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Nonlinear *-Lie higher derivations of standard
operator algebras

Mohammad Ashraf, Shakir Ali, Bilal Ahmad Wani

Abstract. Let H be an infinite-dimensional complex Hilbert space and 2( be
a standard operator algebra on H which is closed under the adjoint opera-
tion. It is shown that every nonlinear *-Lie higher derivation D = {0n }nen
of 2l is automatically an additive higher derivation on 2. Moreover, D =
{0n}nen is an inner *-higher derivation.

1 Introduction

Let 2 be an algebra over a commutative ring R. Recall that an R-linear mapping
d: A — A is called a derivation if d(AB) = d(A)B + Ad(B) for all A,B € 2; in
particular, d is called an inner derivation if there exists some X € 2 such that
d(A) = AX — XA for all A € 2. An R-linear mapping d: 2 — 2 is called a Lie
derivation if d([A4, B]) = [d(A), B] + [A,d(B)] for all A,B € 2, where [A,B] =
AB — BA is the usual Lie product. Furthermore, without linearity/additivity
assumption, if d satisfies d([A, B]) = [d(A), B] + [A4,d(B)] for all A, B € 2, then d
is called a nonlinear Lie derivation. The question of characterizing Lie derivations
and revealing the relationship between derivations and Lie derivations have been
studied by many authors (see [1], [2], [5], [6], [7], [8], [11], [12], [15], [18]).
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Let 2L be an associative x-algebra over the complex field C. A mapping d: A — 2
is said to be an additive *-derivation if it is an additive derivation and satisfies
d(A)* = d(A*) for all A € . Further, if d: A — 2 is a map (not necessarily
linear) which satisfies d([4, B].) = [d(A), B]« + [A,d(B)]. for all A, B € 2, where
[A, B]. = AB — BA*, then d is known as a nonlinear *-Lie derivation of 2.

In [16] Yu and Zhang showed that every nonlinear x-Lie derivation from a
factor von Neumann algebra on an infinite-dimensional Hilbert space into itself is
an additive x-derivation. It is to be noted that a factor von Neumann algebra is
a von Neumann algebra whose centre is trivial. In [4] Wu Jing proved that every
nonlinear *-Lie derivation on standard operator algebra is automatically linear.
Moreover, it is an inner *-derivation .

Let us recall some basic facts related to Lie higher derivations and *-Lie higher
derivations of an associative algebra. Many different kinds of higher derivations,
which consist of a family of some additive mappings, have been widely studied in
commutative and noncommutative rings. Let N be the set of non-negative integers
and D = {d, }nen be a family of linear mappings d,,: 2 — 2 such that dy = idg,
the identity map on 2. Then D is called

(i) a higher derivation on 2 if for every n € N,

d(AB) = Y di(A)d;(B)

i+j=n
for all A, B € 2.

(ii) a Lie higher derivation on 2 if for every n € N,

dn([A,B]) = > [di(A),d;(B)]
i+j=n

for all A, B € 2.

(iii) a *-Lie higher derivation on 2 if for every n € N,
da([A,Bl) = Y [di(A),d;(B)],
1+j=n
for all A,B € 2.

(iv) an inner higher derivation on 2 if there exist two sequences {X,}nen and
{Y.. }nen in 2 satisfying the conditions

Xo=Yy=1 and zn:XiYnfi =0po = Zn:Yanfi
=0 i=0

such that d,(A) = Z?:o X, AY,,_;, for all A € 2l and for every n € N, where
Ono is the Kronecker sign.
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If the linear assumption in the above definitions is dropped, then the correspond-
ing higher derivation, Lie higher derivation and x-Lie higher derivation is said to
be nonlinear higher derivation, nonlinear Lie higher derivation and nonlinear *-Lie
higher derivation respectively. Moreover, if D = {d,, } e is assumed to be the fam-
ily of additive mappings, then in the above definition higher derivation, Lie higher
derivation and x-Lie higher derivation is said to be additive higher derivation, ad-
ditive Lie higher derivation and additive *-Lie higher derivation respectively. Note
that d; is always a derivation, Lie derivation and x-Lie derivation if D = {d,, } nen is
a higher derivation, Lie higher derivation and *-Lie higher derivation respectively.

The objective of this article is to investigate nonlinear x-Lie higher deriva-
tions on standard operator algebras which are closed under adjoint operation in
infinite-dimensional complex Hilbert spaces. Many researchers have made impor-
tant contributions to the related topics (see [3], [9], [13]). Xiao [14] proved that
every nonlinear Lie higher derivation of triangular algebras is the sum of an ad-
ditive higher derivation and a nonlinear functional vanishing on all commutators.
Qi and Hou [10] gave a characterization of Lie higher derivations on nest algebras.
Zhang et al., [17] showed that every nonlinear *-Lie higher derivation on factor von
Neumann algebra is linear. Motivated by the above work in this article, we study
nonlinear *-Lie higher derivations on standard operator algebras .

2 Nonlinear x-Lie higher derivations

Throughout this paper, R and C represents the set of real numbers and complex
numbers respectively and H represents a complex Hilbert space. By B(H) we mean
the algebra of all bounded linear operators on H. Denote by F(#) the subalgebra
of bounded finite rank operators. It is to be noted that F(#) forms a *-closed
ideal in B(#H). An algebra 2 C B(H) is said to be standard operator algebra in
case F(H) C A. An operator P € B(H) is said to be a projection provided P* = P
and P? = P. Note that, different from von Neumann algebras which are always
weakly closed, a standard operator algebra is not necessarily closed. Recall that an
algebra 2l is prime if ALB = 0 implies either A = 0 or B = 0. It is to be noted that
any standard operator algebra is prime, which is a consequence of Hahn-Banach
theorem. Motivated by the work of Jing [4], we have obtained the following main
result.

Theorem 1. Let H be an infinite-dimensional complex Hilbert space and 2l be a
standard operator algebra on ‘H containing identity operator I. If 2 is closed under
the adjoint operation, then every nonlinear *-Lie higher derivation D = {d }nen
from 2 to B(H) is an additive x-higher derivation.

Now take a projection P, € 2 and let P>, = I — P;. We write 2, = P;P; for
j,k =1,2. Then by Peirce decomposition of 2 we have A = 11 B A15 B Ao B Aso.
Note that any operator A € 2 can be expressed as A = Ay; + Ao + Aoy + Ao,
and A;k € Qlkj for any Ajk S Q[jk.

We facilitate our discussion with the following known results.
Lemma 1. [4, Lemma 2.1] Let 2 be a standard operator algebra containing identity

operator I in a complex Hilbert space which is closed under the adjoint operation.
If AB = BA* holds true for all B € 2, then A € RI.
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Lemma 2. [4, Proposition 2.7] Let 2 be a standard operator algebra containing
identity operator I in a complex Hilbert space which is closed under the adjoint
operation. For any A € 2,

(1) [ZPl,A}* =0 imp]ies A11 = A12 = A21 =0.
(11) [ZPQ,A}* =0 imp]ies A12 = A21 = A22 =0.
(iii) [i(Py — P1), Al = 0 implies Ayy = Az = 0.

Now we shall use the hypothesis of Theorem 1 freely without any specific men-
tion in proving the following lemmas.

Lemma 3. d,,(0) =0 for each n € N.

Proof. We proceed by induction on n € N with n > 1. If n = 1, by [4, Lemma 2.2],
the result is true. Now assume that the result is true for k < n, i.e., di(0) = 0.
Our aim is to show that d,, satisfies the similar property. Observe that

dp(0) = d([0,0).) = Y [di(0),d;(0)]. = [dn(0), 0] + [0, dn (0)]. = 0.
i+j=n

Lemma 4. d,, has the following properties:
(i) For any A € R, d,(A\I) € RI.
(ii) For any A € A with A = A*, d,,(A) = d,,(A*) = d,(A)*.
(iii) For any X € C, d,,(\I) € CI.

Proof. We proceed by induction on n € N with n > 1. By Lemmas 2.3, 2.4 & 2.5
of [4] the result is true for n = 1.
Assume that the result is true for k < n, i.e.,

Our aim is to show that d,, satisfies the similar property. By the induction
hypothesis;

(i) For any A € R, since di(AI) € RI, i.e., dip(A]) = di(A])* € RI

0= du(\, ALL) = [da(A), Al + L da(A)]+ Y0 [di(A), dj(A)).

i+j=n
0<i,j<n—1

= dy(AD)A — Ad, (A" .

This gives us that d,,(A)A = Ad,,(AI)*. By Lemma 1, we have d,,(AI) € RI.
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(ii) Using (i), we have for A = A*

0= dn([A 1) = [da(A), e + [A da (D] + Y [di(4), di(D)s
=dn(A) —dn(A)".

(iii) For any A € C and A € 2 with A = A*, applying (ii), we see that

0= du([A,M]e) = [da(A), M + [A,da(AD] + Y [di(4), di(AD)).

i+j=n
0<i,j<n—1

— Ady () — dny(ADA.
This yields that d,,(A)A = Ad,(AI) for all A € 2 with A = A*, and hence

d, (M) € CI.
O

Lemma 5. d,,(1iI) = 0 for each n € N with n > 1 and d,,(iA) = id,(A) for all
AcL

Proof. The result is true for n = 1 by [4, Lemma 2.6]. Assume that the result is
true for k < n, i.e., dk(%if) = 0. Now we compute

o (-41) = (L ]

2
= [ (i) ]+ [l + X [w(0) a(z0),
0pa<n1

Il
~
IS
3
VS
L
~

)+ () = ()}

Since both d,, (—%I) and %z{dn (%ZI) —d, (%ZI) }* are self-adjoint, id, (%ZI) is also
self-adjoint, and hence it follows that

1 1 *
dn(§ﬂ) = —dn(iil) .
Thus, the above computation gives that
1 1
dy (”1) - 2idn<7i1). (1)
2 2

Similarly, we can obtain from the fact [—3iI, —1iI] = LI that d,(—1iI)" =
—dp(—3iI) and d,,(—31) = —2id,, (—%iI). Thus d,(—3il) = —d,(%iI). Now we
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compute

p+q=n
0<p,g<n—1

— _id, (f%u) _ z‘dn(%f) - dn(%u’) _ z‘dn(—%l).

It follows that dn(—%l) = 0, and so, by the equality (1), we have dn(%iI) = 0.
Now, for any A € 2, we have by induction hypothesis

dn(iA) = d, ( [%u A} )

- o) 4]+ i)
0pigan—1

= id, (A).

Lemma 6. For any A5 € 15 and By € a1,
dn(A12 + Bo1) = dn(A12) + dy(Boay).

Proof. We proceed by induction on n € N with n > 1. By [4, Lemma 2.8] the
result is true for n = 1.

Assume that the result is true for & < n, i.e., dy(A12+B21) = di(A12)+di(Bai).
Let M = d,,(A12 + B21) — dyn(A12) — dn(B21). We now show that M = 0.
By the induction hypothesis, we have

S
—~

i(Py— P1)), A12 + Bo1| +[i(P2 — P1),dn(A12 + Ba)],
+ Z [y (i(Py — P1)),ds(Ar2 + Ba1)],

r4+s=n
0<r,s<n—1

= [ (i(P2 = P). Asa+ Bar] + [i(Ps = P1).d(Asa+ B,
S iR~ P )+ du(Ba)],

r4+s=n
0<r,s<n—1
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On the other hand,

0=dy([i(P. — P1),A12] ) + dn([i(P2 — P1), Bai1] )
= [dn(i(P2 — P1)), A1z, + [i(P2 — P1),dn(A12)],
Y (P = P)).di(Aw)], + [d (P — P1)). Baa),

r4+s=n

0<r,s<n—1
+ [i(PQ—Pl),dn(le)]*'i- Z [dr(i(PZ_Pl))vds(B21)]*
r+s=n
0<r,s<n—1

= [d,(i(P, — P1)), A1z + 321}*+[1(P2 = P1),dn(A12) + d"(Bm)L
+ Y [de(i(Pr— P1))du(Arz) + du(Ban)]

r+s=n
0<r,s<n—1

Comparing the above two equations, we arrive at [i(P2 — P1), M]. = 0. It follows
from Lemma 2 that M;; = Myy = 0. Now we calculate d,,(A12 — A,) in two ways

dn(A12 — Afy) = d ([A12 + Bor, P2l.)
= [dn(A12 + Ba1), P2, + [A12 + Bo1,dn(P2)],
+ Z [dy(Ar2 + Ba1), ds(P2)],

r4+s=n
0<r,s<n—1

= [dn(A12 + B21), P2, + [A12 + Bo1,dn(P2)],
+ Z [dT(Alg) + dr(le), dg(Pg)] .

r4+s=n
0<r,s<n—1

On the other hand,

dn(A12 — Afy) = dn ([A12, P2]), + dn([B21, P2]),
[ n A12 ] + [A127dn(P2)}*
+ Z [dT(AH)a ds(P?ﬂ *

r4+s=n
0<r,s<n—1

+ [dn(Bm),PQ]* + [BQI,dn(PQ)]*
+ Z [d,«(BQl)vds(PQ)]*

r4+s=n
0<r,s<n—1

= [dn(A12) + dn(B21), Po], + [A12 + Bor, dn(P,)],
+ Y [de(Ar2) + de(Bar), ds(P)] -

r4+s=n
0<r,s<n—1
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The above two identities give us that [M, P;]. = 0. But
[M, Pg}* =MP, — P,M* = (Mlg + MQl)PQ - PQ(Ml*Q + M;l) = Mys — Mik2

Hence it follows that M5 = 0.
Similarly, using the fact that
dn(Ba1 — B3y) = dy ([A12 + Ba1, Pi.)
= dn([A12, P1]), + dn([B21, P1]),,

one can show that My, = 0. O

Lemma 7. For any A € A1, Bio € 49, Cy1 € Ao and Doy € Aoo;
(i) dn(Ai1 + Bia + Co1) = dn(A11) + dn(Bi12) + dpn(Ca1).
(ii) dn(Bi2 + C21 + D22) = dp(Bi2) + dn(Ca1) + dpn(D22).

Proof. (i) We proceed by induction on n € N with n > 1. By [4, Lemma 2.9
the result is true for n = 1.

Assume that the result is true for k < n, that is,

di(A11 + Biz + Co1) = di(A11) + di(Bi12) + di(Ca1).

Let
=dp(A11 + Bi2 + C21) — dn(A11) — dp(Bi2) — dn(Ca1).

We now show that M = 0.
By the induction hypothesis, we have by Lemma 6,

dp(iB1s) + dy(iCoy) = dy (i1 + iCh1)
= dy ([iP, A11 + Bi2 + Ca1s)
= [dn(iP,), A11 4 Biz + Con |,
+ [ZP2, n(A1 + Bz + 021)]

+ > [de(iPy), du(Asy + Baz + Ca)]

r+s=n
0<r,s<n—1

= [dn(iPy), A1 + Bia + Con ],
+ [iP2, dp(A11 + Bi2 + 021)]*

+ Z [dr(iP2),ds(A11) + ds(Bi2) + ds(Ca1)] -

r+s=n
0<r,s<n—1



Nonlinear *-Lie higher derivations of standard operator algebras 23

On the other hand, we have
dn(iB12) + dp (iC21) = dy ([i P, A11]s) + do ([i P2, Ba1ls) + di ([i P2, Co1ls)
= [dn(iPy), A11], + [iPa, dn(A11)], + Z [dr(iPy), ds(A11)],

r4+s=n
0<r,s<n—1

+ [dn(iPy), Bia], + [iPy,dn(B12)], + > [de(iP2),ds(B12)],
r4+s=n
0<r,s<n—1
+ [dn(iPy),Cor, + [iPy,dn(Co1)], + Y [de(iP2),ds(Ca1)],

r4+s=n
0<r,s<n—1

= [dn(ipg),An + Bis + 021]* + [iPQ; dn(A11) + dy(B12) + d”(021)]*
+ Y [de(iPy),do(An) + dy(Brz) + do(Car)] -
r4+s=n

0<r,s<n—1

Comparing the above two equalities, we have [iP, M], = 0 and hence it
follows from Lemma 2 (ii), that Mo = My = Moy = 0.

We now show that M;; = 0. Note that
[i(Py = P1), Bra], = [i(P2 — P1),Ca1], = 0.
We have
dn([i(P2 —Py), A1 + Bia + 021]*) = dn([i(Pg — Pl),An]*)
+dy ([i(Po — P1), Bia]s) + dp ([i( P2 — P1),Con ) .

Using the similar arguments as used above, we get [i(P, — Pp), M]. = 0.
Therefore by Lemma 2, M;; = 0. Hence we are done.

(11) COHSidGI‘ng dn([lpl, Blg+021 +D22]*) and dn([Z(PQ 7P1), B12 +021 +D22]*),
with the similar argument as in (i), one can obtain

dy(Bi2 4+ Co1 + Dag) = dp(Bi2) + dy(C1) + dn(D22) .

Lemma 8. For any A11 S Qlll, Blg S 9112, 021 S 9121 and DQQ S 9122;
dn (A1 + Bz + Co1 + Dag) = dp(A11) + dn(Bi2) + dn(Ca1) + dy(Dag).

Proof. By [4, Lemma 2.10], the result is true for n = 1. Assume that the result is
true for k < n, i.e.,

di.(A11 + Big + C21 + Daz) = di(A11) + di(B12) + di(Car) + di(D22) -
Our aim is to show that the result is true for every n € N. Let

M = d,(A11 + Biz + Co1 + Da2) — dp(A11) — dn(B12) — dn(Ca1) — dp(Da2) .



24 Mohammad Ashraf, Shakir Ali, Bilal Ahmad Wani

Note that [i Py, Das]« = 0, by induction hypothesis, we have

dn ([iP1,A11 + Biz2 + Co1 + Dagy) = [dy(iPy), A11 + Bia + Ca1 + Daols
+ [iPy, dn(A11 + Bia + Co1 + Dao)]
+ Z [dy(iPy), ds(A1y + Bia + Co1 + Dao)],

r4+s=n
0<r,s<n—1

= [dn(iP1), A11 4 Biz + Co1 + Do),
+ [iP1,dn(A11 + Bia + Ca1 + Da2)]
+ Z [d(iP1), ds(A11) + ds(Bi2) + ds(Ca1) +ds(D22)]*~

r4+s=n
0<r,s<n—1

On the other hand, we have by (i) of Lemma 7,

dn ([iP1, A1y + Bia + Co1 + Daols)
=dn([iP1, A11 + Bi2 4 Ca1)s) + dn ([iPy, Dao))
= [d,(iP1), A11 + Bi2 + Ca1].
+ [iPy, dn (A1 + Bia + Co1)],
+ Z [d(iP1),ds(A11 + Bia + 021)]*~

r4+s=n
0<r,s<n—1

—+ [dn(ipl),DQQ]* + [Z‘Phdn<D22)]*
+ ). [de(iP), di(Da)],

r4+s=n
0<r,s<n—1

= [dn(iP1), A1y + Bis + Can]
+ [iP1, dp(A11) + d(Br2) + dn(C21)],
+ > [Py, do(Auy) + ds(Brz) + dy(Can)]

r4+s=n
0<r,s<n—1

+ [dn(iPy), Das], + [iP1, dp(D22)],
+ Y [deiP),dy(D22)].

r4+s=n
0<r,s<n—1

Comparing the above two equalities, it follows that [iP;, M] = 0, and hence by
Lemma 2, My, = Mjs = My = 0. Using the fact that [iP2, A11] = 0 and the
above similar arguments, we obtain [iPs, M], = 0 which leads to M3; = 0. This

completes the proof.
Lemma 9. For any Ajj, Bji € Ui, where j, k € 1,2, we have

dn(Ajk + Bjk) = dn(A]k) + dn(Bjk)
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Proof. We separate the proof in two distinct cases.

Casel: j#k

On one side, by Lemma 8, we have

dn(iAj, + 1B, + iAG + Z'BjkA;k)
= dn(iAjk + ZBJk) + dn(ZA;kk) + dn(’LBjkA;k) .

On the other hand, using Lemmas 6 and 8, by induction, we have

dn(iAji, + By +iAjy +iBjeAfy) = du([iP) + iAj, P+ Bjel)
= [dn(iP; +iAji), P + Bji], + [iPj +iAjk, d( Py, + Bjy)]

r4+s=n
0<r,s<n—1

= [da(iP)) + du(i4;1), Pe + Bjs],
+ [iP; + iAjk, d(Py) + dn(Bj1)]
+ Y [diP) + e (iA50), dy(P) + dy(Byy)],

r4+s=n
0<r,s<n—1

= d, ([iP;, Py)s) + dn ([iP;, Bji].)
+ dn ([iAjks Pils) + dn ([iAjk, Bjrl+)
= d(iBjr) + dn(iAjr +i1A%) + dn(iBjr Aly)
= dy(iBji) + dn(iAj) + dn(iA%) + dp (1B A%L).

Comparing the above two equalities, we can conclude that

dn(Ajk + Bjk) = dn(Ajx) + dn(Afy) -

Case ll: j =k.
Let A;;,Bj; € A,; and n € {1,2} with n # j. We have

0= dn([iPn, Aj; + Bjjls)
= [dn(iPy), Ajj + Bjj], + [iPn, dn(Aj; + Byj)]
+ > [de(iPa),ds(A; + Byy)],
0<risgn1
= [dn(iPn), Ajj + Byj], + [iPa, dn(Aj; + Bjj)],
+ ) [de(iP),do(Aj;) + do(Bj;)] .

r4+s=n
0<r,s<n—1
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On the other hand we have,
0= dn([iPn,Ajj}*) + dn([iPn7 Bjj]*)
= [du(iPn), Aj], + [iPadn(A;)], + D [de(iPn), ds(Ajy)],.

r+s=n
0<r,s<n—1

+ [dn(iPy), Bjj], + [iP,dn(Bi)], + Y [de(iPy),ds(Bj;)],
r4+s=n
0<r,s<n—1
= [dn(iPn), Ajj + Bjj], + [iPn, dn(Aj5) + dn(Bjj)],
+ Z [dr(ipn)v dS(Ajj) +ds (B]'j)] ®"

r4+s=n
0<r,s<n—1

Take M = d,(Aj;+ Bj;) —dn(Aj;) — dn(Bjj;). The above computation yields
that [iP,, M], = 0. By Lemma 2, we have M,,; = M;, = M,,, = 0. We now
show that M;; = 0. For any C},, € ;,, using Case I, we compute

dn ([Ajj + Bjj, Cinle) = [dn(Ajj + Bjj), Cjn] , + [Ajj + Bjj, dn(Cjn)]
+ > [de(Aj; + Bj;),do(Cjn)],

042?2211
= [dn(Aj; + Bjj), Cin), + [Ajj + Bjj: dn(Cin)]
+ Y [de(Agy) + di(Bj;),do(Cjn)] -

r4+s=n
0<r,s<n—1

On the other hand, we have

dﬂ([Ajj + Bjj;,C;j nl ) n(AJJCJn + BJJCJ”)

AJJCJH) + dn(BJJCjn)
[AJ‘J'?Cjn]*) + dn ([BJWC nl )

n(4j5); Cin], + [Ajj: dn(Cjn)],

+ > [de(A45),ds(Chn)],
0<TTJ,FSS§:T?—1

+ [dn(Bjj), Cin], + [Bjj: dn(Cin)],

=+ Z [dr(Bjj)vdS(Ojn)L~

r4+s=n
0<r,s<n—1

|
ﬁ&&&
S

Comparing the above two equalities, we obtain [M, C},]. = 0 which leads to
M;;Cj, = 0. Since 2 is prime, we see that M;; = 0, which completes the
proof.

O

Lemma 10. d,, is an additive x-higher derivation on 2.
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Proof. We first show that d,, is additive. For arbitrary A, B € 2, we write A =
Z?,k:l Ajr and B = E?,k:l Bjy,. It follows from Lemmas 8 and 9 that

2
do(A+ B) = dy, { > (Ajk + Bjx) }
J,k=1
2

> du(Ajk + Bji)

I
g
0
=
z
_|_
S8
G

We now show that d,(A*) = d,,(4)*.
For any A € 2, it follows from Lemmas 4 and 5 that

dn(A")

dp(RA — iTA) = d,(RA) — d,, (iTA)
dn(RA) = ido(TA) = dn(RA)" — id, (TA)*

d (RA)* + (id (TA))* = dn(RA)* + d (iTA)*
= (dn(RA +iTA))* = dp(A)".

To complete the proof, we need to show that d,, is a higher derivation on 2.

Since d,, is additive, it follows from Lemma 5, that d,,(¢I) = 0. It is to be noted
that [¢l + A, B], = 2iB+ AB — BA*.

d,(2iB) + d(AB) — d,(BA*) = d,, ([il + A, B].)
= [dn(il + A),B]_+ [il + A,d(B)],+ > [d(il + A),ds(B)],

r4+s=n
0<r,s<n—1

= [dn(il) + dn(A), B], + [il + A,dn(B)],
+ > [de(D) + dn(A), do(B)],

0<Trt98§::—1
= [du(A),B], + [iI + A, d(B)],+ > [de(A),ds(B)],
r4+s=n
0<r,s<n—1

= d,(A)B — Bd,(A)* + 2id,(B) + Ady,(B) — d,,(B)A*

r4+s=n
o<r,s<n—1



28 Mohammad Ashraf, Shakir Ali, Bilal Ahmad Wani

It follows that
d,(AB) —d,(BA*) =d,(A)B — Bd,,(A)* + Ad,(B) — d,(B)A*

r4+s=n
0<r,s<n—1

Replacing A by A in the above equality, we get
dn(AB) +d,(BA*) = dn(A)B + Bd,(A)* + Ad,(B) + d,(B)A*
> (e (A)do(B) + d(B)d,(A)).

r+s=n
0<r,s<n—1

Thus we have,

dn(AB) = dn(A)B+ Ady(B)+ > dy(A)d(B)

r+s=n

This shows that d,, is an additive higher derivation with d,,(A*) = d,,(A)*. Hence
d,, is an additive x-higher derivation on 2(, which completes the proof. O

Note that every additive derivation d: 2 — B(#) is an inner derivation (see [12]).
Nowicki [9] proved that if every additive (linear) derivation of 2 is inner, then every
additive (linear) higher derivation of 2 is inner (see also [13]). So by Theorem 1,
the following corollary is immediate.

Corollary 1. Let ‘H be an infinite-dimensional complex Hilbert space and 2 be a
standard operator algebra on ‘H containing identity operator I. If 2 is closed under
the adjoint operation, then every nonlinear *-Lie higher derivation D = {d }nen
is inner with d, (A*) = d,,(A)* for each A € 2 and every n € N.
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