Nonlinear *-Lie higher derivations of standard operator algebras

Mohammad Ashraf, Shakir Ali, Bilal Ahmad Wani

Abstract

Let \mathcal{H} be an infinite-dimensional complex Hilbert space and \mathfrak{A} be a standard operator algebra on \mathcal{H} which is closed under the adjoint operation. It is shown that every nonlinear $*$-Lie higher derivation $\mathcal{D}=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ of \mathfrak{A} is automatically an additive higher derivation on \mathfrak{A}. Moreover, $\mathcal{D}=$ $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ is an inner $*$-higher derivation.

1 Introduction

Let \mathfrak{A} be an algebra over a commutative ring R. Recall that an R-linear mapping $d: \mathfrak{A} \rightarrow \mathfrak{A}$ is called a derivation if $d(A B)=d(A) B+A d(B)$ for all $A, B \in \mathfrak{A}$; in particular, d is called an inner derivation if there exists some $X \in \mathfrak{A}$ such that $d(A)=A X-X A$ for all $A \in \mathfrak{A}$. An R-linear mapping $d: \mathfrak{A} \rightarrow \mathfrak{A}$ is called a Lie derivation if $d([A, B])=[d(A), B]+[A, d(B)]$ for all $A, B \in \mathfrak{A}$, where $[A, B]=$ $A B-B A$ is the usual Lie product. Furthermore, without linearity/additivity assumption, if d satisfies $d([A, B])=[d(A), B]+[A, d(B)]$ for all $A, B \in \mathfrak{A}$, then d is called a nonlinear Lie derivation. The question of characterizing Lie derivations and revealing the relationship between derivations and Lie derivations have been studied by many authors (see [1], [2], [5], [6], [7], [8], [11], [12], [15], [18]).

[^0]Let \mathfrak{A} be an associative $*$-algebra over the complex field \mathbb{C}. A mapping $d: \mathfrak{A} \rightarrow \mathfrak{A}$ is said to be an additive $*$-derivation if it is an additive derivation and satisfies $d(A)^{*}=d\left(A^{*}\right)$ for all $A \in \mathfrak{A}$. Further, if $d: \mathfrak{A} \rightarrow \mathfrak{A}$ is a map (not necessarily linear) which satisfies $d\left([A, B]_{*}\right)=[d(A), B]_{*}+[A, d(B)]_{*}$ for all $A, B \in \mathfrak{A}$, where $[A, B]_{*}=A B-B A^{*}$, then d is known as a nonlinear $*$-Lie derivation of \mathfrak{A}.

In [16] Yu and Zhang showed that every nonlinear $*$-Lie derivation from a factor von Neumann algebra on an infinite-dimensional Hilbert space into itself is an additive $*$-derivation. It is to be noted that a factor von Neumann algebra is a von Neumann algebra whose centre is trivial. In [4] Wu Jing proved that every nonlinear $*$-Lie derivation on standard operator algebra is automatically linear. Moreover, it is an inner *-derivation .

Let us recall some basic facts related to Lie higher derivations and $*$-Lie higher derivations of an associative algebra. Many different kinds of higher derivations, which consist of a family of some additive mappings, have been widely studied in commutative and noncommutative rings. Let \mathbb{N} be the set of non-negative integers and $\mathcal{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ be a family of linear mappings $d_{n}: \mathfrak{A} \rightarrow \mathfrak{A}$ such that $d_{0}=\mathrm{id}_{\mathfrak{A}}$, the identity map on \mathfrak{A}. Then \mathcal{D} is called
(i) a higher derivation on \mathfrak{A} if for every $n \in \mathbb{N}$,

$$
d_{n}(A B)=\sum_{i+j=n} d_{i}(A) d_{j}(B)
$$

for all $A, B \in \mathfrak{A}$.
(ii) a Lie higher derivation on \mathfrak{A} if for every $n \in \mathbb{N}$,

$$
d_{n}([A, B])=\sum_{i+j=n}\left[d_{i}(A), d_{j}(B)\right]
$$

for all $A, B \in \mathfrak{A}$.
(iii) a $*$-Lie higher derivation on \mathfrak{A} if for every $n \in \mathbb{N}$,

$$
d_{n}\left([A, B]_{*}\right)=\sum_{i+j=n}\left[d_{i}(A), d_{j}(B)\right]_{*}
$$

for all $A, B \in \mathfrak{A}$.
(iv) an inner higher derivation on \mathfrak{A} if there exist two sequences $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ in \mathfrak{A} satisfying the conditions

$$
X_{0}=Y_{0}=1 \quad \text { and } \quad \sum_{i=0}^{n} X_{i} Y_{n-i}=\delta_{n 0}=\sum_{i=0}^{n} Y_{i} X_{n-i}
$$

such that $d_{n}(A)=\sum_{i=0}^{n} X_{i} A Y_{n-i}$, for all $A \in \mathfrak{A}$ and for every $n \in \mathbb{N}$, where $\delta_{n 0}$ is the Kronecker sign.

If the linear assumption in the above definitions is dropped, then the corresponding higher derivation, Lie higher derivation and $*$-Lie higher derivation is said to be nonlinear higher derivation, nonlinear Lie higher derivation and nonlinear $*$-Lie higher derivation respectively. Moreover, if $\mathcal{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ is assumed to be the family of additive mappings, then in the above definition higher derivation, Lie higher derivation and $*$-Lie higher derivation is said to be additive higher derivation, additive Lie higher derivation and additive $*$-Lie higher derivation respectively. Note that d_{1} is always a derivation, Lie derivation and $*$-Lie derivation if $\mathcal{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ is a higher derivation, Lie higher derivation and $*$-Lie higher derivation respectively.

The objective of this article is to investigate nonlinear $*$-Lie higher derivations on standard operator algebras which are closed under adjoint operation in infinite-dimensional complex Hilbert spaces. Many researchers have made important contributions to the related topics (see [3], [9], [13]). Xiao [14] proved that every nonlinear Lie higher derivation of triangular algebras is the sum of an additive higher derivation and a nonlinear functional vanishing on all commutators. Qi and Hou [10] gave a characterization of Lie higher derivations on nest algebras. Zhang et al., [17] showed that every nonlinear $*$-Lie higher derivation on factor von Neumann algebra is linear. Motivated by the above work in this article, we study nonlinear $*$-Lie higher derivations on standard operator algebras .

2 Nonlinear *-Lie higher derivations

Throughout this paper, \mathbb{R} and \mathbb{C} represents the set of real numbers and complex numbers respectively and \mathcal{H} represents a complex Hilbert space. By $\mathcal{B}(\mathcal{H})$ we mean the algebra of all bounded linear operators on \mathcal{H}. Denote by $\mathcal{F}(\mathcal{H})$ the subalgebra of bounded finite rank operators. It is to be noted that $\mathcal{F}(\mathcal{H})$ forms a *-closed ideal in $\mathcal{B}(\mathcal{H})$. An algebra $\mathfrak{A} \subset \mathcal{B}(\mathcal{H})$ is said to be standard operator algebra in case $\mathcal{F}(\mathcal{H}) \subset \mathfrak{A}$. An operator $P \in \mathcal{B}(\mathcal{H})$ is said to be a projection provided $P^{*}=P$ and $P^{2}=P$. Note that, different from von Neumann algebras which are always weakly closed, a standard operator algebra is not necessarily closed. Recall that an algebra \mathfrak{A} is prime if $A \mathfrak{A} B=0$ implies either $A=0$ or $B=0$. It is to be noted that any standard operator algebra is prime, which is a consequence of Hahn-Banach theorem. Motivated by the work of Jing [4], we have obtained the following main result.

Theorem 1. Let \mathcal{H} be an infinite-dimensional complex Hilbert space and \mathfrak{A} be a standard operator algebra on \mathcal{H} containing identity operator I. If \mathfrak{A} is closed under the adjoint operation, then every nonlinear $*$-Lie higher derivation $\mathcal{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ from \mathfrak{A} to $\mathcal{B}(\mathcal{H})$ is an additive $*$-higher derivation.

Now take a projection $P_{1} \in \mathfrak{A}$ and let $P_{2}=I-P_{1}$. We write $\mathfrak{A}_{j k}=P_{j} \mathfrak{A} P_{k}$ for $j, k=1,2$. Then by Peirce decomposition of \mathfrak{A} we have $\mathfrak{A}=\mathfrak{A}_{11} \oplus \mathfrak{A}_{12} \oplus \mathfrak{A}_{21} \oplus \mathfrak{A}_{22}$. Note that any operator $A \in \mathfrak{A}$ can be expressed as $A=A_{11}+A_{12}+A_{21}+A_{22}$, and $A_{j k}^{*} \in \mathfrak{A}_{k j}$ for any $A_{j k} \in \mathfrak{A}_{j k}$.

We facilitate our discussion with the following known results.
Lemma 1. [4, Lemma 2.1] Let \mathfrak{A} be a standard operator algebra containing identity operator I in a complex Hilbert space which is closed under the adjoint operation. If $A B=B A^{*}$ holds true for all $B \in \mathfrak{A}$, then $A \in \mathbb{R} I$.

Lemma 2. [4, Proposition 2.7] Let \mathfrak{A} be a standard operator algebra containing identity operator I in a complex Hilbert space which is closed under the adjoint operation. For any $A \in \mathfrak{A}$,
(i) $\left[i P_{1}, A\right]_{*}=0$ implies $A_{11}=A_{12}=A_{21}=0$.
(ii) $\left[i P_{2}, A\right]_{*}=0$ implies $A_{12}=A_{21}=A_{22}=0$.
(iii) $\left[i\left(P_{2}-P_{1}\right), A\right]_{*}=0$ implies $A_{11}=A_{22}=0$.

Now we shall use the hypothesis of Theorem 1 freely without any specific mention in proving the following lemmas.

Lemma 3. $d_{n}(0)=0$ for each $n \in \mathbb{N}$.
Proof. We proceed by induction on $n \in \mathbb{N}$ with $n \geq 1$. If $n=1$, by [4, Lemma 2.2], the result is true. Now assume that the result is true for $k<n$, i.e., $d_{k}(0)=0$. Our aim is to show that d_{n} satisfies the similar property. Observe that

$$
d_{n}(0)=d_{n}\left([0,0]_{*}\right)=\sum_{i+j=n}\left[d_{i}(0), d_{j}(0)\right]_{*}=\left[d_{n}(0), 0\right]_{*}+\left[0, d_{n}(0)\right]_{*}=0
$$

Lemma 4. d_{n} has the following properties:
(i) For any $\lambda \in \mathbb{R}, d_{n}(\lambda I) \in \mathbb{R} I$.
(ii) For any $A \in \mathfrak{A}$ with $A=A^{*}, d_{n}(A)=d_{n}\left(A^{*}\right)=d_{n}(A)^{*}$.
(iii) For any $\lambda \in \mathbb{C}, d_{n}(\lambda I) \in \mathbb{C} I$.

Proof. We proceed by induction on $n \in \mathbb{N}$ with $n \geq 1$. By Lemmas $2.3,2.4 \& 2.5$ of [4] the result is true for $n=1$.

Assume that the result is true for $k<n$, i.e.,

$$
d_{k}(\lambda I) \in \mathbb{R} I, \quad d_{k}(A)=d_{k}\left(A^{*}\right)=d_{k}(A)^{*}, d_{k}(\lambda I) \in \mathbb{C} I
$$

Our aim is to show that d_{n} satisfies the similar property. By the induction hypothesis;
(i) For any $\lambda \in \mathbb{R}$, since $d_{k}(\lambda I) \in \mathbb{R} I$, i.e., $d_{k}(\lambda I)=d_{k}(\lambda I)^{*} \in \mathbb{R} I$

$$
\begin{aligned}
0 & =d_{n}\left([\lambda I, A]_{*}\right)=\left[d_{n}(\lambda I), A\right]_{*}+\left[\lambda I, d_{n}(A)\right]_{*}+\sum_{\substack{i+j=n \\
0<i, j \leq n-1}}\left[d_{i}(\lambda I), d_{j}(A)\right]_{*} \\
& =d_{n}(\lambda I) A-A d_{n}(\lambda I)^{*} .
\end{aligned}
$$

This gives us that $d_{n}(\lambda I) A=A d_{n}(\lambda I)^{*}$. By Lemma 1 , we have $d_{n}(\lambda I) \in \mathbb{R} I$.
(ii) Using (i), we have for $A=A^{*}$

$$
\begin{aligned}
0 & =d_{n}\left([A, I]_{*}\right)=\left[d_{n}(A), I\right]_{*}+\left[A, d_{n}(I)\right]_{*}+\sum_{\substack{i+j=n \\
0<i, j \leq n-1}}\left[d_{i}(A), d_{j}(I)\right]_{*} \\
& =d_{n}(A)-d_{n}(A)^{*} .
\end{aligned}
$$

(iii) For any $\lambda \in \mathbb{C}$ and $A \in \mathfrak{A}$ with $A=A^{*}$, applying (ii), we see that

$$
\begin{aligned}
0 & =d_{n}\left([A, \lambda I]_{*}\right)=\left[d_{n}(A), \lambda I\right]_{*}+\left[A, d_{n}(\lambda I)\right]_{*}+\sum_{\substack{i+j=n \\
0<i, j \leq n-1}}\left[d_{i}(A), d_{j}(\lambda I)\right]_{*} \\
& =A d_{n}(\lambda I)-d_{n}(\lambda I) A .
\end{aligned}
$$

This yields that $d_{n}(\lambda I) A=A d_{n}(\lambda I)$ for all $A \in \mathfrak{A}$ with $A=A^{*}$, and hence $d_{n}(\lambda I) \in \mathbb{C} I$.

Lemma 5. $d_{n}\left(\frac{1}{2} i I\right)=0$ for each $n \in \mathbb{N}$ with $n \geq 1$ and $d_{n}(i A)=i d_{n}(A)$ for all $A \in \mathfrak{A}$.

Proof. The result is true for $n=1$ by [4, Lemma 2.6]. Assume that the result is true for $k<n$, i.e., $d_{k}\left(\frac{1}{2} i I\right)=0$. Now we compute

$$
\begin{aligned}
d_{n}\left(-\frac{1}{2} I\right) & =d_{n}\left(\left[\frac{1}{2} i I, \frac{1}{2} i I\right]_{*}\right) \\
& =\left[d_{n}\left(\frac{1}{2} i I\right), \frac{1}{2} i I\right]_{*}+\left[\frac{1}{2} i I, d_{n}\left(\frac{1}{2} i I\right)\right]+\sum_{\substack{p+q=n \\
0<p, q \leq n-1}}\left[d_{p}\left(\frac{1}{2} i I\right), d_{q}\left(\frac{1}{2} i I\right)\right]_{*} \\
& =i d_{n}\left(\frac{1}{2} i I\right)+\frac{1}{2} i\left\{d_{n}\left(\frac{1}{2} i I\right)-d_{n}\left(\frac{1}{2} i I\right)\right\}^{*}
\end{aligned}
$$

Since both $d_{n}\left(-\frac{1}{2} I\right)$ and $\frac{1}{2} i\left\{d_{n}\left(\frac{1}{2} i I\right)-d_{n}\left(\frac{1}{2} i I\right)\right\}^{*}$ are self-adjoint, $i d_{n}\left(\frac{1}{2} i I\right)$ is also self-adjoint, and hence it follows that

$$
d_{n}\left(\frac{1}{2} i I\right)=-d_{n}\left(\frac{1}{2} i I\right)^{*}
$$

Thus, the above computation gives that

$$
\begin{equation*}
d_{n}\left(-\frac{1}{2} I\right)=2 i d_{n}\left(\frac{1}{2} i I\right) . \tag{1}
\end{equation*}
$$

Similarly, we can obtain from the fact $\left[-\frac{1}{2} i I,-\frac{1}{2} i I\right]=\frac{1}{2} I$ that $d_{n}\left(-\frac{1}{2} i I\right)^{*}=$ $-d_{n}\left(-\frac{1}{2} i I\right)$ and $d_{n}\left(-\frac{1}{2} I\right)=-2 i d_{n}\left(-\frac{1}{2} i I\right)$. Thus $d_{n}\left(-\frac{1}{2} i I\right)=-d_{n}\left(\frac{1}{2} i I\right)$. Now we
compute

$$
\begin{aligned}
d_{n}\left(\frac{1}{2} i I\right)= & d_{n}\left(\left[-\frac{1}{2} i I,-\frac{1}{2} I\right]_{*}\right) \\
= & {\left[d_{n}\left(-\frac{1}{2} i I\right),-\frac{1}{2} I\right]_{*}+\left[-\frac{1}{2} i I, d_{n}\left(-\frac{1}{2} I\right)\right]_{*} } \\
& +\sum_{\substack{p+q=n \\
0<p, q \leq n-1}}\left[d_{p}\left(-\frac{1}{2} i I\right), d_{q}\left(\frac{1}{2} I\right)\right]_{*} \\
= & -i d_{n}\left(-\frac{1}{2} i I\right)-i d_{n}\left(-\frac{1}{2} I\right)=d_{n}\left(\frac{1}{2} i I\right)-i d_{n}\left(-\frac{1}{2} I\right) .
\end{aligned}
$$

It follows that $d_{n}\left(-\frac{1}{2} I\right)=0$, and so, by the equality (1), we have $d_{n}\left(\frac{1}{2} i I\right)=0$. Now, for any $A \in \mathfrak{A}$, we have by induction hypothesis

$$
\begin{aligned}
d_{n}(i A) & =d_{n}\left(\left[\frac{1}{2} i I, A\right]_{*}\right) \\
& =\left[d_{n}\left(\frac{1}{2} i I\right),-A\right]_{*}+\left[\frac{1}{2} i I, d_{n}(A)\right]_{*}+\sum_{\substack{p+q=n \\
0<p, q \leq n-1}}\left[d_{p}\left(\frac{1}{2} i I\right), d_{q}(A)\right]_{*} \\
& =i d_{n}(A)
\end{aligned}
$$

Lemma 6. For any $A_{12} \in \mathfrak{A}_{12}$ and $B_{21} \in \mathfrak{A}_{21}$,

$$
d_{n}\left(A_{12}+B_{21}\right)=d_{n}\left(A_{12}\right)+d_{n}\left(B_{21}\right)
$$

Proof. We proceed by induction on $n \in \mathbb{N}$ with $n \geq 1$. By [4, Lemma 2.8] the result is true for $n=1$.

Assume that the result is true for $k<n$, i.e., $d_{k}\left(A_{12}+B_{21}\right)=d_{k}\left(A_{12}\right)+d_{k}\left(B_{21}\right)$.
Let $M=d_{n}\left(A_{12}+B_{21}\right)-d_{n}\left(A_{12}\right)-d_{n}\left(B_{21}\right)$. We now show that $M=0$.
By the induction hypothesis, we have

$$
\begin{aligned}
0= & d_{n}\left(\left[i\left(P_{2}-P_{1}\right), A_{12}+B_{21}\right]_{*}\right) \\
= & {\left[d_{n}\left(i\left(P_{2}-P_{1}\right)\right), A_{12}+B_{21}\right]_{*}+\left[i\left(P_{2}-P_{1}\right), d_{n}\left(A_{12}+B_{21}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i\left(P_{2}-P_{1}\right)\right), d_{s}\left(A_{12}+B_{21}\right)\right]_{*} \\
= & {\left[d_{n}\left(i\left(P_{2}-P_{1}\right)\right), A_{12}+B_{21}\right]_{*}+\left[i\left(P_{2}-P_{1}\right), d_{n}\left(A_{12}+B_{21}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i\left(P_{2}-P_{1}\right)\right), d_{s}\left(A_{12}\right)+d_{s}\left(B_{21}\right)\right]_{*} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
0= & d_{n}\left(\left[i\left(P_{2}-P_{1}\right), A_{12}\right]_{*}\right)+d_{n}\left(\left[i\left(P_{2}-P_{1}\right), B_{21}\right]_{*}\right) \\
= & {\left[d_{n}\left(i\left(P_{2}-P_{1}\right)\right), A_{12}\right]_{*}+\left[i\left(P_{2}-P_{1}\right), d_{n}\left(A_{12}\right)\right]_{*} } \\
& +\sum_{\substack{r+s \leq n \\
0<r, s \leq n-1}}\left[d_{r}\left(i\left(P_{2}-P_{1}\right)\right), d_{s}\left(A_{12}\right)\right]_{*}+\left[d_{n}\left(i\left(P_{2}-P_{1}\right)\right), B_{21}\right]_{*} \\
& +\left[i\left(P_{2}-P_{1}\right), d_{n}\left(B_{21}\right)\right]_{*}+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i\left(P_{2}-P_{1}\right)\right), d_{s}\left(B_{21}\right)\right]_{*} \\
= & {\left[d_{n}\left(i\left(P_{2}-P_{1}\right)\right), A_{12}+B_{21}\right]_{*}+\left[i\left(P_{2}-P_{1}\right), d_{n}\left(A_{12}\right)+d_{n}\left(B_{21}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i\left(P_{2}-P_{1}\right)\right), d_{s}\left(A_{12}\right)+d_{s}\left(B_{21}\right)\right]_{*} .
\end{aligned}
$$

Comparing the above two equations, we arrive at $\left[i\left(P_{2}-P_{1}\right), M\right]_{*}=0$. It follows from Lemma 2 that $M_{11}=M_{22}=0$. Now we calculate $d_{n}\left(A_{12}-A_{12}^{*}\right)$ in two ways

$$
\begin{aligned}
d_{n}\left(A_{12}-A_{12}^{*}\right)= & d_{n}\left(\left[A_{12}+B_{21}, P_{2}\right]_{*}\right) \\
= & {\left[d_{n}\left(A_{12}+B_{21}\right), P_{2}\right]_{*}+\left[A_{12}+B_{21}, d_{n}\left(P_{2}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(A_{12}+B_{21}\right), d_{s}\left(P_{2}\right)\right]_{*} \\
= & {\left[d_{n}\left(A_{12}+B_{21}\right), P_{2}\right]_{*}+\left[A_{12}+B_{21}, d_{n}\left(P_{2}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(A_{12}\right)+d_{r}\left(B_{21}\right), d_{s}\left(P_{2}\right)\right]_{*} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
d_{n}\left(A_{12}-A_{12}^{*}\right)= & d_{n}\left(\left[A_{12}, P_{2}\right]\right)_{*}+d_{n}\left(\left[B_{21}, P_{2}\right]\right)_{*} \\
= & {\left[d_{n}\left(A_{12}\right), P_{2}\right]_{*}+\left[A_{12}, d_{n}\left(P_{2}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(A_{12}\right), d_{s}\left(P_{2}\right)\right]_{*} \\
& +\left[d_{n}\left(B_{21}\right), P_{2}\right]_{*}+\left[B_{21}, d_{n}\left(P_{2}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(B_{21}\right), d_{s}\left(P_{2}\right)\right]_{*} \\
= & {\left[d_{n}\left(A_{12}\right)+d_{n}\left(B_{21}\right), P_{2}\right]_{*}+\left[A_{12}+B_{21}, d_{n}\left(P_{2}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(A_{12}\right)+d_{r}\left(B_{21}\right), d_{s}\left(P_{2}\right)\right]_{*} .
\end{aligned}
$$

The above two identities give us that $\left[M, P_{2}\right]_{*}=0$. But

$$
\left[M, P_{2}\right]_{*}=M P_{2}-P_{2} M^{*}=\left(M_{12}+M_{21}\right) P_{2}-P_{2}\left(M_{12}^{*}+M_{21}^{*}\right)=M_{12}-M_{12}^{*}
$$

Hence it follows that $M_{12}=0$.
Similarly, using the fact that

$$
\begin{aligned}
d_{n}\left(B_{21}-B_{21}^{*}\right) & =d_{n}\left(\left[A_{12}+B_{21}, P_{1}\right]_{*}\right) \\
& =d_{n}\left(\left[A_{12}, P_{1}\right]\right)_{*}+d_{n}\left(\left[B_{21}, P_{1}\right]\right)_{*}
\end{aligned}
$$

one can show that $M_{21}=0$.
Lemma 7. For any $A_{11} \in \mathfrak{A}_{11}, B_{12} \in \mathfrak{A}_{12}, C_{21} \in \mathfrak{A}_{21}$ and $D_{22} \in \mathfrak{A}_{22}$;
(i) $d_{n}\left(A_{11}+B_{12}+C_{21}\right)=d_{n}\left(A_{11}\right)+d_{n}\left(B_{12}\right)+d_{n}\left(C_{21}\right)$.
(ii) $d_{n}\left(B_{12}+C_{21}+D_{22}\right)=d_{n}\left(B_{12}\right)+d_{n}\left(C_{21}\right)+d_{n}\left(D_{22}\right)$.

Proof. (i) We proceed by induction on $n \in \mathbb{N}$ with $n \geq 1$. By [4, Lemma 2.9] the result is true for $n=1$.

Assume that the result is true for $k<n$, that is,

$$
d_{k}\left(A_{11}+B_{12}+C_{21}\right)=d_{k}\left(A_{11}\right)+d_{k}\left(B_{12}\right)+d_{k}\left(C_{21}\right)
$$

Let

$$
M=d_{n}\left(A_{11}+B_{12}+C_{21}\right)-d_{n}\left(A_{11}\right)-d_{n}\left(B_{12}\right)-d_{n}\left(C_{21}\right) .
$$

We now show that $M=0$.
By the induction hypothesis, we have by Lemma 6,

$$
\begin{aligned}
d_{n}\left(i B_{12}\right)+d_{n}\left(i C_{21}\right)= & d_{n}\left(i B_{12}+i C_{21}\right) \\
= & d_{n}\left(\left[i P_{2}, A_{11}+B_{12}+C_{21}\right]_{*}\right) \\
= & {\left[d_{n}\left(i P_{2}\right), A_{11}+B_{12}+C_{21}\right]_{*} } \\
& +\left[i P_{2}, d_{n}\left(A_{11}+B_{12}+C_{21}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{2}\right), d_{s}\left(A_{11}+B_{12}+C_{21}\right)\right]_{*} \\
= & {\left[d_{n}\left(i P_{2}\right), A_{11}+B_{12}+C_{21}\right]_{*} } \\
& +\left[i P_{2}, d_{n}\left(A_{11}+B_{12}+C_{21}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{2}\right), d_{s}\left(A_{11}\right)+d_{s}\left(B_{12}\right)+d_{s}\left(C_{21}\right)\right]_{*} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
& d_{n}\left(i B_{12}\right)+d_{n}\left(i C_{21}\right)=d_{n}\left(\left[i P_{2}, A_{11}\right]_{*}\right)+d_{n}\left(\left[i P_{2}, B_{21}\right]_{*}\right)+d_{n}\left(\left[i P_{2}, C_{21}\right]_{*}\right) \\
&= {\left[d_{n}\left(i P_{2}\right), A_{11}\right]_{*}+\left[i P_{2}, d_{n}\left(A_{11}\right)\right]_{*}+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{2}\right), d_{s}\left(A_{11}\right)\right]_{*} } \\
&+\left[d_{n}\left(i P_{2}\right), B_{12}\right]_{*}+\left[i P_{2}, d_{n}\left(B_{12}\right)\right]_{*}+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{2}\right), d_{s}\left(B_{12}\right)\right]_{*} \\
&+\left[d_{n}\left(i P_{2}\right), C_{21}\right]_{*}+\left[i P_{2}, d_{n}\left(C_{21}\right)\right]_{*}+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{2}\right), d_{s}\left(C_{21}\right)\right]_{*} \\
&= {\left[d_{n}\left(i P_{2}\right), A_{11}+B_{12}+C_{21}\right]_{*}+\left[i P_{2}, d_{n}\left(A_{11}\right)+d_{n}\left(B_{12}\right)+d_{n}\left(C_{21}\right)\right]_{*} } \\
&+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{2}\right), d_{s}\left(A_{11}\right)+d_{s}\left(B_{12}\right)+d_{s}\left(C_{21}\right)\right]_{*} .
\end{aligned}
$$

Comparing the above two equalities, we have $\left[i P_{2}, M\right]_{*}=0$ and hence it follows from Lemma 2 (ii), that $M_{12}=M_{21}=M_{22}=0$.
We now show that $M_{11}=0$. Note that

$$
\left[i\left(P_{2}-P_{1}\right), B_{12}\right]_{*}=\left[i\left(P_{2}-P_{1}\right), C_{21}\right]_{*}=0 .
$$

We have

$$
\begin{aligned}
d_{n}\left(\left[i\left(P_{2}-P_{1}\right), A_{11}+\right.\right. & \left.\left.B_{12}+C_{21}\right]_{*}\right)=d_{n}\left(\left[i\left(P_{2}-P_{1}\right), A_{11}\right]_{*}\right) \\
& +d_{n}\left(\left[i\left(P_{2}-P_{1}\right), B_{12}\right]_{*}\right)+d_{n}\left(\left[i\left(P_{2}-P_{1}\right), C_{21}\right]_{*}\right) .
\end{aligned}
$$

Using the similar arguments as used above, we get $\left[i\left(P_{2}-P_{1}\right), M\right]_{*}=0$. Therefore by Lemma 2, $M_{11}=0$. Hence we are done.
(ii) Considering $d_{n}\left(\left[i P_{1}, B_{12}+C_{21}+D_{22}\right]_{*}\right)$ and $d_{n}\left(\left[i\left(P_{2}-P_{1}\right), B_{12}+C_{21}+D_{22}\right]_{*}\right)$, with the similar argument as in (i), one can obtain

$$
d_{n}\left(B_{12}+C_{21}+D_{22}\right)=d_{n}\left(B_{12}\right)+d_{n}\left(C_{21}\right)+d_{n}\left(D_{22}\right) .
$$

Lemma 8. For any $A_{11} \in \mathfrak{A}_{11}, B_{12} \in \mathfrak{A}_{12}, C_{21} \in \mathfrak{A}_{21}$ and $D_{22} \in \mathfrak{A}_{22}$;

$$
d_{n}\left(A_{11}+B_{12}+C_{21}+D_{22}\right)=d_{n}\left(A_{11}\right)+d_{n}\left(B_{12}\right)+d_{n}\left(C_{21}\right)+d_{n}\left(D_{22}\right)
$$

Proof. By [4, Lemma 2.10], the result is true for $n=1$. Assume that the result is true for $k<n$, i.e.,

$$
d_{k}\left(A_{11}+B_{12}+C_{21}+D_{22}\right)=d_{k}\left(A_{11}\right)+d_{k}\left(B_{12}\right)+d_{k}\left(C_{21}\right)+d_{k}\left(D_{22}\right)
$$

Our aim is to show that the result is true for every $n \in \mathbb{N}$. Let

$$
M=d_{n}\left(A_{11}+B_{12}+C_{21}+D_{22}\right)-d_{n}\left(A_{11}\right)-d_{n}\left(B_{12}\right)-d_{n}\left(C_{21}\right)-d_{n}\left(D_{22}\right) .
$$

Note that $\left[i P_{1}, D_{22}\right]_{*}=0$, by induction hypothesis, we have

$$
\begin{aligned}
d_{n}\left(\left[i P_{1}, A_{11}\right.\right. & \left.\left.+B_{12}+C_{21}+D_{22}\right]_{*}\right)=\left[d_{n}\left(i P_{1}\right), A_{11}+B_{12}+C_{21}+D_{22}\right]_{*} \\
& +\left[i P_{1}, d_{n}\left(A_{11}+B_{12}+C_{21}+D_{22}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{1}\right), d_{s}\left(A_{11}+B_{12}+C_{21}+D_{22}\right)\right]_{*} \\
= & {\left[d_{n}\left(i P_{1}\right), A_{11}+B_{12}+C_{21}+D_{22}\right]_{*} } \\
& +\left[i P_{1}, d_{n}\left(A_{11}+B_{12}+C_{21}+D_{22}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{1}\right), d_{s}\left(A_{11}\right)+d_{s}\left(B_{12}\right)+d_{s}\left(C_{21}\right)+d_{s}\left(D_{22}\right)\right]_{*} .
\end{aligned}
$$

On the other hand, we have by (i) of Lemma 7,

$$
\begin{aligned}
d_{n}\left(\left[i P_{1}, A_{11}+B_{12}+\right.\right. & \left.\left.C_{21}+D_{22}\right]_{*}\right) \\
= & d_{n}\left(\left[i P_{1}, A_{11}+B_{12}+C_{21}\right]_{*}\right)+d_{n}\left(\left[i P_{1}, D_{22}\right]_{*}\right) \\
= & {\left[d_{n}\left(i P_{1}\right), A_{11}+B_{12}+C_{21}\right]_{*} } \\
& +\left[i P_{1}, d_{n}\left(A_{11}+B_{12}+C_{21}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{1}\right), d_{s}\left(A_{11}+B_{12}+C_{21}\right)\right]_{*} \cdot \\
& +\left[d_{n}\left(i P_{1}\right), D_{22}\right]_{*}+\left[i P_{1}, d_{n}\left(D_{22}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{1}\right), d_{s}\left(D_{22}\right)\right]_{*} \\
= & {\left[d_{n}\left(i P_{1}\right), A_{11}+B_{12}+C_{21}\right]_{*} } \\
& +\left[i P_{1}, d_{n}\left(A_{11}\right)+d_{n}\left(B_{12}\right)+d_{n}\left(C_{21}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{1}\right), d_{s}\left(A_{11}\right)+d_{s}\left(B_{12}\right)+d_{s}\left(C_{21}\right)\right]_{*} \\
& +\left[d_{n}\left(i P_{1}\right), D_{22}\right]_{*}+\left[i P_{1}, d_{n}\left(D_{22}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{1}\right), d_{s}\left(D_{22}\right)\right]_{*} .
\end{aligned}
$$

Comparing the above two equalities, it follows that $\left[i P_{1}, M\right]=0$, and hence by Lemma $2, M_{11}=M_{12}=M_{21}=0$. Using the fact that $\left[i P_{2}, A_{11}\right]=0$ and the above similar arguments, we obtain $\left[i P_{2}, M\right]_{*}=0$ which leads to $M_{22}=0$. This completes the proof.

Lemma 9. For any $A_{j k}, B_{j k} \in \mathfrak{A}_{j k}$, where $j, k \in 1,2$, we have

$$
d_{n}\left(A_{j k}+B_{j k}\right)=d_{n}\left(A_{j k}\right)+d_{n}\left(B_{j k}\right)
$$

Proof. We separate the proof in two distinct cases.
Case I: $j \neq k$
On one side, by Lemma 8, we have

$$
\begin{aligned}
d_{n}\left(i A_{j k}+i B_{j k}+i A_{j k}^{*}+\right. & \left.i B_{j k} A_{j k}^{*}\right) \\
& =d_{n}\left(i A_{j k}+i B_{j k}\right)+d_{n}\left(i A_{j k}^{*}\right)+d_{n}\left(i B_{j k} A_{j k}^{*}\right)
\end{aligned}
$$

On the other hand, using Lemmas 6 and 8, by induction, we have

$$
\begin{aligned}
d_{n}\left(i A_{j k}+\right. & \left.i B_{j k}+i A_{j k}^{*}+i B_{j k} A_{j k}^{*}\right)=d_{n}\left(\left[i P_{j}+i A_{j k}, P_{k}+B_{j k}\right]_{*}\right) \\
= & {\left.\left[d_{n}\left(i P_{j}+i A_{j k}\right), P_{k}+B_{j k}\right]_{*}+\left[i P_{j}+i A_{j k}, d_{(} P_{k}+B_{j k}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{j}+i A_{j k}\right), d_{s}\left(P_{k}+B_{j k}\right)\right]_{*} \\
= & {\left[d_{n}\left(i P_{j}\right)+d_{n}\left(i A_{j k}\right), P_{k}+B_{j k}\right]_{*} } \\
& \left.+\left[i P_{j}+i A_{j k}, d_{(} P_{k}\right)+d_{n}\left(B_{j k}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n}}\left[d_{r}\left(i P_{j}\right)+d_{r}\left(i A_{j k}\right), d_{s}\left(P_{k}\right)+d_{s}\left(B_{j k}\right)\right]_{*} \\
= & d_{n}(r r, s \leq n-1 \\
& +d_{n}\left(\left[i P_{j}, P_{k}\right]_{*}\right)+d_{n}\left(\left[i P_{j}, B_{j k}\right]_{*}\right)+d_{n}\left(\left[i A_{j k}, B_{j k}\right]_{*}\right) \\
= & d_{n}\left(i B_{j k}\right)+d_{n}\left(i A_{j k}+i A_{j k}^{*}\right)+d_{n}\left(i B_{j k} A_{j k}^{*}\right) \\
= & d_{n}\left(i B_{j k}\right)+d_{n}\left(i A_{j k}\right)+d_{n}\left(i A_{j k}^{*}\right)+d_{n}\left(i B_{j k} A_{j k}^{*}\right) .
\end{aligned}
$$

Comparing the above two equalities, we can conclude that

$$
d_{n}\left(A_{j k}+B_{j k}\right)=d_{n}\left(A_{j k}\right)+d_{n}\left(A_{j k}^{*}\right)
$$

Case II: $j=k$.
Let $A_{j j}, B_{j j} \in \mathfrak{A}_{j j}$ and $n \in\{1,2\}$ with $n \neq j$. We have

$$
\begin{aligned}
0= & d_{n}\left(\left[i P_{n}, A_{j j}+B_{j j}\right]_{*}\right) \\
= & {\left[d_{n}\left(i P_{n}\right), A_{j j}+B_{j j}\right]_{*}+\left[i P_{n}, d_{n}\left(A_{j j}+B_{j j}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{n}\right), d_{s}\left(A_{j j}+B_{j j}\right)\right]_{*} \\
= & {\left[d_{n}\left(i P_{n}\right), A_{j j}+B_{j j}\right]_{*}+\left[i P_{n}, d_{n}\left(A_{j j}+B_{j j}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{n}\right), d_{s}\left(A_{j j}\right)+d_{s}\left(B_{j j}\right)\right]_{*} .
\end{aligned}
$$

On the other hand we have,

$$
\begin{aligned}
0= & d_{n}\left(\left[i P_{n}, A_{j j}\right]_{*}\right)+d_{n}\left(\left[i P_{n}, B_{j j}\right]_{*}\right) \\
= & {\left[d_{n}\left(i P_{n}\right), A_{j j}\right]_{*}+\left[i P_{n}, d_{n}\left(A_{j j}\right)\right]_{*}+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{n}\right), d_{s}\left(A_{j j}\right)\right]_{*} } \\
& +\left[d_{n}\left(i P_{n}\right), B_{j j}\right]_{*}+\left[i P_{n}, d_{n}\left(B_{j j}\right)\right]_{*}+\sum_{\substack{r+s=n \\
0<r \leq s \leq n-1}}\left[d_{r}\left(i P_{n}\right), d_{s}\left(B_{j j}\right)\right]_{*} \\
= & {\left[d_{n}\left(i P_{n}\right), A_{j j}+B_{j j}\right]_{*}+\left[i P_{n}, d_{n}\left(A_{j j}\right)+d_{n}\left(B_{j j}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(i P_{n}\right), d_{s}\left(A_{j j}\right)+d_{s}\left(B_{j j}\right)\right]_{*} .
\end{aligned}
$$

Take $M=d_{n}\left(A_{j j}+B_{j j}\right)-d_{n}\left(A_{j j}\right)-d_{n}\left(B_{j j}\right)$. The above computation yields that $\left[i P_{n}, M\right]_{*}=0$. By Lemma 2, we have $M_{n j}=M_{j n}=M_{n n}=0$. We now show that $M_{j j}=0$. For any $C_{j n} \in \mathfrak{A}_{j n}$, using Case I, we compute

$$
\begin{aligned}
d_{n}\left(\left[A_{j j}+B_{j j}, C_{j n}\right]_{*}\right)= & {\left[d_{n}\left(A_{j j}+B_{j j}\right), C_{j n}\right]_{*}+\left[A_{j j}+B_{j j}, d_{n}\left(C_{j n}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(A_{j j}+B_{j j}\right), d_{s}\left(C_{j n}\right)\right]_{*} \\
= & {\left[d_{n}\left(A_{j j}+B_{j j}\right), C_{j n}\right]_{*}+\left[A_{j j}+B_{j j}, d_{n}\left(C_{j n}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(A_{j j}\right)+d_{r}\left(B_{j j}\right), d_{s}\left(C_{j n}\right)\right]_{*} .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
d_{n}\left(\left[A_{j j}+B_{j j}, C_{j n}\right]_{*}\right)= & d_{n}\left(A_{j j} C_{j n}+B_{j j} C_{j n}\right) \\
= & d_{n}\left(A_{j j} C_{j n}\right)+d_{n}\left(B_{j j} C_{j n}\right) \\
= & d_{n}\left(\left[A_{j j}, C_{j n}\right]_{*}\right)+d_{n}\left(\left[B_{j j}, C_{j n}\right]_{*}\right) \\
= & {\left[d_{n}\left(A_{j j}\right), C_{j n}\right]_{*}+\left[A_{j j}, d_{n}\left(C_{j n}\right)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(A_{j j}\right), d_{s}\left(C_{j n}\right)\right]_{*} \\
& +\left[d_{n}\left(B_{j j}\right), C_{j n}\right]_{*}+\left[B_{j j}, d_{n}\left(C_{j n}\right)\right]_{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}\left(B_{j j}\right), d_{s}\left(C_{j n}\right)\right]_{*} .
\end{aligned}
$$

Comparing the above two equalities, we obtain $\left[M, C_{j n}\right]_{*}=0$ which leads to $M_{j j} C_{j n}=0$. Since \mathfrak{A} is prime, we see that $M_{j j}=0$, which completes the proof.

Lemma 10. d_{n} is an additive $*$-higher derivation on \mathfrak{A}.

Proof. We first show that d_{n} is additive. For arbitrary $A, B \in \mathfrak{A}$, we write $A=$ $\sum_{j, k=1}^{2} A_{j k}$ and $B=\sum_{j, k=1}^{2} B_{j k}$. It follows from Lemmas 8 and 9 that

$$
\begin{aligned}
d_{n}(A+B) & =d_{n}\left\{\sum_{j, k=1}^{2}\left(A_{j k}+B_{j k}\right)\right\} \\
& =\sum_{j, k=1}^{2} d_{n}\left(A_{j k}+B_{j k}\right) \\
& =\sum_{j, k=1}^{2}\left(d_{n}\left(A_{j k}\right)+d_{n}\left(B_{j k}\right)\right) \\
& =d_{n}\left(\sum_{j, k=1}^{2} A_{j k}\right)+d_{n}\left(\sum_{j, k=1}^{2} B_{j k}\right) \\
& =d_{n}(A)+d_{n}(B) .
\end{aligned}
$$

We now show that $d_{n}\left(A^{*}\right)=d_{n}(A)^{*}$.
For any $A \in \mathfrak{A}$, it follows from Lemmas 4 and 5 that

$$
\begin{aligned}
d_{n}\left(A^{*}\right) & =d_{n}(\mathfrak{R} A-i \mathfrak{T} A)=d_{n}(\mathfrak{R} A)-d_{n}(i \mathfrak{T} A) \\
& =d_{n}(\mathfrak{R} A)-i d_{n}(\mathfrak{T} A)=d_{n}(\mathfrak{R} A)^{*}-i d_{n}(\mathfrak{T} A)^{*} \\
& =d_{n}(\mathfrak{R A})^{*}+\left(i d_{n}(\mathfrak{T} A)\right)^{*}=d_{n}(\mathfrak{R} A)^{*}+d_{n}(i \mathfrak{T} A)^{*} \\
& =\left(d_{n}(\mathfrak{R} A+i \mathfrak{T} A)\right)^{*}=d_{n}(A)^{*} .
\end{aligned}
$$

To complete the proof, we need to show that d_{n} is a higher derivation on \mathfrak{A}.
Since d_{n} is additive, it follows from Lemma 5 , that $d_{n}(i I)=0$. It is to be noted that $[i I+A, B]_{*}=2 i B+A B-B A^{*}$.

$$
\begin{aligned}
d_{n}(2 i B)+ & d_{n}(A B)-d_{n}\left(B A^{*}\right)=d_{n}\left([i I+A, B]_{*}\right) \\
= & {\left[d_{n}(i I+A), B\right]_{*}+\left[i I+A, d_{n}(B)\right]_{*}+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}(i I+A), d_{s}(B)\right]_{*} } \\
= & {\left[d_{n}(i I)+d_{n}(A), B\right]_{*}+\left[i I+A, d_{n}(B)\right]_{*} } \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}(i I)+d_{r}(A), d_{s}(B)\right]_{*} \\
= & {\left[d_{n}(A), B\right]_{*}+\left[i I+A, d_{n}(B)\right]_{*}+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left[d_{r}(A), d_{s}(B)\right]_{*} } \\
= & d_{n}(A) B-B d_{n}(A)^{*}+2 i d_{n}(B)+A d_{n}(B)-d_{n}(B) A^{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left(d_{r}(A) d_{s}(B)-d_{s}(B) d_{r}(A)^{*}\right) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
d_{n}(A B)-d_{n}\left(B A^{*}\right)= & d_{n}(A) B-B d_{n}(A)^{*}+A d_{n}(B)-d_{n}(B) A^{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left(d_{r}(A) d_{s}(B)-d_{s}(B) d_{r}(A)^{*}\right) .
\end{aligned}
$$

Replacing A by $i A$ in the above equality, we get

$$
\begin{aligned}
d_{n}(A B)+d_{n}\left(B A^{*}\right)= & d_{n}(A) B+B d_{n}(A)^{*}+A d_{n}(B)+d_{n}(B) A^{*} \\
& +\sum_{\substack{r+s=n \\
0<r, s \leq n-1}}\left(d_{r}(A) d_{s}(B)+d_{s}(B) d_{r}(A)^{*}\right)
\end{aligned}
$$

Thus we have,

$$
\begin{aligned}
d_{n}(A B) & =d_{n}(A) B+A d_{n}(B)+\sum_{\substack{r+s=n \\
0<r, s \leq n-1}} d_{r}(A) d_{s}(B) \\
& =\sum_{r+s=n} d_{r}(A) d_{s}(B) .
\end{aligned}
$$

This shows that d_{n} is an additive higher derivation with $d_{n}\left(A^{*}\right)=d_{n}(A)^{*}$. Hence d_{n} is an additive $*$-higher derivation on \mathfrak{A}, which completes the proof.

Note that every additive derivation $d: \mathfrak{A} \rightarrow \mathcal{B}(\mathcal{H})$ is an inner derivation (see [12]). Nowicki [9] proved that if every additive (linear) derivation of \mathfrak{A} is inner, then every additive (linear) higher derivation of \mathfrak{A} is inner (see also [13]). So by Theorem 1 , the following corollary is immediate.

Corollary 1. Let \mathcal{H} be an infinite-dimensional complex Hilbert space and \mathfrak{A} be a standard operator algebra on \mathcal{H} containing identity operator I. If \mathfrak{A} is closed under the adjoint operation, then every nonlinear $*$-Lie higher derivation $\mathcal{D}=\left\{d_{n}\right\}_{n \in \mathbb{N}}$ is inner with $d_{n}\left(A^{*}\right)=d_{n}(A)^{*}$ for each $A \in \mathfrak{A}$ and every $n \in \mathbb{N}$.

Acknowledgement

The authors are highly indebted to the referee for his/her valuable remarks which have improved the paper immensely.

References

[1] M. Brešar: Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings. Trans. Amer. Math. Soc. 335 (2) (1993) 525-546.
[2] L. Chen, J. H. Zhang: Nonlinear Lie derivations on upper triangular matrices. Linear Multilinear Algebra 56 (6) (2008) 725-730.
[3] M. Ferrero, C. Haetinger: Higher derivations of semiprime rings. Comm. Algebra 30 (2002) 2321-2333.
[4] Wu Jing: Nonlinear *-Lie derivations of standard operator algebras. Quaestiones Mathematicae 39 (8) (2016) 1037-1046.
[5] W. Jing, F. Lu: Lie derivable mappings on prime rings. Linear Multilinear Algebra 60 (2012) 167-180.
[6] F. Y. Lu, W. Jing: Characterizations of Lie derivations of $\mathcal{B}(\mathcal{X})$. Linear Algebra Appl. 432 (1) (2010) 89-99.
[7] W. S. Martindale III: Lie derivations of primitive rings. Michigan Math. J. 11 (1964) 183-187.
[8] C. R. Mires: Lie derivations of von Neumann algebras. Duke Math. J. 40 (1973) 403-409.
[9] A. Nowicki: Inner derivations of higher orders. Tsukuba J. Math. 8 (2) (1984) 219-225.
[10] X. F. Qi, J. C. Hou: Lie higher derivations on nest algebras. Commun. Math. Res. 26 (2) (2010) 131-143.
[11] X. F. Qi, J. C. Hou: Characterization of Lie derivations on prime rings. Comm. Algebra 39 (10) (2011) 3824-3835.
[12] P. Šemrl: Additive derivations of some operator algebras. Illinois J. Math. 35 (1991) 234-240.
[13] F. Wei, Z. K. Xiao: Higher derivations of triangular algebras and its generalizations. Linear Algebra Appl. 435 (2011) 1034-1054.
[14] Z. K. Xiao, F. Wei: Nonlinear Lie higher derivations on triangular algebras. Linear Multilinear Algebra 60 (8) (2012) 979-994.
[15] W. Yu, J. Zhang: Nonlinear Lie derivations of triangular algebras. Linear Algebra Appl. 432 (11) (2010) 2953-2960.
[16] W. Yu, J. Zhang: Nonlinear *-Lie derivations on factor von Neumann algebras. Linear Algebra Appl. 437 (2012) 1979-1991.
[17] F. Zhang, X. Qi, J. Zhang: Nonlinear *-Lie higher derivations on factor von Neumann algebras. Bull. Iranian Math. Soc. 42 (3) (2016) 659-678.
[18] F. Zhang, J. Zhang: Nonlinear Lie derivations on factor von Neumann algebras. Acta Mathematica Sinica. (Chin. Ser) 54 (5) (2011) 791-802.

Received: 13 July, 2017
Accepted for publication: 2 February, 2018
Communicated by: Stephen Glasby

[^0]: 2010 MSC: 47B47, 16W25, 46K15.
 Key words: Nonlinear *-Lie derivation, nonlinear $*$-Lie higher derivation, additive $*$-higher derivation, standard operator algebra.

 Affiliation:
 Mohammad Ashraf - Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India
 E-mail: mashraf80@hotmail.com
 Shakir Ali - Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India
 E-mail: shakir50@rediffmail.com
 Bilal Ahmad Wani - Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India
 E-mail: bilalwanikmr@gmail.com

