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Isometries of Riemannian and sub-Riemannian
structures on three-dimensional Lie groups

Rory Biggs

Abstract. We investigate the isometry groups of the left-invariant Rieman-
nian and sub-Riemannian structures on simply connected three-dimensional
Lie groups. More specifically, we determine the isometry group for each nor-
malized structure and hence characterize for exactly which structures (and
groups) the isotropy subgroup of the identity is contained in the group of
automorphisms of the Lie group. It turns out (in both the Riemannian
and sub-Riemannian cases) that for most structures any isometry is the
composition of a left translation and a Lie group automorphism.

1 Introduction
For any left-invariant Riemannian structure on a simply connected nilpotent Lie
group, the isometry group decomposes as a semidirect product of the group of
left translations and the isotropy subgroup of the identity; moreover, the isotropy
subgroup of the identity is contained in the group of automorphisms of the Lie
group ([29]). The same property has been shown to hold true for a certain class of
sub-Riemannian structures on simply connected nilpotent Lie groups, namely the
sub-Riemannian Carnot groups ([14], [16], see also [19]). In fact, recently it has
been shown that this property generalizes to any nilpotent Lie group equipped with
a left-invariant distance that induces the manifold topology ([17]). On the other
hand, for left-invariant Riemannian structures on simple Lie groups, it is known
that the connected component of the identity of the isometry group is contained
in the group of left and right translations of the Lie group ([10]).

In this paper we investigate the isometry groups of the left-invariant Rieman-
nian and sub-Riemannian structures on three-dimensional simply connected Lie
groups. In particular, we wish to characterize those structures and groups (beyond
the nilpotent ones) for which the isotropy subgroup of the identity is contained in
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the group of automorphisms of the Lie group. Towards that end, we first classify the
Riemannian (resp. sub-Riemannian) structures on each Lie group up to isometric
Lie group automorphism. We then determine the isotropy subgroup of the identity
for each normalized structure (the isometry group is generated by the group of left
translations and the isotropy subgroup). In the Riemannian case, the (linearized)
isotropy subgroup is essentially determined by finding the group of linear isomor-
phisms of the Lie algebra preserving the metric, the curvature tensor R, and its
covariant derivative ∇R. In the sub-Riemannian case, we show that any isometry
of the structure is an isometry of some associated Riemannian structure. We find,
in both the Riemannian case (Theorem 1) and the sub-Riemannian case (Theo-
rem 2), that for most groups and structures the isotropy subgroup of the identity
is contained in the group of automorphisms of the Lie group. The isometry groups
for the Riemannian structures on unimodular simply connected Lie groups have
previously been described in [13] (see also [25]); we correct a small mistake made in
[13] with respect to the isometry groups of the Riemannian structures on S̃L(2,R).

Two Riemannian structures on a completely solvable simply connected Lie
group are isometric if and only if there exists an isometry between them that is also
a Lie group isomorphism [2], [3] (see also [11]). We briefly show that this character-
ization essentially holds true for Riemannian (Proposition 2) and sub-Riemannian
(Proposition 6) structures on any simply connected three-dimensional Lie group.

The structure of the paper is as follows. Section 2 contains the preliminaries.
The Riemannian structures are treated in Section 3. We describe the procedure
used in calculating the isotropy subgroup of the identity and give a classification
of the structures; we then give a general characterization of when the isotropy
subgroup is contained in the group of automorphisms of the Lie group. Details
for a typical case follows, after which the exceptional cases are treated. The sub-
Riemannian structures are likewise treated in Section 4. A classification of the
three-dimensional Lie algebras is supplied in Appendix A. We present, in Ap-
pendix B, a catalogue of the Riemannian and sub-Riemannian structures on each
simply connected three-dimensional Lie group; this includes a full description of
the normalized structures and their isotropy subgroups. In Tables 2 and 3 an in-
dex, by isotropy subgroup, of the Riemannian and sub-Riemannian structures is
provided. In Figures 1, 2, and 3 the (normalized) principle Ricci curvatures are
plotted for each Riemannian structure. As a simple byproduct to the paper, we
give a classification of the symmetric Riemannian structures on simply-connected
three-dimensional Lie groups in Appendix C. Finally, in Appendix D, we briefly
discuss (with reference to the paper [7]) the classification of the Hamilton–Poisson
systems associated to the Riemannian and sub-Riemannian structures. We note
thatMathematica was used to facilitate most of the computations for this paper.

2 Preliminaries
2.1 Invariant sub-Riemannian structures on Lie groups
A left-invariant sub-Riemannian structure on a (real, finite-dimensional, connected)
Lie group G with identity 1 is a triplet (G,D,g), where D is a smooth noninte-
grable left-invariant distribution on G and g is a left-invariant Riemannian metric
on D. In other words, D(1) is a linear subspace of the Lie algebra g of G and
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D(x) = xD(1) for x ∈ G; g1 is a (positive definite) inner product on D(1) and
gx(xA, xB) = g1(A,B) for xA, xB ∈ D(x). Here the product xA is given by
T1Lx ·A, where Lx is the left translation by x and T1Lx is the tangent map of Lx
at the identity (indeed, TG has the left trivialization TG ∼= G×g, T1Lx·A↔ (x,A)).
Whenever convenient, we identify A ∈ g with its corresponding left-invariant vec-
tor field X(x) = xA. When D = TG, we have a left-invariant Riemannian struc-
ture, which we simply denote (G,g). Any left-invariant structure (G,D,g) on G is
uniquely determined by the subspace D(1) ⊆ g and the inner product g1 on D(1).
A list of k smooth vector fields (X1, . . . , Xk) is said to be an orthonormal frame
for (G,D,g) if D(x) = span(X1(x), . . . , Xk(x)) and g(Xi, Xj) = δij ; we note that
any left-invariant sub-Riemannian structure admits a global orthonormal frame of
left-invariant vector fields.

An absolutely continuous curve x(·) : [0, t1] → G is called a D-curve if ẋ(t) ∈
D(x(t)) for almost every t ∈ [0, t1]. We shall assume that D satisfies the bracket
generating condition, i.e., D(1) generates g; by the Chow–Rashevskii theorem this
condition is necessary and sufficient for any two points in G to be connected by
a D-curve (see, e.g., [21]). The length of a D-curve x(·) is given by `(x(·)) =∫ t1
0

√
g(ẋ(t), ẋ(t)) dt. Any sub-Riemannian structure (G,D,g) is endowed with a

natural metric space structure, namely the Carnot–Carathéodory distance:

d(x1, x2) = inf
{
`(x(·)) : x(·) is a D-curve curve joining x1 and x2

}
.

By left invariance d(x1, x2) = d(1, x−11 x2). A D-curve curve x(·) that realizes the
Carnot–Carathéodory distance between two points is called a minimizing geodesic.
For left-invariant sub-Riemannian structures on Lie groups, the Carnot–Carathéodory
metric is complete (cf. [4], [5]). Hence, any two points in G can be joined by a min-
imizing geodesic (see, e.g., [21]).

An isometry between two left-invariant sub-Riemannian (or Riemannian) struc-
tures (G,D,g) and (G,D,g) is a diffeomorphism φ : G→ G such that

φ∗D = D and g = φ∗g

i.e., Txφ · D(x) = D(φ(x)) and gx(xA, xB) = gφ(x)(Txφ · xA, Txφ · xB). If φ is
additionally a Lie group isomorphism, then we say that φ is an L-isometry. If
instead g = rφ∗g for some r > 0, then we say the structures are isometric up to
rescaling. We denote the group of isometries (resp. L-isometries) of a structure
(G,D,g) by Iso(G,D,g) (resp. LIso(G,D,g)). The isotropy subgroup of x ∈ G (i.e.,
the subgroup of isometries fixing x) will be denoted by Isox(G,D,g).

Remark 1. Isometries are distance preserving (i.e., for any isometry φ, we have that
d(x, y) = d(φ(x), φ(y))). Conversely, every distance-preserving diffeomorphism φ
is an isometry (see, e.g., [27]). Moreover, if all geodesics are normal, then any
distance-preserving homeomorphism is smooth ([14], see also [9]).

Every left translation is an isometry. Hence, the group of isometries Iso(G,D,g)
is generated by the group of left translations and the isotropy subgroup of the
identity. Indeed, any isometry φ ∈ Iso(G,D,g) can be written as φ = Lφ(1) ◦ φ,
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where φ ∈ Iso1(G.D,g). When the isotropy subgroup Iso1(G,g) is a subgroup of
the automorphism group Aut(G), then the group of left translations is normal in
Iso(G,D,g) and Iso(G,D,g) decomposes as a semidirect product of the group of
left translations and the isotropy subgroup Iso1(G,D,g). Consequently, in order to
describe the full isometry group Iso(G,D,g), it is enough to describe the isotropy
subgroup Iso1(G,D,g).

Any isometry of (G,D,g) is uniquely determined by its tangent map at a point
([19, Section 2.2]). Accordingly, we shall denote by

d Iso1(G,D,g) = {T1φ : φ ∈ Iso1(G,D,g)}

the corresponding linearized isotropy subgroup; we note that

Iso1(G,D,g) ∼= d Iso1(G,D,g) .

We likewise denote by dLIso(G,D,g) the group of linearized L-isometries

dLIso(G,D,g) = {T1φ : φ ∈ LIso(G,D,g)} ;

on a simply connected Lie group, we have that

dLIso(G,D,g) = {ψ ∈ Aut(g) : ψ · D(1) = D(1), ψ∗g1 = g1} .

2.2 Some elements of invariant Riemannian geometry
Let∇ denote the Riemannian connection associated to (G,g). As g is left-invariant,
it follows that ∇ is also left-invariant. In particular, ∇ gives rise to a bilinear map
∇ : g×g→ g (given by the action of ∇ on left-invariant vector fields). Accordingly,
the curvature and Ricci tensors are also left invariant and are entirely described
by their restrictions to the Lie algebra g; we shall exclusively work with these
restricted versions in all computations. We briefly recall some useful formulae for
the connection, curvature tensor, and Ricci tensor in this context ([20]).

For left-invariant vector fields Y , Z, and W (or elements Y,Z,W ∈ g), we have

g(∇Y Z,W ) =
1

2

(
g([Y,Z],W )− g([Z,W ], Y ) + g([W,Y ], Z)

)
.

Accordingly, if (X1, X2, . . . , Xn) is a left-invariant orthonormal frame for (G,g),
then

∇Y Z =

n∑
i=1

g(∇Y Z,Xi)Xi

=

n∑
i=1

1

2

(
g([Y,Z], Xi)− g([Z,Xi], Y ) + g([Xi, Y ], Z)

)
Xi.

The (1, 3)-curvature tensor R for (G,g) is given by

RY Z = ∇[Y,Z] −∇Y∇Z +∇Z∇Y ;
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its covariant derivative ∇R is given by

∇R(Y, Z1, Z2, Z3) =∇YR(Z1, Z2, Z3)−R(∇Y Z1, Z2, Z3)

−R(Z1,∇Y Z2, Z3)−R(Z1, Z2,∇Y Z3).

Note that, as (G,g) is complete, it is symmetric if and only if ∇R ≡ 0. The (1, 1)-
Ricci tensor is given by Ric(Y ) =

∑3
i=1R(Xi, Y,Xi); the principle Ricci curvatures

are the eigenvalues of this linear endomorphism, whereas the scalar curvature is its
trace.

3 Riemannian structures
We investigate the left-invariant Riemannian structures on the simply connected
three-dimensional Lie groups. First, we present a classification of these struc-
tures up to L-isometry and rescaling. This essentially amounts to normalizing an
arbitrary (positive definite) inner product on each Lie algebra by the group of au-
tomorphisms. The automorphism group for each Lie algebra, and the normalized
metric for that Lie algebra, is exhibited in Appendix B.

Proposition 1 (cf. [12]; see also [23]). Any left-invariant Riemannian structure
on a simply connected three-dimensional Lie group is L-isometric, up to rescaling,
to exactly one of the following Riemannian structures:

3g1 : (E1, E2, E3) (1)

g2.1 ⊕ g1 :
(
E1, E2,

1√
1−β2

(βE1 − E3)
)
, 0 ≤ β < 1 (2)

g3.1 : (E1, E2, E3) (3)

g3.2 : ( 1√
β
E1, E2, E3), β > 0 (4)

g3.3 : (E1, E2, E3) (5)

g03.4 : ( 1√
β
E1, E2, E3), 0 < β ≤ 1 (6)

gα3.4 : ( 1√
β
E1, E2, E3), 0 < β ≤ 1 (7)

g03.5 : ( 1√
β
E1, E2, E3), 0 < β ≤ 1 (8)

gα3.5 : ( 1√
β
E1, E2, E3), 0 < β ≤ 1 (9)

g3.6 : ( 1√
β1
E1,

1√
β2
E2, E3), β1 ≥ β2 > 0 (10)

g3.7 : ( 1√
β1
E1,

1√
β2
E2, E3), β1 ≥ β2 ≥ 1. (11)

Here each normalized Riemannian structure (G,g) is specified by the Lie algebra
g of G and an orthonormal frame for g in terms of the basis for g as given in
Appendix A.

For each of the normal forms given above, we carry out the following program.

1. The (restricted) connection ∇ : g×g→ g is determined. The scalar curvature
ρ and principle Ricci curvatures λ1 ≥ λ2 ≥ λ3 are calculated; when ρ 6= 0 the
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Riemannian metric is rescaled such that |ρ| = 1. We also determine whether
or not the structure is symmetric. In Figures 1, 2, and 3 the (normalized)
principle Ricci curvatures λ1 ≥ λ2 are plotted for each structure (clearly
λ3 = ρ− λ1 − λ2). Table 2 lists the Riemannian structures indexed by their
isotropy subgroups.

2. The subgroup of Lie algebra isomorphisms preserving the metric, namely
dLIso(G,g), is determined.

3. The linearized isotropy subgroup d Iso1(G,g) is determined (as described be-
low).

4. For the symmetric structures, we compute the Riemannian exponential map
Exp : g → G and its inverse. A set of generators for Iso1(G,g) is also com-
puted in this case.

The first two points are a fairly straightforward computation. The fourth point is
somewhat more involved, although the procedure is standard (we make use of the
approach given by geometric control theory in our calculations, see, e.g., [5], [15]).
For the third point, which is the main interest of this paper, we proceed as follows.

Any isometry φ ∈ Iso(G,g) preserves the metric, the curvature tensor R, and
its covariant derivative ∇R. Consequently, for any ψ ∈ d Iso1(G,g) we have that
ψ∗g1 = g1, ψ∗R = R, and ψ∗∇R = ∇R, i.e.,

g1(ψ ·A1, ψ ·A2) = g1(A1, A2)

R(ψ ·A1, ψ ·A2, ψ ·A3) = ψ ·R(A1, A2, A3)

∇R(ψ ·A1, ψ ·A2, ψ ·A3, ψ ·A4) = ψ · ∇R(A1, A2, A3, A4)

for A1, . . . , A4 ∈ g. Accordingly, let

Sym(G,g) = {ψ ∈ GL(g) : ψ∗g1 = g1, ψ
∗R = R, ψ∗∇R = ∇R}.

We have that d Iso1(G,g) is a subgroup of Sym(G,g). When the structure is sym-
metric, we make use of a well-known result.

Lemma 1. If ∇R ≡ 0, then d Iso1(G,g) = Sym(G,g).

Proof. The Riemannian structure (G,g) is complete and the group G is simply
connected by assumption. Hence, for any linear map ψ ∈ GL(g) preserving the
curvature tensor at the identity, there exists a unique isometry φ ∈ Iso1(G,g) such
that T1φ = ψ (see, e.g., [24, Chapter 8, Theorem 55]). It therefore follows that
Sym(G,g) ≤ d Iso1(G,g) and thus d Iso1(G,g) = Sym(G,g). �

On the other hand, if Sym(G,g) ≤ Aut(g), then the following holds true.

Lemma 2. If Sym(G,g) ≤ Aut(g), then d Iso1(G,g) = Sym(G,g) and Iso1(G,g) =
LIso(G,g).
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Proof. Let ψ ∈ Sym(G,g) ≤ Aut(g). As G is assumed to be simply connected,
there exits an automorphism φ ∈ Aut(G) such that T1φ = ψ. Hence, as Txφ · xA =
T1Lφ(x) · ψ(A), we find that φ ∈ Iso1(G,g). Thus Sym(G,g) ≤ d Iso1(G,g) and
so d Iso1(G,g) = Sym(G,g). Accordingly, as d Iso1(G,g) ≤ Aut(g), it follows that
Iso1(G,g) ≤ Aut(G) and so Iso1(G,g) = LIso(G,g). �

Remark 2. The Lie algebra sym(G,g) of Sym(G,g) consists of linear maps ψ ∈ gl(g)
such that

0 = g1(ψ ·A1, A2) + g1(A1, ψ ·A2)

ψ ·R(A1, A2, A3) = R(ψ ·A1, A2, A3) +R(A1, ψ ·A2, A3) +R(A1, A2, ψ ·A3)

ψ · ∇R(A1, A2, A3, A4) =∇R(ψ ·A1, A2, A3, A4) +∇R(A1, ψ ·A2, A3, A4)

+∇R(A1, A2, ψ ·A3, A4) +∇R(A1, A2, A3, ψ ·A4)

for all A1, . . . A4 ∈ g. In several cases sym(G,g) can quite easily be shown to be
trivial; consequently, we have that Sym(G,g) is a discrete subgroup of O(3) in those
cases. By [13, Corollary 2.8], it then follows that Iso1(G,g) = LIso(G,g).

It turns out that most structures have the property that Sym(G,g) ≤ Aut(g)
or are symmetric. Accordingly, in these cases the isotropy subgroup may be deter-
mined by means of Lemma 1 or 2; a typical case is treated in Section 3.1. In fact,
only on Aff(R)0 × R do there exist structures such that Sym(G,g) 6≤ Aut(g) and
∇R 6≡ 0; this case is considered exceptional and treated separately in Section 3.2.1.
The results for the Riemannian structures on each simply connected Lie group are
catalogued in Appendix B; Table 2 lists the Riemannian structures indexed by their
isotropy subgroups. With these results at hand, we are able to make the following
general claims.

Theorem 1. Let (G,g) be a Riemannian structure on a simply connected three-
dimensional Lie group G.

1. If ∇R 6≡ 0 and G 6∼= Aff(R)0 × R, then Iso1(G,g) ≤ Aut(G).

2. If ∇R 6≡ 0 and G ∼= Aff(R)0 × R, then Iso1(G,g) 6≤ Aut(G).

3. If ∇R ≡ 0 and G is non-Abelian, then Iso1(G,g) 6≤ Aut(G).

4. If G is Abelian, then Iso1(G,g) ≤ Aut(G) trivially.

5. In all cases, d Iso1(G,g) = Sym(G,g).

Corollary 1. Let G be non-Abelian simply connected three-dimensional Lie group.
For any left-invariant Riemannian structure (G,g), we have that Iso1(G,g) ≤
Aut(G) if and only if G 6∼= Aff(R)× R and ∇R 6≡ 0.

Proposition 2. Let G be a simply connected three-dimensional Lie group. Two
Riemannian structures g1 and g2 on G are isometric up to rescaling if and only if
they are L-isometric up to rescaling.
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Proof. It suffices to show that no two of the normal forms up to L-isometry (and
rescaling) are isometric. In Appendix B, the structures with nonzero scaler cur-
vature ρ are rescaled so that |ρ| = 1; the associated principle Ricci curvatures
are given in each case. It turns out that in almost all cases, if two (normalized)
structures are not L-isometric, then their principle Ricci curvatures differ. Indeed,
only on S̃L(2,R) does there exist a family of (normalized) structures, no two of
which are L-isometric, with identical principle Ricci curvatures. We show that
these structures are not isometric by identifying an additional scalar invariant; de-
tails are given in Section 3.2.2.

�

Remark 3. There exists Riemannian structures on nonisomorphic Lie groups which
are nevertheless isometric. For example, we have an isometry between a Rieman-
nian structure on S̃E(2) and the Euclidean structure on R3; there also exists an
isometry between the Riemannian structures on Gα3.5 and G3.3 (see Appendix B.8).
Additionally, there exists an isometry between some Riemannian structures on
S̃L(2,R) and Aff(R)0 × R (see Section 3.2.1). The only group which admits Rie-
mannian structures which are isometric but not L-isometric is S̃E(2); indeed, the
Euclidean structures (i.e., with R ≡ 0) are all isometric, but not L-isometric (they
are, however, L-isometric up to rescaling).

3.1 A typical case
We consider the simply connected (universal covering of the) Euclidean group

S̃E(2) =




1 0 0 0
x1 cosx3 − sinx3 0
x2 sinx3 cosx3 0
0 0 0 ex3

 : x1, x2, x3 ∈ R


as a typical case. Its Lie algebra

g03.5 =




0 0 0 0
a1 0 −a3 0
a2 a3 0 0
0 0 0 a3

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R


has nonzero commutator relations [E2, E3] = E1 and [E3, E1] = E2. Any left-
invariant Riemannian structure on S̃E(2) is L-isometric to the left-invariant Rie-
mannian structure given by g1 = r diag(β, 1, 1) for some r > 0 and 0 < β ≤ 1

(Proposition 1); the Riemannian structure (S̃E(2),g) admits the orthonormal frame
1√
r
( 1√

β
E1, E2, E3). The associated (restricted) connection ∇ : g03.5 ⊕ g03.5 → g03.5 is

given by

∇AB =
(β − 1)a2b3 − (β + 1)a3b2

2β
E1 +

(β − 1)a1b3 + (β + 1)a3b1
2

E2

− (β − 1)(a1b2 + a2b1)

2
E3.
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Here A = a1E1 + a2E2 + a3E3 and B = b1E1 + B2E2 + b3E3. The associated
(1, 3)-curvature tensor R : g03.5 ⊕ g03.5 ⊕ g03.5 → g03.5 is given by

R(A,B,C) = (β−1)(−a1((β−1)b2c2+(β+3)b3c3)+a2(β−1)b1c2+a3(β+3)b1c3)
4β E1

+ (β−1)(a1(β−1)βb2c1+a2(b3(3βc3+c3)−(β−1)βb1c1)−a3(3β+1)b2c3)
4β E2

+ (β−1)(b3(a1β(β+3)c1−a2(3βc2+c2))+a3(b2(3βc2+c2)−β(β+3)b1c1))
4β E3.

We have that ∇R ≡ 0 if and only if β = 1; also, note that R ≡ 0 when β = 1. The

principle Ricci curvatures are
{

1−β2

2βr ,−
(1−β)2
2βr ,− 1−β2

2βr

}
and the scalar curvature is

ρ = − (1−β)2
2βr . Assuming 0 < β < 1 and taking r = (1−β)2

2β , we obtain normalized

curvatures ρ = −1 and λ1 = 1+β
1−β ≥ λ2 = −1 ≥ λ3 = − 1+β

1−β . Note that the
principle Ricci curvatures uniquely determine β.

We now proceed to finding the isotropy subgroup. If β = 1, then ∇R ≡ 0

and R ≡ 0; so Sym(S̃E(2),g) ∼= O(3). Consequently, by Lemma 1, we have that
Iso1(S̃E(2),g) = Sym(S̃E(2),g). Assume that 0 < β < 1. Let ψ ∈ Sym(G,g).
As ψ∗g1 = g1, we have that φ is an orthogonal transformation and hence can be
written as

ψ =

 cos θ1 − 1√
β

sin θ1 0√
β sin θ1 cos θ1 0

0 0 1

  cos θ2 0 − 1√
β

sin θ2
0 1 0√

β sin θ2 0 cos θ2


×

 cos θ3 − 1√
β

sin θ3 0√
β sin θ3 cos θ3 0

0 0 1

 1 0 0
0 1 0
0 0 σ


for some θ1, θ2, θ3 ∈ R and σ ∈ {−1, 1}. We have that

0 = ψ ·R(E2, E1, E1)−R(ψ · E2, ψ · E1, ψ · E1)

=
(1− β) sin θ1 sin2 θ2 cos θ3√

β
E1 + (1− β)β cos θ1 sin

2 θ2 cos θ3E2

− 1

2
(1− β)

(
(1 + β) sin(2θ1) cos θ2 cos θ3 +

(
(1 + β) cos(2θ1) + β − 1

)
sin θ3

)
sin θ2E3.

Hence sin θ1 sin θ2 cos θ3 = 0 and cos θ1 sin θ2 cos θ3 = 0; thus sin θ2 cos θ3 = 0.
Similarly, as ψ ·R(E2, E1, E2)−R(ψ ·E2, ψ ·E1, ψ ·E2) = 0, we get sin θ2 sin θ3 = 0.
It therefore follows that sin θ2 = 0. Thus

ψ =

 σ1 cos θ − 1√
β

sin θ 0

σ1
√
β sin θ cos θ 0
0 0 σ2


for some θ ∈ R and σ1, σ2 ∈ {−1, 1}. From

ψ ·R(E3, E1, E1)−R(ψ · E3, ψ · E1, ψ · E1) = 0 ,

it then follows that sin θ = 0. Consequently, we have that ψ = diag(σ1, σ2, σ3) for
some σ1, σ2, σ3 ∈ {−1, 1} (moreover, for any such ψ we have that ψ∗R = R). We
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note, however, that one can show that ψ = diag(σ1, σ2, σ3) more simply in this
case by noting that ψ must preserve the eigenspaces of the (1, 1)-Ricci curvature
tensor (cf. [13]), which are 〈E1〉, 〈E2〉, and 〈E3〉. We have that

ψ·∇R(E1, E1, E3, E2)−∇R(ψ·E1, ψ·E1, ψ·E3, ψ·E2) =
(1− β)2σ1(σ1σ2σ3 − 1)

2β
E1 .

Thus σ3 = σ1σ2 and so ψ = diag(σ1, σ2, σ1σ2). Moreover, for any such ψ we find
that ψ∗∇R = ∇R. Consequently, when 0 < β < 1, we have that

Sym(S̃E(2),g) = {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ≤ Aut(g03.5).

It therefore follows, by Lemma 2, that

d Iso1(S̃E(2),g) = Sym(S̃E(2),g) = dLIso(S̃E(2),g).

3.2 The exceptional cases
3.2.1 The case of Aff(R)0 × R
We consider the simply connected (universal covering) Lie group

Aff(R)0 × R =


 1 0 0
x1 x2 0
0 0 ex3

 : x1, x3 ∈ R, x2 > 0

 .

Its Lie algebra

g2.1 ⊕ g1 =


 0 0 0
a1 −a2 0
0 0 a3

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R


has nonzero commutator relations [E1, E2] = E1. Any left-invariant Riemannian
structure on Aff(R)0 ×R is L-isometric to the left-invariant Riemannian structure
(Aff(R)0 × R,g) given by

g1 =

1 0 β
0 1 0
β 0 1

 , 0 ≤ β < 1.

When β = 0, then the structure is symmetric (and the isotropy subgroup can be
determined by means of Lemma 1). Accordingly, assume 0 < β < 1.

We claim that (Aff(R)0×R,g) is isometric to the structure (S̃L(2,R),g), where

g1 =
β2

1− β2

 1
β2 − 1 0 0

0 1
β2 − 1 0

0 0 1

 . (12)

Here g1 is expressed in terms of a basis (Ẽ1, Ẽ2, Ẽ3) for the Lie algebra s̃l(2,R) of
S̃L(2,R) which has commutator relations

[Ẽ2, Ẽ3] = Ẽ1, [Ẽ3, Ẽ1] = Ẽ2, [Ẽ1, Ẽ2] = −Ẽ3 .
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As S̃L(2,R) is not linearizable, we find it convenient to work with the matrix Lie
group SL(2,R) = {x ∈ R2×2 : detx = 1}. The Lie algebra sl(2,R) of SL(2,R) is
given by

sl(2,R) =

{
1

2

[
−a1 a2 + a3

a2 − a3 a1

]
= a1Ē1 + a2Ē2 + a3Ē3 : a1, a2, a3 ∈ R

}
and has commutator relations

[Ē2, Ē3] = Ē1, [Ē3, Ē1] = Ē2, [Ē1, Ē2] = −Ē3 .

Let g′ be the left-invariant Riemannian metric on SL(2,R) such that g′1 has matrix
(12) with respect to (Ē1, Ē2, Ē3). Let q : S̃L(2,R) → SL(2,R) be the Lie group
covering homomorphism such that T1q · Ẽi = Ēi. We have that q is a Riemannian
covering, i.e., q∗g′ = g. Let φ : Aff(R)0 × R→ SL(2,R), 1 0 0

x1 x2 0
0 0 ex3


7−→ 1√

x2

[
cos(αx3) sin(αx3)

−x1
√

1− β2 cos(αx3)− x2 sin(αx3) −x1
√

1− β2 sin(αx3) + x2 cos(αx3)

]
where α =

√
1−β2

2β . It is not difficult to show that

g(xA, xA) = g′(Txφ · xA, Txφ · xA)

for A ∈ g2.1⊕g1 and x ∈ Aff(R)0×R, i.e., g = φ∗g′. There exist a unique (universal
covering) diffeomorphism φ̃ : Aff(R)0 ×R→ S̃L(2,R) such that φ̃(1) = 1 and such
that the diagram

Aff(R)× R
φ̃

//

φ
))

S̃L(2,R)

q

��

SL(2,R)

commutes. Consequently, φ̃∗g = g, and so φ̃ is an isometry between (Aff(R)0×R,g)

and (S̃L(2,R),g). We note that φ̃ is essentially the sub-Riemannian isometry de-
scribed in [1], adapted to the associated Riemannian structures (see Proposition 4,
Remark 5, and Section 4.2).

We have that Sym(S̃L(2,R),g) ≤ Aut(s̃l(2,R)) and consequently find that
Iso1(S̃L(2,R),g) ∼= O(2) (this corresponds to the case β1 = β2 = 1

β2 − 1 for the

Riemannian structure discussed in Appendix B.9). As φ̃ is an isometry, it follows
that Iso1(Aff(R)0×R,g) ∼= O(2). Furthermore, we have that dIso1(Aff(R)0×R,g)
is a subgroup of Sym(Aff(R)0 × R,g), which is given by

Sym(Aff(R)0 × R,g) =




σ cos θ σ sin θ√
1−β2

0

−
√

1− β2 sin θ cos θ 0

σ(β − β cos θ) − σβ sin θ√
1−β2

σ

 : θ ∈ R, σ = ±1


∼= O(2).
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Thus we conclude that dIso1(Aff(R)0 × R,g) = Sym(Aff(R)0 × R,g).

3.2.2 An additional scalar invariant
We consider here again the universal covering S̃L(2,R) of the special orthogonal
group; its Lie algebra s̃l(2,R) has commutator relations

[Ẽ2, Ẽ3] = Ẽ1, [Ẽ3, Ẽ1] = Ẽ2, [Ẽ1, Ẽ2] = −Ẽ3 .

The left-invariant Riemannian structures (S̃L(2,R),gβ1) given by

gβ1

1 = r diag(β1, β2, 1), β2 = β1 − 1 > 0, r =
2

β1 − 1
(13)

all have principle Ricci curvatures λ1 = λ2 = 0 and λ3 = −1. Hence, in order
to show that these structures are not isometric, we identify an additional scalar
invariant.

The covariant derivative ∇Ric of the (1, 1)-Ricci tensor is a (1, 2)-tensor. For
a fixed left-invariant vector field X, we get a (1, 1)-tensor ∇Ric(X, ·). In three-
dimensions, this linear endomorphism (which depends on X) has characteristic
polynomial

p(µ) = µ1µ2µ3 − (µ1µ2 + µ1µ3 + µ2µ3)µ+ (µ1 + µ2 + µ3)µ2 − µ3.

Here µ1, µ2, µ3 are the corresponding eigenvalues. The coefficient (µ1 + µ2 + µ3)
of µ2 is linear in X, whereas the coefficient (µ1µ2 + µ1µ3 + µ2µ3) of µ is quadratic
in X. That is to say, there exists a unique symmetric (0, 2)-tensor S such that
S(X,X) = µ1µ2 + µ1µ3 + µ2µ3. Raising the index, we obtain a (1, 1)-tensor
S. The trace of S is accordingly a scalar invariant for the Riemannian structure
(indeed, the set eigenvalues of S is an isometric invariant).

For the structure (S̃L(2,R),gβ1), the (1, 1)-tensors Ric and ∇Ric(X, ·) have
matrices

Ric =

0 0 0
0 −1 0
0 0 0

 ∇Ric(X, ·) =

 0 a3 0
a3β1

β1−1 0 a1
β1−1

0 a1 0


Here X = a1Ẽ1 + a2Ẽ2 + a3Ẽ3. Accordingly

µ1µ2 + µ1µ3 + µ2µ3 =
a21 + β1a

2
3

β1 − 1

and so S has matrix

S = diag

(
1

2β1
, 0,

β1
2

)
.

The trace of S =
β2
1+1
2β1

; we have that β2
1+1
2β1

=
β′21 +1
2β′1

for some β1, β′1 > 1 only if

β1 = β′1. Hence we can conclude that no two of the Riemannian metrics (13) are
isometric.
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Remark 4. The trace of S (and more generally its eigenvalues) can be used to
distinguish between some structures on distinct nonisomorphic Lie groups whose
principle Ricci curvatures coincide. For instance, the structure (6), β = 1 on
SE(1, 1) also has principle Ricci curvatures λ1 = λ2 = 0 and λ3 = −1. However,
for this structure the trace of S is equal to 1; thus this structure is not isometric

to (12) for any β1 > 1 (as 1 <
β2
1+1
2β1

for β1 > 1).

4 Sub-Riemannian structures
We now proceed to investigate the isometry groups of the sub-Riemannian struc-
tures on simply connected three-dimensional Lie groups. Following the work of
Agrachev and Barilari [1], one can associate a contact structure to each such sub-
Riemannian structure; by promoting the corresponding Reeb vector field to a or-
thonormal compliment of the distribution we (canonically) associate a Riemannian
structure to a given sub-Riemannian structure. Accordingly, we can then use the
results of the foregoing section in the investigation of the isometry groups.

Let (Y1, Y2) be an orthonormal frame for a left-invariant sub-Riemannian struc-
ture (G,D,g). There exists a unique contact one-form ω on G (i.e., dω ∧ ω is a
nonvanishing volume form) such that

kerω = D = span(Y1, Y2) and dω(Y1, Y2) = 1.

Any other orthonormal frame (Y1, Y2) yields the same one-form, up to a change of
sign.

Lemma 3. If φ ∈ Iso(G,D,g), then φ∗ω = ±ω.

The Reeb vector field associated to the contact one-form ω is the unique vector
field Y0 such that ω(Y0) = 1 and iY0

dω = 0; the Reeb vector field is uniquely
determined up to a change of sign.

Lemma 4. If φ ∈ Iso(G,D,g), then φ∗Y0 = ±Y0.

As left translations are (orientation preserving) isometries for any invariant sub-
Riemannian structure, it follows that the Reeb vector field is left invariant. Ac-
cordingly, we associate to (G,D,g) the Riemannian structure (G, g̃) admitting or-
thonormal frame (Y0, Y1, Y2). Note that (G, g̃) does not depend on the choice of
orthonormal frame (Y1, Y2). We show that the isometries of (G,D,g) are exactly
the isometries of (G, g̃) preserving D.

Proposition 3. φ ∈ Iso(G,D,g) if and only if φ ∈ Iso(G, g̃) and φ∗D = D.

Proof. Suppose φ is an isometry of a sub-Riemannian structure (G,D,g) with or-
thonormal frame (Y1, Y2). Then (φ∗Y1, φ∗Y2) is an orthonormal frame for (G,D,g)
and so (±Y0, φ∗Y1, φ∗Y2) is an orthonormal frame for (G, g̃). That is, φ pushes
forward the orthonormal frame (Y0, Y1, Y2) of (G, g̃) to an orthonormal frame
(±Y0, φ∗Y1, φ∗Y2) of (G, g̃). Thus φ is an isometry of (G, g̃) such that φ∗D = D.

Conversely, suppose φ is an isometry of (G, g̃) such that φ∗D = D. Let (Y1, Y2)
be an orthonormal frame for (G,D,g) and (Y0, Y1, Y2) be the corresponding or-
thonormal frame for (G, g̃). We have that (φ∗Y0, φ∗Y1, φ∗Y2) is an orthonormal
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frame for (G, g̃). Moreover, as φ∗D = D, we have that (φ∗Y1, φ∗Y2) is an orthonor-
mal frame for D with respect to g (as g̃

∣∣
D = g). Hence φ is an isometry of (G,D,g).

�

The above argument can easily be adapted to isometries between two distinct
structures.

Proposition 4. Let (G,D,g) and (G′,D′,g′) be two left-invariant sub-Riemannian
structures with associated Riemannian structures (G, g̃) and (G′, g̃′), respectively.
A diffeomorphism φ is an isometry between (G,D,g) and (G′,D′,g′) if and only if
φ is an isometry between (G, g̃) and (G′, g̃′) such that φ∗D = D′.

Remark 5. Rescaling the metric g of a sub-Riemannian structure (G,D,g) by a
constant r > 0 rescales the associated Reeb vector field by 1

r (and any orthonormal
frame by 1√

r
). Accordingly, the Riemannian metric associated to (G,D,g) is gen-

erally not related by rescaling to the Riemannian metric associated to (G,D, rg).

Next, we give a classification of the sub-Riemannian structures up to L-isometry;
this essentially amounts to normalizing the bracket generating subspaces and the
(positive definite) inner products on these subspaces. Again, we note that the
automorphism group for each Lie algebra, and the normalized sub-Riemannian
structure for that Lie algebra, is exhibited in Appendix B.

Proposition 5 (cf. [28, p. 52]; see also [1]). Any left-invariant sub-Riemannian
structure on a simply connected three-dimensional Lie group is L-isometric, up to
rescaling, to exactly one of the following sub-Riemannian structures:

3g1 : ∅
g2.1 ⊕ g1 : (E1 + E3, E2) (14)

g3.1 : (E2, E3) (15)

g3.2 : (E2, E3) (16)

g3.3 : ∅
g03.4 : (E2, E3) (17)

gα3.4 : (E2, E3) (18)

g03.5 : (E2, E3) (19)

gα3.5 : (E2, E3) (20)

g3.6 : ( 1√
β
E1, E2), 0 < β ≤ 1 (21)

( 1√
β
E2, E3), 0 < β (22)

g3.7 : ( 1√
β
E2, E3), 0 < β ≤ 1. (23)

Here each normalized sub-Riemannian structure (G,D,g) is specified by the Lie
algebra g of G and an orthonormal frame in terms of the basis for g as given in
Appendix A.
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For each of the normal forms given above, we determine the linearized isotropy
subgroup d Iso1(G,D,g). This is accomplished by determining the associated Rie-
mannian structure and making use of the results of the previous section. A typical
case in treated in Section 4.1; the sub-Riemannian structure on Aff(R)0×R presents
an exception and is treated in Section 4.2. Full results are catalogued (along with
the Riemannian results) in Appendix B; Table 3 lists the sub-Riemannian struc-
tures indexed by their isotropy subgroups. With these results at hand, we are able
to make the following general claims.

Theorem 2. Let G be a simply connected three-dimensional Lie group. For any
left-invariant sub-Riemannian structure (G,D,g), we have that Iso1(G,D,g) ≤
Aut(G) if and only if G 6∼= Aff(R)0 × R.

Proposition 6 (cf. [1]). Two sub-Riemannian structures on the same simply con-
nected three-dimensional Lie group are isometric if and only if they are L-isometric.

Proof. Again it suffices to show that no two of the normal forms up to L-isometry
are isometric. This can be accomplished by studying the associated Riemannian
structures; alternatively, one can make use of the classification given in [1]. �

4.1 A typical case

We again consider the simply connected Euclidean group S̃E(2) (see Section 3.1).
Any left-invariant sub-Riemannian structure on S̃E(2) is L-isometric to exactly one
of the left-invariant structures (S̃E(2),D, rg), r > 0 given by D(1) = 〈E2, E3〉 and
rg1 = r diag(1, 1). The structure (S̃E(2),D, rg) admits the orthonormal frame
1√
r
(E2, E3). Let (ν1, ν2, ν3) be the (Maurer–Cartan) coframe dual to the given

frame (E1, E2, E3) of left-invariant vector fields. The contact one-form ω associated
to (S̃E(2),D, rg) is given by ω = −rν1 and has exterior derivative dω = rν2 ∧ ν3.
Accordingly, the corresponding Reeb vector field is − 1

rE1. It therefore follows

that the Riemannian structure (S̃E(2), g̃r) associated to (S̃E(2),D, rg) is given by
g̃r1 = r diag(r, 1, 1). We have, by Proposition 3, that

Iso1(S̃E(2),D, rg) ≤ Iso1(S̃E(2), g̃r) .

Also, as shown in Section 3.1, we have that

d Iso1(S̃E(2), g̃r) = {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ≤ Aut(g03.5)

whenever r < 1. As the isotropy subgroups Iso1(S̃E(2),D, rg) are identical for all
r > 0, it follows that

d Iso1(S̃E(2),D, rg) ≤ {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ≤ Aut(g03.5).

Consequently, we find that

Iso1(S̃E(2),D, rg) ∼= d Iso1(S̃E(2),D, rg)

= dLIso(S̃E(2),D, rg)

= {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2.
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4.2 The exceptional case
We again consider the group Aff(R)0 × R (see Section 3.2.1). Any left-invariant
sub-Riemannian structure on Aff(R)0 × R is L-isometric up to rescaling to the
structure (Aff(R)0 × R,D,g) given by D(1) = 〈E1 + E3, E2〉 and g1 = diag(1, 1);
this structure has orthonormal frame (E1+E3, E2). Proceeding as in a typical case
(i.e., by considering the associated Riemannian structure) we find that

d Iso1(Aff(R)0 × R,D,g) ≤


 σ cos θ −σ sin θ 0

sin θ cos θ 0
−σ + σ cos θ −σ sin θ σ

 : θ ∈ R, σ = ±1


∼= O(2).

However, as these maps are not all Lie algebra automorphisms, we shall make use
of the fact that (Aff(R)0 × R,D,g) is isometric to a sub-Riemannian structure on
S̃L(2,R) ([1]) to establish equality. Indeed the mapping φ : Aff(R)0×R→ SL(2,R), 1 0 0

x1 x2 0
0 0 ex3

 7−→ 1
√
x2

[
cos x3

2 sin x3

2
x1 cos x3

2 − x2 sin x3

2 x2 cos x3

2 + x1 sin x3

2

]
is a sub-Riemannian covering from (Aff(R)0×R,D,g) to the sub-Riemannian struc-
ture (SL(2,R),D′,g′) admitting orthonormal frame (Ē1, Ē2). Proceeding as in Sec-
tion 3.2.1, we therefore have a sub-Riemannian isometry φ̃ : Aff(R)0×R→ S̃L(2,R)

between (Aff(R)0×R,D,g) and the structure (S̃L(2,R),D,g) admitting orthonor-
mal frame (Ẽ1, Ẽ2) such that φ̃(1) = 1. Accordingly,

Iso1(Aff(R)0 × R,D,g) ∼= Iso1(S̃L(2,R),D,g) ∼= O(2)

and so

d Iso1(Aff(R)0 × R,D,g) =


 σ cos θ −σ sin θ 0

sin θ cos θ 0
−σ + σ cos θ −σ sin θ σ

 : θ ∈ R, σ = ±1

 .

A Three-dimensional Lie algebras
There are eleven types of three-dimensional real Lie algebras; in fact, nine algebras
and two parametrized infinite families of algebras (see, e.g., [18], [22], [26]). In
terms of an (appropriate) ordered basis (E1, E2, E3), the commutation operation
is given by

[E2, E3] = n1E1 − αE2

[E3, E1] = αE1 + n2E2

[E1, E2] = n3E3.

The structure parameters α, n1, n2, n3 for each type are given in Table 1. For each
Lie algebra g there exists a unique connected simply connected (universal covering)
Lie group with Lie algebra g; with the exception of S̃L(2,R), these groups are all
linearizable. Matrix representations for each of the linearizable groups can, for
instance, be found in [6].



Isometries of Riemannian and sub-Riemannian structures on 3D Lie groups 115

Algebra α n1 n2 n3 U
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nn
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3g1 0 0 0 0 • • • • • R3

g2.1 ⊕ g1 1 1 −1 0 • • • Aff(R)0 × R
g3.1 0 1 0 0 • • • • • H3

g3.2 1 1 0 0 • • • G3.2

g3.3 1 0 0 0 • • • G3.3

g03.4 0 1 −1 0 • • • • SE(1, 1)
gα3.4

α>0
α6=1 1 −1 0 • • • Gα3.4

g03.5 0 1 1 0 • • S̃E(2)
gα3.5 α>0 1 1 0 • • Gα3.5
g3.6 0 1 1 −1 • • S̃L(2,R)
g3.7 0 1 1 1 • • SU(2)

Table 1: Classification of three-dimensional Lie algebras

Note 1. We use a basis for g2.1 ⊕ g1 different from the one given in Table 1.
Specifically, we use the basis

E′1 = 1
2 (E1 − E2), E′2 = − 1

2E3, E′3 = 1
2 (E1 + E2) ;

the only nonzero commutator is [E′1, E
′
2] = E′1.

B Catalogue of Riemannian and sub-Riemannian structures
We catalogue the results for the Riemannian and sub-Riemannian structures by
Lie algebra. The following information is exhibited for each Lie algebra:

1. A matrix representation of the Lie algebra along with the commutator rela-
tions for a given basis; the group of Lie algebra automorphisms (represented
with respect to the given basis).

2. The normalized (up to L-isometry) Riemannian structure along with an or-
thonormal frame and the associated restricted connection.

3. The normalized scalar curvature ρ and principle Ricci curvatures λ1 ≥ λ2 ≥
λ3 (though we omit λ3, as λ3 = ρ− λ1− λ2); whether or not the structure is
symmetric.

4. The groups dLIso(G,g), Sym(G,g), and d Iso1(G,g); however, we shall simply
write dLIso, Sym, and d Iso1, respectively.
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Iso1 Lie algebra Riemannian structure Is
o 1
≤

A
u

t(
G

)

Sy
m

m
et

ri
c

O(3) 3g1 E3 • •
g3.3 (5) •
g03.5 (8), β = 1 •
gα3.5 (9), β = 1 •
g3.7 (11), β1 = β2 = 1 •

O(2)× Z2 g2.1 ⊕ g1 (2), β = 0 •
O(2) g2.1 ⊕ g1 (2), 0 < β < 1

g3.1 (3) •
g3.6 (10), β1 = β2 > 0 •
g3.7 (11), β1 = β2 > 1 •

(11), β1 > β2 = 1 •
D4 g03.4 (6), β = 1 •
Z2 × Z2 g03.4 (6), 0 < β < 1 •

gα3.4 (7), β = 1 •
g03.5 (8), 0 < β < 1 •
g3.6 (10), β1 > β2 > 0 •

Z2 g3.2 (4) •
gα3.4 (7), 0 < β < 1 •
gα3.5 (9), 0 < β < 1 •
g3.7 (11), β1 > β2 > 1 •

Table 2: Riemannian structures indexed by isotropy subgroup

5. The normalized (up to L-isometry and rescaling) sub-Riemannian structure
along with an orthonormal frame.

6. The Riemannian structure associated to the given sub-Riemannian structure
(as defined in Section 4).

7. The groups dLIso(G,D,g) and d Iso1(G,D,g); however, we again simply write
dLIso and d Iso1, respectively.

When a Riemannian structure is symmetric, we additionally present the Rieman-
nian exponential map Exp : g→ G and its inverse for that structure (except in the
case of gα3.5 where instead an isometry to a structure on g3.3 is provided); we also
identify a set of isometries which generate Iso1(G,g) (again with the exception of
gα3.5).

A concrete matrix representation for G is supplied only when G admits a sym-
metric structure (in which case the parametrization for the group is used to express
the Riemannian exponential map and some generators of the isotropy subgroup).



Isometries of Riemannian and sub-Riemannian structures on 3D Lie groups 117

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g2.1 ⊕ g1: (2)

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g3.1: (3)

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g3.2: (4)

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g3.3: (5)

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g03.4: (6)

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

gα3.4: (7), 0<α<1

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

gα3.4: (7), α>1

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g03.5: (8), 0<β<1

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

gα3.5: (9), 0<β<1

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

gα3.5: (9), β=1

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g3.6:
(10), 0<β2≤β1<β2+1

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g3.6:
(10), 0<β1=β2+1

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g3.6: (10), β1>β2+1, β2>0

-0.5 0.5 1.0 1.5
λ1

-1.5

-1.0

-0.5

0.5
λ2

g3.7:
(11), β1>4, 1<β2<1−2

√
β1+β1

Figure 1: Normalized principle Ricci curvatures λ1, λ2 for Riemannian structures
with scalar curvature ρ = −1
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Figure 2: Principle Ricci curvatures λ1, λ2 for Riemannian structures with scalar
curvature ρ = 0
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Figure 3: Normalized principle Ricci curvatures λ1, λ2 for Riemannian structures
with scalar curvature ρ = 1

Iso1 Lie algebra Sub-Riemannian structure Is
o 1
≤

A
u

t(
G

)

Sy
m

m
et

ri
c

([
27

])

O(2) g2.1 ⊕ g1 (14) •
g3.1 (15) • •
g3.6 (21), β = 1 • •
g3.7 (23), β = 1 • •

Z2 × Z2 g03.4 (17) • •
g03.5 (19) • •
g3.6 (21), 0 < β < 1 • •

(22) • •
g3.7 (11), 0 < β < 1 • •

Z2 g3.2 (16) •
gα3.4 (18) •
gα3.5 (20) •

Table 3: Sub-Riemannian structures indexed by isotropy subgroup
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Nonetheless, for all but g3.6, the matrix Lie algebra given exponentiates to the cor-
responding simply connected matrix Lie group. The universal covering Lie group
for g3.6 is not linearizable; we find it convenient to represent the Lie algebra g3.6
as the matrix Lie algebra so(2, 1) of the pseudo-orthogonal group SO(2, 1).

In Figures 1, 2, and 3 the (normalized) principle Ricci curvatures λ1 ≥ λ2 are
plotted for each structure. In Tables 2 and 3 an index of the Riemannian and
sub-Riemannian structures by isotropy subgroup is provided. We note that the
Abelian case 3g1 is omitted in what follows, as it is trivial (there is no bracket
generating sub-Riemannian structure and only one Riemannian structure, namely
the Euclidean one).

B.1 Algebra g2.1 ⊕ g1

• g2.1 ⊕ g1 =


 0 0 0
a1 −a2 0
0 0 a3

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R


[E1, E2] = E1

• Aut(g2.1 ⊕ g1) =


a1 a2 0

0 1 0
0 a3 a4

 : a1, . . . , a4 ∈ R, a1a4 6= 0


• Aff(R)0 × R =


 1 0 0
x1 x2 0
0 0 ex3

↔ (x1, x2, x3) : x1, x3 ∈ R, x2 > 0


Riemannian structure

• g1 = r

1 0 β
0 1 0
β 0 1

, r > 0, 0 ≤ β < 1

orthonormal frame: 1√
r
(E1, E2,

1√
1−β2

(βE1 − E3))

• ∇AB =
a1(β2−2)b2−β(a2(βb1+b3)+a3b2)

2(β2−1) E1 − ( 1
2β(a1b3 + a3b1) + a1b1)E2

+ β(b2(a1+βa3)+a2(b1+βb3))
2(β2−1) E3

Normalized invariants

• ρ = −1 (with r = 4−3β2

2−2β2 ), λ1 = β2

4−3β2 , λ2 = β2−2
4−3β2 ,

∇R ≡ 0 ⇐⇒ β = 0

Isometries

• dLIso =

{
{diag(σ1, 1, σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2 if β = 0

{diag(σ, 1, σ) : σ = ±1} ∼= Z2 if 0 < β < 1
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• Sym = d Iso1 =


σ1 cos θ − sin θ 0
σ1 sin θ cos θ 0

0 0 σ2

 : θ ∈ R, σ1, σ2 = ±1

 ∼= O(2)× Z2 if β = 0




σ cos θ σ sin θ√
1−β2

0

−
√

1− β2 sin θ cos θ 0

σ(β − β cos θ) − βσ sin θ√
1−β2

σ

 : θ ∈ R, σ = ±1

 ∼= O(2) if 0 < β < 1

• When β = 0, Iso1 is generated by the isometries

φ1(x) =
(

(x21+x
2
2−1) sin θ+2x1 cos θ

x21+2x1 sin θ−(x21+x22−1) cos θ+x22+1
, 2x2
x21+2x1 sin θ−(x21+x22−1) cos θ+x22+1

, x3
)

φ2(x) = (−x1, x2, x3)
φ3(x) = (x1, x2,−x3)

which have linearizations

T1φ1 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 T1φ2 =

−1 0 0
0 1 0
0 0 1

 T1φ3 =

1 0 0
0 1 0
0 0 −1

 .
Riemannian exponential map (when β = 0 and r = 1)

• Exp(tA) =(
a1 sinh

(
t
√
a21+a

2
2

)
a2 sinh

(
t
√
a21+a

2
2

)
+
√
a21+a

2
2 cosh

(
t
√
a21+a

2
2

) , 2
√
a21+a

2
2 e
t
√
a21+a22(√

a21+a
2
2+a2

)
e
2t
√
a21+a22 +

√
a21+a

2
2−a2

, a3t

)

• Exp−1(x) =
(

2x1ζ(x1, x2),
(
1− x21 − x22

)
ζ(x1, x2), x3

)
,

ζ(x1, x2) =
sech−1

(
2x2

x21+x22+1

)
(x2

1+(x2+1)2)
√

1− 4x2
x21+(x2+1)2

Sub-Riemannian structure

• D(1) = 〈E1 + E3, E2〉, g1 = diag(1, 1)
orthonormal frame: (E1 + E3, E2)

Associated Riemannian structure

• g̃1 =

 2 0 −1
0 1 0
−1 0 1

, which is L-isometric to g1 =

 1 0 1√
2

0 1 0
1√
2

0 1

.

Isometries

• dLIso = {diag(σ, 1, σ) : σ = ±1}

• d Iso1 =


 σ cos θ −σ sin θ 0

sin θ cos θ 0
−σ + σ cos θ −σ sin θ σ

 : θ ∈ R, σ = ±1

 ∼= O(2)
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B.2 Algebra g3.1

• g3.1 =


0 a2 a1

0 0 a3
0 0 0

 = a1E2 + a2E2 + a3E3 : a1, a2, a3 ∈ R


[E2, E3] = E1

• Aut(g3.1) =


a2a6 − a5a3 a1 a4

0 a2 a5
0 a3 a6

 : a1, . . . , a6 ∈ R, a2a6 − a5a3 6= 0


Riemannian structure

• g1 = r diag(1, 1, 1), r > 0, orthonormal frame: 1√
r
(E1, E2, E3)

• ∇AB = 1
2 (a2b3 − a3b2)E1 + 1

2 (a1b3 + a3b1)E2 + 1
2 (−a1b2 − a2b1)E3

Normalized invariants

• ρ = −1 (with r = 1
2 ), λ1 = 1, λ2 = −1, ∇R 6≡ 0

Isometries

• dLIso = d Iso1 = Sym =


σ 0 0

0 σ cos θ − sin θ
0 σ sin θ cos θ

 : θ ∈ R, σ = ±1

 ∼= O(2)

Sub-Riemannian structure

• D(1) = 〈E2, E3〉, g1 = diag(1, 1), orthonormal frame: (E2, E3)

Associated Riemannian structure

• g̃1 = diag(1, 1, 1)

Isometries

• dLIso = d Iso1 =


σ 0 0

0 σ cos θ − sin θ
0 σ sin θ cos θ

 : θ ∈ R, σ = ±1

 ∼= O(2)

B.3 Algebra g3.2

• g3.2 =


 0 0 0
a2 a3 0
a1 −a3 a3

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R


[E2, E3] = E1 − E2, [E3, E1] = E1

• Aut(g3.2) =


a1 a2 a3

0 a1 a4
0 0 1

 : a1, . . . , a4 ∈ R, a1 6= 0


Riemannian structure
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• g1 = r diag(β, 1, 1), r, β > 0, orthonormal frame: 1√
r
( 1√

β
E1, E2, E3)

• ∇AB = 1
2 (b3(a2 − 2a1)− a3b2)E1 + 1

2 (βa1b3 − 2a2b3 + βa3b1)E2

− ( 1
2β(a1b2 + a2b1) + βa1b1 + a2b2)E3

Normalized invariants

• ρ = −1 (with r = β
2 + 6), λ1 =

√
β(β+4)−4
β+12 , λ2 = 8

β+12 − 1,
∇R 6≡ 0

Isometries

• dLIso = d Iso1 = Sym = {diag(σ, σ, 1) : σ = ±1} ∼= Z2

Sub-Riemannian structure

• D(1) = 〈E2, E3〉, g1 = diag(1, 1), orthonormal frame: (E2, E3)

Associated Riemannian structure

• g̃1 =

 2 −1 0
−1 1 0
0 0 1

, which is L-isometric to g1 =

4 0 0
0 1 0
0 0 1

.

Isometries

• dLIso = d Iso1 = {diag(σ, σ, 1) : σ = ±1} ∼= Z2

B.4 Algebra g3.3

• g3.3 =


 0 0 0
a2 a3 0
a1 0 a3

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R


[E2, E3] = −E2, [E3, E1] = E1

• Aut(g3.3) =


a1 a2 a3
a4 a5 a6
0 0 1

 : a1, . . . , a6 ∈ R, a1a5 − a2a4 6= 0


• G3.3 =


 1 0 0
x2 ex3 0
x1 0 ex3

↔ (x1, x2, x3) : x1, x2, x3 ∈ R


Riemannian structure

• g1 = r diag(1, 1, 1), r > 0, orthonormal frame: 1√
r
(E1, E2, E3)

• ∇AB = −a1b3E1 − a2b3E2 + (a1b1 + a2b2)E3

Normalized invariants

• ρ = −1 (with r = 6), λ1 = − 1
3 , λ2 = − 1

3 , ∇R ≡ 0
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Isometries

• dLIso1 =


 cos θ − sin θ 0
σ sin θ σ cos θ 0

0 0 1

 : θ ∈ R, σ −±1

 ∼= O(2)

• d Iso1 = Sym ∼= O(3); d Iso1 is generated by the isometries

φ1(x) = (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ, x3)

φ2(x) =

(
(1− ζ1(x)) sin θ + 2x1 cos θ

2ζ2(x)
,
x2
ζ2(x)

, x3 − log ζ2(x)

)
φ3(x) =

(
x1
ζ3(x)

,
(1− ζ1(x)) sin θ + 2x2 cos θ

2ζ3(x)
, x3 − log ζ3(x)

)
φ4(x) =

(
x1
ζ1(x)

,
x2
ζ1(x)

, x3 − log ζ1(x)

)
where

ζ1(x) = x21 + x22 + e2x3

2ζ2(x) = 1 + ζ1(x) + (1− ζ1(x)) cos θ − 2x1 sin θ

2ζ3(x) = 1 + ζ1(x) + (1− ζ1(x)) cos θ − 2x2 sin θ

and

T1φ1 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , T1φ2 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


T1φ3 =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 , T1φ4 =

1 0 0
0 1 0
0 0 −1

 .
Riemannian exponential map (when r = 1)

• Exp(tA) =(
a1 sinh(δt)

δ cosh(δt)−a3 sinh(δt) ,
a2 sinh(δt)

δ cosh(δt)−a3 sinh(δt) ,− log
(
δ cosh(δt)−a3 sinh(δt)

δ

))
,

δ =
√
a21 + a22 + a23

• Exp−1(x) = 2ζ(x)x1E1 + 2ζ(x)x2E2 + ζ(x)
(
x21 + x22 + e2x3 −1

)
E3

where ζ(x) =
arcsech

(
2 ex3

x21+x22+e2x3 +1

)
(x2

1+x
2
2+ex3 (ex3 +2)+1)

√
1− 4 ex3

x21+x22+ex3 (ex3 +2)+1

.

Sub-Riemannian structure

• Every subspace of g3.3 is a subalgebra; accordingly, there are no left-invariant
bracket generating distributions on G3.3.
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B.5 Algebra g0
3.4

• g03.4 =


 0 0 0
a1 0 −a3
a2 −a3 0

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R


[E2, E3] = E1, [E3, E1] = −E2

• Aut(g03.4) =


 a1 a2 a3
σa2 σa1 a4
0 0 σ

 : a1, . . . , a4 ∈ R, a21 − a22 6= 0, σ = ±1


Riemannian structure

• g1 = r diag(β, 1, 1), r > 0, 0 < β ≤ 1

orthonormal frame: 1√
r
( 1√

β
E1, E2, E3)

• ∇AB = a2(β+1)b3+a3(b2−βb2)
2β E1 + 1

2

(
a1(β + 1)b3 + a3(β − 1)b1

)
E2

− 1
2 (β + 1)(a1b2 + a2b1)E3

Normalized invariants

• ρ = −1 (with r =
(β + 1)2

2β
), λ1 =

1− β
β + 1

, λ2 = −1− β
β + 1

, ∇R 6≡ 0

Isometries

• dLIso = d Iso1 = Sym =
{diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2 if β 6= 1
σ1 0 0

0 σ2 0
0 0 σ1σ2

 ,
 0 σ2 0
σ1 0 0
0 0 σ1σ2

 : σ1, σ2 = ±1

 ∼= D4 if β = 1

(The dihedral group D4 is generated by a =
[
0 −1 0
1 0 0
0 0 −1

]
and b =

[−1 0 0
0 1 0
0 0 −1

]
; it

has elements 1, a, a2, a3, ab, a2b, a3b.)

Sub-Riemannian structure

• D(1) = 〈E2, E3〉, g1 = diag(1, 1), orthonormal frame: (E2, E3)

Associated Riemannian structure

• g̃1 = diag(1, 1, 1)

Isometries

• dLIso = d Iso1 = {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2
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B.6 Algebra gα3.4

• gα3.4 =


 0 0 0
a1 αa3 −a3
a2 −a3 αa3

 : a1E1 + a2E1 + a3E3 : a1, a2, a3 ∈ R

,

α > 0, α 6= 1

[E2, E3] = E1 − αE2, [E3, E1] = αE1 − E2

• Aut(gα3.4) =


a1 a2 a3
a2 a1 a4
0 0 1

 : a1, . . . , a4 ∈ R, a21 − a22 6= 0


Riemannian structure

• g1 = r diag(β, 1, 1), r > 0, 0 < β ≤ 1

orthonormal frame: 1√
r
( 1√

β
E1, E2, E3)

• ∇AB = b3(−2αβa1+βa2+a2)+a3(b2−βb2)
2β E1

+ 1
2

(
(βa1 + a1 − 2αa2)b3 + (β − 1)a3b1

)
E2

+ 1
2

(
− a1(−2αβb1 + βb2 + b2)− a2(βb1 + b1 − 2αb2)

)
E3

Normalized invariants

• ρ = −1 (with r = 1
2

(
12α2 + β + 1

β + 2
)

), ∇R 6≡ 0,


λ1 =

(β + 1)
√
β (4α2 + β − 2) + 1− 4α2β

β (12α2 + β + 2) + 1

λ2 = −
4α2β + (β + 1)

√
β (4α2 + β − 2) + 1

β (12α2 + β + 2) + 1

if 0 < α < 1


λ1 =

(β + 1)
√
β (4α2 + β − 2) + 1− 4α2β

β (12α2 + β + 2) + 1

λ2 =
8α2β

β (12α2 + β + 2) + 1
− 1

if α > 1

Isometries

• dLIso = d Iso1 = Sym =
{diag(σ, σ, 1) : σ = ±1} ∼= Z2 if β 6= 1
σ 0 0

0 σ 0
0 0 1

 ,
0 σ 0
σ 0 0
0 0 1

 : σ = ±1

 ∼= Z2 × Z2 if β = 1

Sub-Riemannian structure

• D(1) = 〈E2, E3〉, g1 = diag(1, 1), orthonormal frame: (E2, E3)

Associated Riemannian structure
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• g̃1 =

α2 + 1 −α 0
−α 1 0
0 0 1

,

which is L-isometric to g1 =

 1
2

(
α4 + 2− α2

√
α4 + 4

)
0 0

0 1 0
0 0 1

.

Isometries

• dLIso = d Iso1 = {diag(σ, σ, 1) : σ = ±1} ∼= Z2

B.7 Algebra g0
3.5

• g03.5 =




0 0 0 0
a1 0 −a3 0
a2 a3 0 0
0 0 0 a3

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R


[E2, E3] = E1, [E3, E1] = E2

• Aut(g03.5) =


 a1 a2 a3
−σa2 σa1 a4

0 0 σ

 : a1, . . . , a4 ∈ R, a21 + a22 6= 0, σ = ±1


• S̃E(2) =




1 0 0 0
x1 cosx3 − sinx3 0
x2 sinx3 cosx3 0
0 0 0 ex3

↔ (x1, x2, x3) : x1, x2, x3 ∈ R


Riemannian structure

• g1 = r diag(β, 1, 1), r > 0, 0 < β ≤ 1

orthonormal frame: 1√
r
( 1√

β
E1, E2, E3)

• ∇AB = a2(β−1)b3−a3(β+1)b2
2β E1 + 1

2

(
a1(β − 1)b3 + a3(β + 1)b1

)
E2

− 1
2 (β − 1)(a1b2 + a2b1)E3

Normalized invariants

• If 0 < β < 1:

ρ = −1 (with r =
(1− β)2

2β
), λ1 =

1 + β

1− β
, λ2 = −1, ∇R 6≡ 0.

• If β = 1: ρ = 0, λ1 = 0, λ2 = 0, ∇R ≡ 0.

Isometries

• If 0 < β < 1:

dLIso = d Iso1 = Sym = {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2
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• If β = 1:

dLIso =


 cos θ sin θ 0
−σ sin θ σ cos θ 0

0 0 σ

 : θ ∈ R, σ = ±1

 ∼= O(2),

d Iso1 = Sym ∼= O(3), Iso1 =
{

Exp ◦ψ ◦ Exp−1 : ψ ∈ d Iso1

}
Riemannian exponential map (when β = 1 and r = 1)

• Exp(tA) = (ta1, ta2, ta3), Exp−1(x) = x1E1 + x2E2 + x3E3

Sub-Riemannian structure

• D(1) = 〈E2, E3〉, g1 = diag(1, 1), orthonormal frame: (E2, E3)

Associated Riemannian structure

• g̃1 = diag(1, 1, 1); however, the rescaled structure (S̃E(2),D, rg) has associ-
ated Riemannian structure g̃′ = r diag(r, 1, 1), see Remark 5.

Isometries

• dLIso = d Iso1 = {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2

B.8 Algebra gα3.5

• gα3.5 =


 0 0 0
a1 αa3 −a3
a2 a3 αa3

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R

,

α > 0

[E2, E3] = E1 − αE2, [E3, E1] = αE1 + E3

• Aut(gα3.5) =


 a1 a2 a3
−a2 a1 a4

0 0 1

 : a1, . . . , a4 ∈ R, a21 + a22 6= 0


• Gα3.5 =


 1 0 0
x1 eαx3 cosx3 − eαx3 sinx3
x2 eαx3 sinx3 eαx3 cosx3

 : x1, x2, x3 ∈ R


Riemannian structure

• g1 = r diag(β, 1, 1), r > 0, 0 < β ≤ 1

orthonormal frame: 1√
r
( 1√

β
E1, E2, E3)

• ∇AB = − (2αβa1−βa2+a2)b3+(β+1)a3b2
2β E1

+ 1
2

(
b3(a1(β − 1)− 2αa2) + (β + 1)a3b1

)
E2

+ 1
2

(
a1(2αβb1 − βb2 + b2) + a2(b1 − βb1 + 2αb2)

)
E3

Normalized invariants
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• If 0 < β < 1:

ρ = −1 (with r = 1
2

(
12α2 + β + 1

β − 2
)

),

λ1 = − 4α2β+(β−1)
√
β(4α2+β+2)+1

β(12α2+β−2)+1 , λ2 = 8α2β
β(12α2+β−2)+1 − 1, ∇R 6≡ 0

• If β = 1: ρ = −1 (with r = 6α2), λ1 = − 1
3 , λ2 = − 1

3 , ∇R ≡ 0

Isometries

• If 0 < β < 1: dLIso = d Iso1 = Sym = {diag(σ, σ, 1) : σ = ±1} ∼= Z2

• If β = 1:

dLIso =


 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 : θ ∈ R

 ∼= SO(2), d Iso1 = Sym ∼= O(3)

Isometry to structure on G3.3 (when β = 1)

• The diffeomorphism φ : Gα3.5 → G3.3, 1 0 0
x1 eαx3 cosx3 − eαx3 sinx3
x2 eαx3 sinx3 eαx3 cosx3

 7−→
 1 0 0
αx2 eαx3 0
αx1 0 eαx3


defines an isometry between (Gα3.5,g),g1 = α2r diag(1, 1, 1) and (G3.3,g),
g1 = r diag(1, 1, 1).

Sub-Riemannian structure

• D(1) = 〈E2, E3〉, g1 = diag(1, 1), orthonormal frame: (E2, E3)

Associated Riemannian structure

• g̃1 =

α2 + 1 −α 0
−α 1 0
0 0 1

, which is L-isometric to

g1 =

 1
2

(
2 + 4α2 + α4 −

(
2α+ α3

)√
4 + α2

)
0 0

0 1 0
0 0 1

.

Isometries

• d Iso1 = {diag(σ, σ, 1) : σ = ±1} ∼= Z2

B.9 Algebra g3.6

• g3.6 =


 0 a3 a2
−a3 0 a1
a2 a1 0

 = a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R


[E2, E3] = E1, [E3, E1] = E2, [E1, E2] = −E3
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• Aut(g3.6) = SO(2, 1) = {x ∈ R3×3 : x>Jx = J, detx = 1},
where J = diag(1, 1,−1)

Riemannian structure

• g1 = r diag(β1, β2, 1), β1 ≥ β2 > 0, r > 0

orthonormal frame: 1√
r
( 1√

β1
E1,

1√
β2
E2, E3)

• ∇AB = a2b3(β1−β2−1)−a3b2(β1+β2+1)
2β1

E1 + a1b3(β1−β2+1)+a3b1(β1+β2+1)
2β2

E2

+ 1
2

(
a1b2(−β1 + β2 − 1) + a2b1(−β1 + β2 + 1)

)
E3

Normalized invariants:

• If 1 + β2 > β1 ≥ β2 > 0:

ρ = −1 (with r =
β2
1−2β1(β2−1)+(β2+1)2

2β1β2
), λ1 = 2(β1+β2+1)

β2
1−2β1(β2−1)+(β2+1)2

− 1,

λ2 =
β2
1−(β2+1)2

β2
1−2β1(β2−1)+(β2+1)2

, ∇R 6≡ 0

• If 1 + β2 = β1, β2 > 0:

ρ = −1 (with r = 2
β2

), λ1 = 0, λ2 = 0, ∇R 6≡ 0 (see also Section 3.2.2)

• If β1 > 1 + β2, β2 > 0:

ρ = −1 (with r =
β2
1−2β1(β2−1)+(β2+1)2

2β1β2
), λ1 =

β2
1−(β2+1)2

β2
1−2β1(β2−1)+(β2+1)2

,

λ2 = 2(β1+β2+1)
β2
1−2β1(β2−1)+(β2+1)2

− 1, ∇R 6≡ 0

Isometries

• dLIso = d Iso1 = Sym =
{diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2 if β1 > β2 > 0
σ cos θ − sin θ 0
σ sin θ cos θ 0

0 0 σ

 : θ ∈ R, σ = ±1

 ∼= O(2) if β1 = β2 > 0

We note that in [13] it is incorrectly claimed that the isometry groups are
Z2 × Z2 × Z2 and O(2) × Z2, respectively; the mistake lies in the claim
that certain linear isomorphisms ψ are Lie algebra automorphisms, but the
condition detψ = 1 is not satisfied.

Sub-Riemannian structures

• D1(1) = 〈E1, E2〉, g1
1 = diag(β, 1), 0 < β ≤ 1

orthonormal frame: ( 1√
β
E1, E2)

• D2(1) = 〈E2, E3〉, g2
1 = diag(β, 1), 0 < β

orthonormal frame: ( 1√
β
E2, E3)

Associated Riemannian structures
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• g̃1
1 = diag(β, 1, β), which is L-isometric to g1 = β diag( 1

β , 1, 1).

• g̃2
1 = diag(β, β, 1)

Isometries

• (D1,g
1) : dLIso1 = d Iso1 =

{diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2 if 0 < β < 1
σ cos θ − sin θ 0
σ sin θ cos θ 0

0 0 σ

 : θ ∈ R, σ = ±1

 ∼= O(2) if β = 1

• (D2,g
2) : dLIso1 = d Iso1 = {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2

B.10 Algebra g3.7

• g3.7 =

{
1

2

[
ia1 ia3 + a2

ia3 − a2 −ia1

]
= a1E1 + a2E2 + a3E3 : a1, a2, a3 ∈ R

}
[E2, E3] = E1, [E3, E1] = E2, [E1, E2] = E3

• Aut(g3.7) = SO(3) = {x ∈ R3×3 : x>x = 1, detx = 1}

• SU(2) =
{
x ∈ C2×2 : x†x = 1, detx = 1

}
Riemannian structure

• g1 = r diag(β1, β2, 1), β1 ≥ β2 ≥ 1, r > 0

orthonormal frame: 1√
r
( 1√

β1
E1,

1√
β2
E2, E3)

• ∇AB = a2b3(β1−β2+1)−a3b2(β1+β2−1)
2β1

E1 + a1b3(β1−β2−1)+a3b1(β1+β2−1)
2β2

E2

+ 1
2

(
a1b2(−β1 + β2 + 1) + a2b1(−β1 + β2 − 1)

)
E3

Normalized invariants

• If β1 > 4 and 1 ≤ β2 < β1 − 2
√
β1 + 1:

ρ = −1 (with r =
β2
1−2β1(β2+1)+(β2−1)2

2β1β2
),

λ1 = (β1−β2+1)(β1+β2−1)
β2
1−2β1(β2+1)+(β2−1)2 , λ2 = − 2(β1+β2−1)

β2
1−2β1(β2+1)+(β2−1)2 − 1, ∇R 6≡ 0

• If β2 ≥ 1 and β1 = β2 + 2
√
β2 + 1:

ρ = 0, λ1 = 2
r
√
β2

, λ2 = − 2

r(
√
β2+1)

√
β2

, ∇R 6≡ 0

• If β2 ≥ 1 and β1 − 2
√
β1 + 1 < β2 ≤ β1:

ρ = 1 (with r =
2β1(β2+1)−β2

1−(β2−1)2
2β1β2

)
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


λ1 = − (β1 − β2 + 1)(β1 + β2 − 1)

β2
1 − 2β1(β2 + 1) + (β2 − 1)2

λ2 =
(β1 − 1)2 − β2

2

β2
1 − 2β1(β2 + 1) + (β2 − 1)2

if β1 < 1 + β2


λ1 = − (β1 − β2 + 1)(β1 + β2 − 1)

β2
1 − 2β1(β2 + 1) + (β2 − 1)2

λ2 =
(β1 − β2)2 − 1

β2
1 − 2β1(β2 + 1) + (β2 − 1)2

if β1 ≥ 1 + β2

∇R ≡ 0 ⇐⇒ β1 = β2 = 1

Isometries:

• If β1 > β2 > 1:

dLIso = d Iso1 = Sym = {diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2

• If β1 = β2 > 1:

dLIso = d Iso1 = Sym =


σ cos θ − sin θ 0
σ sin θ cos θ 0

0 0 σ

 : θ ∈ R, σ = ±1

 ∼= O(2)

• If β1 > β2 = 1:

dLIso = d Iso1 = Sym =


σ 0 0

0 cos θ −σ sin θ
0 sin θ σ cos θ

 : θ ∈ R, σ = ±1

 ∼= O(2)

• If β1 = β2 = 1:

d Iso1 = Sym ∼= O(3), Iso1 is generated by LIso and the isometry ι : x 7→ x−1.

Riemannian exponential map (when β1 = β2 = 1 and r = 1)

• Exp(tA) = exp(tA) (i.e., the Riemannian exponential map is simply the Lie
group exponential map).

Sub-Riemannian structure

• D(1) = 〈E2, E3〉, g1 = diag(β, 1), 0 < β ≤ 1

orthonormal frame: ( 1√
β
E2, E3)

Associated Riemannian structure

• g̃1 = diag(β, β, 1), which is L-isometric to g1 = β diag( 1
β , 1, 1).

We note however that when β = 1, then the rescaled sub-Riemannian struc-
ture (SU(2),D, rg) has associated Riemannian structure g = r diag(r, 1, 1),
see Remark 5.

Isometries
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• dLIso1 = d Iso1 =
{diag(σ1, σ2, σ1σ2) : σ1, σ2 = ±1} ∼= Z2 × Z2 if 0 < β < 1
σ 0 0

0 σ cos θ − sin θ
0 σ sin θ cos θ

 : θ ∈ R, σ = ±1

 ∼= O(2) if β = 1

C Classification of symmetric Riemannian structures
The only simply connected three-dimensional Lie groups which admit symmetric
Riemannian structures are R3, Aff(R)0 ×R, G3.3, S̃E(2), Gα3.5, and SU(2). On each
respective group, all the symmetric structures are L-isometric, up to rescaling.
Moreover, we have that the symmetric structure on S̃E(2) is isometric to the one
on R3 (see Appendix B.7); also, the symmetric structure on Gα3.5, for each α > 0,
is isometric to the symmetric structure on G3.3 (see Appendix B.8). Consequently,
we have the following result.

Proposition 7. Any left-invariant symmetric Riemannian structure on a simply
connected three-dimensional Lie group is isometric, up to rescaling, to exactly one
of the following four Riemannian structures:

1. The Euclidean space E3.

2. The structure on Aff(R)0 × R admitting orthonormal frame (E1, E2, E3).

3. The structure on G3.3 admitting orthonormal frame (E1, E2, E3).

4. The structure on SU(2) admitting orthonormal frame (E1, E2, E3).

The respective Riemannian exponential maps for the above symmetric Riemannian
structures are given in Appendix B. (The Euclidean case is omitted as it is trivial.)

D Associated Hamilton–Poisson systems
To each left-invariant sub-Riemannian (resp. Riemannian) structure one associates
a quadratic Hamilton–Poisson system on the dual of the corresponding Lie algebra;
the normal geodesics of the structure are related to the integral curves of the associ-
ated Hamiltonian vector field (see, e.g., [5], [8], [15]). Two such Hamilton–Poisson
systems are considered linearly equivalent if their associated Hamiltonian vector
fields are compatible with a linear isomorphism. We note that if two structures are
L-isometric up to rescaling, then their associated Hamilton–Poisson systems are
linearly equivalent (cf. [8]). The positive semidefinite quadratic Hamilton–Poisson
systems in three dimensions are classified in [7], up to linear equivalence. In Tables 4
and 5 we identify the normal form (as given in [7]) of the Hamilton–Poisson system
associated to each Riemannian (resp. sub-Riemannian) structure. We note that,
quite remarkably, among the unimodular Lie groups the Hamilton–Poisson system
associated to any Riemannian (or sub-Riemannian) structure is linearly equiva-
lent to one of three systems, namely Np(7), P(8), or the trivial system (whose
Hamiltonian vector field is constant zero).
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Algebra Riemannian structure Hamiltonian normal form ([7])

3g1 E3 trivial
g2.1 ⊕ g1 (2), 0 < β < 1 P(2)

(2), β = 0 P(1)
g3.1 (3) P(8)
g3.2 (4) Np(2)δ= 1

β

g3.3 (5) P(5)
g03.4 (6) Np(7)
gα3.4 (7) Np(6)
g03.5 (8), 0 < β < 1 Np(7)

(8), β = 1 P(8)
gα3.5 (9) Np(8)
g3.6 (10), β1 > β2 > 0 Np(7)

(10), β1 = β2 > 0 P(8)
g3.7 (11), β1 > β2 > 1 Np(7)

(11), β1 = β2 > 1 or β1 > β2 = 1 P(8)
(11), β1 = β2 = 1 trivial

Table 4: Normal forms for the Hamilton–Poisson systems associated to Riemannian
structures

Algebra Sub-Riemannian structure Hamiltonian normal form ([7])

g2.1 ⊕ g1 (14) P(2)
g3.1 (15) P(8)
g3.2 (16) Np(2)δ=0

g03.4 (17) Np(7)
gα3.4 (18) Np(6)β=0

g03.5 (19) Np(7)
gα3.5 (20) Np(8)β=0

g3.6 (21), 0 < β < 1 Np(7)
(21), β = 1 P(8)
(22) Np(7)

g3.7 (23), 0 < β < 1 Np(7)
(23), β = 1 P(8)

Table 5: Normal forms for the Hamilton–Poisson systems associated to sub-
Riemannian structures
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