 3. (a) If λ1 = λ2 = λ and λ3 is different, then a general solution of
(2)–(3) is

x(t) = c1x1(t) + c2x2(t) + c3x3(t) (15)

where ci, i = 1, 2, 3 are arbitrary constant and

x1(t) = A1([t])v1({t}) +A2([t])v2({t}) +A3([t])v3({t})
x2(t) = [t− 1]A1([t])v1({t}) + [t]A2([t])v2({t}) + [t+ 1]A3([t])v3({t})
x3(t) = xλ3(t)

where {t} is the fractional part of t;

A1([t]) =
λ[t−1]b

a2(e−a − ea)
, A2([t]) =

λ[t]

e−a − ea
, A3([t]) =

λ[t+1]

e−a − ea
; (16)

v1({t}) = ea({t}−1) − e−a({t}−1) + e−a{t} − ea{t} − e−a + ea,

v2({t}) = ea({t}−1) − e−a({t}−1)

v3({t}) = e−a{t} − ea{t};

(17)

and xλ3
(t) is the same as (5) provided that replacing λ with λ3.

(b) If λ1 = λ2 = λ3 = λ, then a general solution of (2)–(3) is again given by
(15). But in this case

x1(t) = A1([t])v1({t}) +A2([t])v2({t}) +A3([t])v3({t})
x2(t) = [t− 1]A1([t])v1({t}) + [t]A2([t])v2({t}) + [t+ 1]A3([t])v3({t})
x3(t) = [t− 1]2A1([t])v1({t}) + [t]2A2([t])v2({t}) + [t+ 1]2A3([t])v3({t})

where {t} is the fractional part of t, Ai and vi, i = 1, 2, 3 are given by (16)
and (17), respectively.

Theorem 4. (a) Assume that λ1 = λ2 = λ and λ3 is different. If

λ2 − 2λλ3 + λ23 6= 0,

then (2)–(3) with the initial conditions (13) has a unique solution on [0,∞).

(b) If λ1 = λ2 = λ3 = λ, then (2)–(3) with the initial conditions (13) has a
unique solution on [0,∞).
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The proofs of Theorem 3 and 4 are similar to the proofs of Theorem 1 and 2 ,
respectively.

Corollary 1. If b = −a2, there exists constant solutions of (2)–(3). Since constant
solutions has already satisfied the impulse condition (3), we do not need extra
condition on impulse condition.

Corollary 2. If d = 0, then the impulse condition (3) is removed and Eq. (2)–(3)
reduces to the Eq. (1.1) in [18].

Corollary 3. If a = 0, then

xλ(t) =
b

2
{t}({t} − 1)λ[t−1] − ({t} − 1)λ[t] + {t}λ[t+1] (18)

is a solution of (2)–(3) on the interval [0,∞) where {t} is the fractional part of t.

Remark 1. The solution (18) is also a limiting case of (5) as t→∞.

Remark 2. If the roots of the Eq. (4) are real, then the solutions of the Eq. (2)–(3)
are real.

3 Oscillation and Periodicity of Solutions
In this section, we study the qualitative aspect of the given Eq. (2)–(3) such as
oscillation and periodicity. The following theorem is obtained from (6) easily:

Theorem 5. All solutions of (2)–(3) approaches to zero as t→ +∞ if and only if
the roots of Eq. (4) λi, i = 1, 2, 3 satisfy the inequalities

|λi| < 1, i = 1, 2, 3.

Theorem 6. If b < 0 and d < 1, then (2)–(3) has oscillatory solutions.

Proof. Considering (5) for t ∈ [n, n+ 1), we have

x(n)x(n+ 1) = λ2n+1 (19)

where λ is a root of (4).
On the other hand, using Descartes’ rule of signs method one can easily see

that the function

f(−λ) = −λ3 −
(2− d

1− d
cosh a

)
λ2 −

(
a2 − b(cosh a− 1)(1− d)

a2(1− d)

)
λ− b(cosh a− 1)

a2(1− d)

has a single negative root which implies that the characteristic equation (4) has a
negative root. So, by (19)

x(n)x(n+ 1) < 0

hence (2)–(3) has oscillatory solutions. �

Remark 3. If d = 0, then Theorem 6 reduces to Theorem 3.1 in [18].
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Theorem 7. Assume that d < 1 and 0 < b <
a2

(cosh a− 1)(1− d)
, then there exists

nonoscillatory solutions of (2)–(3).

Proof. Let us rewrite Eq. (4) as

λ3 + αλ2 + βλ+ γ (20)

where

α =
d− 2

1− d
cosh a, β =

a2 − b(cosh a− 1)(1− d)

a2(1− d)
, γ = −b(cosh a− 1)

a2(1− d)
. (21)

By using the hypotheses of theorem, we obtain that α < 0, β > 0 and γ < 0.
Therefore, from Descartes’ rule of signs method, there exists at least one positive
root of Eq. (4). So, (2)–(3) has nonoscillatory solutions. �

Theorem 8. If d < 1 and b > a2

(cosh a−1)(1−d) , then (2)–(3) has both oscillatory and
nonoscillatory solutions.

Proof. Hypotheses of the theorem give us that α < 0, β < 0 and γ < 0 where α,
β, γ are the same notations in (21). By using Descartes’ rule of signs method, we
conclude that there exists a unique positive root of Eq. (4). So other roots must
be negative or complex. Therefore, Eq. (4) has both oscillatory and nonoscillatory
solutions. �

Remark 4. If d = 0, then hypotheses of Theorem 8 reduces to b >
a2

cosh a− 1
which

is the same in Eq. (3.4) in [18].

Theorem 9. If d < 1, b < 0 and

α2 − 4β < 0,

then each solution of (2)–(3) is oscillatory where α and β are defined as in (21).

Proof. The characteristic equation (4) can be written as

g(λ) = h(λ)

where g(λ) = λ2 + αλ + β is a parabola and h(λ) =
γ

λ
is a hyperbola. On the

other hand, the minimum point of the parabola g(λ) is λmin = −α2 and by using
the hypotheses of theorem, we get

h(λmin) < g(λmin).

Thus, the parabola g(λ) intersects the hyperbola h(λ) at a single point with a
negative absissa. This means that Eq. (4) has no positive roots which implies that
each solution of (2)–(3) is oscillatory. �
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Theorem 10. Every solution of (2)–(3) is k-periodic if and only if

λk = 1 (22)

where λ is the root of characteristic equation (4) and k is a positive integer.

Proof. Assume that (2)–(3) has k-periodic solution. So,

xλ(t+ k) = xλ(t) (23)

where xλ(t) is given by (5). It is obvious that

[t+ k − 1] = [t− 1] + k, [t+ k] = [t] + k, {t+ k} = {t}, {t+ k} = {t} − 1

here {t} denotes the fractional part of t. By using (5) and (23) we obtain

xλ(t)(λk − 1) = 0

and this implies (22).
Conversely, let (22) is true. Then, from (5) we have

xλ(t+ k)− xλ(t) = 0.

This means that (2)–(3) has k-periodic solution. �

Corollary 4. If d = 2 and

b =
a2(1 + cosh a(2− d))

(cosh a− 1)(1− d)
, (24)

then (2)–(3) has 3-periodic solutions.

Proof. Substituting (24) in Eq. (4), we have

(λ2 + λ+ 1)

(
λ− 1 + cosh a(2− d)

(1− d)2

)
= 0. (25)

The roots of (25) are

λ1 =
−1 + i

√
3

2
, λ2 =

−1− i
√

3

2
and λ3 =

1 + cosh a(2− d)

(1− d)2
.

Since
λ31 = λ32 = 1,

according to Theorem 10, it is said that Eq. (2)–(3) has 3-periodic solutions. �

Remark 5. If d = 0, then the condition (24) reduces to

b

a2
=

2 cosh a+ 1

cosh a− 1

which is the same as in Theorem 3.7 in [18].
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Example 1. Let us consider the following equation

x′′(t)− x(t) =
1

1− cosh 1
x([t− 1]), t 6= n ∈ Z+ = {1, 2, . . .}, t ≥ 0 (26)

∆x′(n) = 2x′(n), n ∈ Z+. (27)

This is a special case of Eq. (2)–(3) with a = 1, b = 1
(1−cosh 1) and d = 2.

In this example, hypotheses of Corollary 4 are satisfied, so it is said that this
equation has 3-periodic solutions. Indeed, the characteristic roots of the equa-
tion (4) are

λ1 =
−1 + i

√
3

2
, λ2 =

−1− i
√

3

2
and λ3 = 1,

and it is easily seen λ31 = λ32 = λ33 = 1. We can also confirm these periodic solutions
by using the formula (5) for the solutions of the Eq. (2)–(3). The following figure

shows 3-periodic solutions of Eq. (26)–(27) for λ = −1+i
√
3

2 .

Figure 1: Real and imaginary parts of the 3-Periodic solutions of Eq. (26)–(27) for

λ = −1+i
√
3

2 .
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