Approach of q-Derivative Operators to Terminating q-Series Formulae

Xiaoyuan Wang, Wenchang Chu

Abstract

The q-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.

1 Introduction and Motivation

The q-derivative operator is a useful tool for proving q-series identities (cf. Carlitz [10], Chu [16], [18] and Liu [28]). It is defined by

$$
\mathcal{D}_{x} f(x):=\frac{f(x)-f(q x)}{x} \quad \text { and } \quad \mathcal{D}^{n} f=\mathcal{D}\left(\mathcal{D}^{n-1}\right) f \quad \text { for } \quad n=2,3, \ldots
$$

with the convention that $\mathcal{D}_{x}^{0} f(x)=f(x)$ for the identity operator. One can show, by means of the induction principle, the following explicit formula

$$
\begin{equation*}
\mathcal{D}_{x}^{n} f(x)=x^{-n} \sum_{k=0}^{n} q^{k} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} f\left(q^{k} x\right), \tag{1}
\end{equation*}
$$

where the q-shifted factorial of x is given by $(x ; q)_{0} \equiv 1$ and

$$
(x ; q)_{n}=\prod_{k=0}^{n-1}\left(1-x q^{k}\right) \quad \text { for } \quad n=1,2, \ldots
$$

[^0]with product and quotient forms being abbreviated, respectively, to
\[

$$
\begin{aligned}
{[a, b, \ldots, c ; q]_{n} } & =(a ; q)_{n}(b ; q)_{n} \cdots(c ; q)_{n}, \\
{\left[\left.\begin{array}{l}
a, b, \ldots, c \\
A, B, \ldots, C
\end{array} \right\rvert\, q\right]_{n} } & =\frac{(a ; q)_{n}(b ; q)_{n} \cdots(c ; q)_{n}}{(A ; q)_{n}(B ; q)_{n} \cdots(C ; q)_{n}} .
\end{aligned}
$$
\]

According to (1), we can verify, by means of the q-binomial theorem and the q-Chu--Vandermonde formula, that for a monic polynomial $P_{m}(x)$ of degree $m \leq n$, the following evaluation formulae for higher q-derivatives hold:

$$
\begin{align*}
\mathcal{D}_{x}^{n} P_{m}(x) & =\chi(m=n)(q ; q)_{n} \tag{2}\\
\mathcal{D}^{n} \frac{P_{m}(x)}{1-\lambda x} & =\frac{\lambda^{n}(q ; q)_{n}}{(\lambda ; q)_{n+1}} P_{m}(1 / \lambda) \tag{3}
\end{align*}
$$

where χ denotes the logical function with $\chi($ true $)=1$ and $\chi($ false $)=0$ otherwise.
The objective of this paper is to review several typical summation formulae of terminating basic hypergeometric series by means of the q-derivative operator. The approach will consist of the following three steps:

- First, for a given a q-series identity, identifying a parameter x as a variable and expressing the q-sum in terms of the higher q-derivatives displayed in (1).
- Then, evaluating the q-sum for particular values of x with the help of q-derivative properties (2) and/or (3).
- Finally, confirming the q-series identity via the fundamental theorem of algebra, i.e., "two polynomials of degrees $\leq n$ are identical if they agree at $n+1$ distinct points".

Throughout the paper, the basic hypergeometric series (cf. Bailey [5] and GasperRahman [23]) is defined by

$$
{ }_{1+\ell} \phi_{\ell}\left[\left.\begin{array}{r}
a_{0}, a_{1}, \ldots, a_{\ell} \\
b_{1}, \ldots, b_{\ell}
\end{array} \right\rvert\, q ; z\right]=\sum_{n=0}^{\infty} z^{n}\left[\left.\begin{array}{c}
a_{0}, a_{1}, \ldots, a_{\ell} \\
q, b_{1}, \ldots, b_{\ell}
\end{array} \right\rvert\, q\right]_{n}
$$

which becomes terminating if one of the numerator parameters $\left\{a_{i}\right\}_{0 \leq i \leq \ell}$ results in q^{-m} with m being a nonnegative integer.

2 The q-Pfaff-Saalschütz theorem

As a warm-up, we start with the following fundamental formula; see [5, Chapter 8] and [31, §3.3].

Theorem 1 (The q-Pfaff-Saalschütz theorem).

$$
{ }_{3} \phi_{2}\left[\left.\begin{array}{cc}
q^{-n}, a, & b \tag{4}\\
c, q^{1-n} a b / c
\end{array} \right\rvert\, q ; q\right]=\left[\left.\begin{array}{cc}
c / a, & c / b \\
c, & c / a b
\end{array} \right\rvert\, q\right]_{n}=a^{n}\left[\left.\begin{array}{cc}
c / a, & q^{1-n} b / c \\
c, & q^{1-n} a b / c
\end{array} \right\rvert\, q\right]_{n} .
$$

Proof. Multiplying across this equation by $\left(q^{1-n} a b / c ; q\right)_{n}$, we see that both sides are polynomials of degree n in b. To prove the identity, it suffices to show that the equality holds for $n+1$ distinct values of b. First it is trivial to see that both sides are equal to 1 for $b=1$. Then for $b=q^{m-1} c$ with $1 \leq m \leq n$, the right member equals zero. The corresponding left member can be written as the q-binomial sum

$$
{ }_{3} \phi_{2}\left[\left.\begin{array}{r}
q^{-n}, a, q^{m-1} c \\
c, q^{m-n} a
\end{array} \right\rvert\, q ; q\right]=\sum_{k=0}^{n} q^{k} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} \frac{\left(q^{m-n+k} a ; q\right)_{n-m}\left(q^{k} c ; q\right)_{m-1}}{\left(q^{m-n} a ; q\right)_{n-m}(c ; q)_{m-1}} .
$$

In view of (1) and (2), the last sum vanishes for $1 \leq m \leq n$ because it results in a multiple of the nth q-derivative of the polynomial $(c x ; q)_{m-1}\left(q^{m-n} a x ; q\right)_{n-m}$ of degree $n-1$ in x. Therefore we have validated the equality for $n+1$ distinct values of b and completed proof of (4).

3 The q-Watson Formula

In this section we give a proof of an identity that was first found by Andrews [2, Theorem 1] in 1976 as a terminating q-series analogue of the Watson formula; see also Gasper-Rahman [23, II-17].
Theorem 2. Let $b=q^{-\delta-2 n}$ with $\delta=0$ or 1 and $n \in \mathbb{N}_{0}$. Then the following terminating series identity holds:

$$
{ }_{4} \phi_{3}\left[\begin{array}{ccc}
a, b, & \sqrt{c}, & -\sqrt{c} \tag{5}\\
c, \sqrt{q a b}, & -\sqrt{q a b} & q ; q
\end{array}\right]=(1-\delta)\left[\left.\begin{array}{cc}
q, & q c / a \\
q / a, & q c
\end{array} \right\rvert\, q^{2}\right]_{n} .
$$

For different proofs, see Chu [19, Corollary 7] and Verma-Jain [32, Eq. 1.1].
Proof. Multiplying across the equality (5) by $\left(q c ; q^{2}\right)_{n}$, we can rewrite the resulting equation equivalently as

$$
\begin{equation*}
\sum_{k=0}^{\delta+2 n} \frac{\left(q^{-\delta-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{(a ; q)_{k}\left(c ; q^{2}\right)_{k}\left(q c ; q^{2}\right)_{n}}{(c ; q)_{k}\left(q^{1-\delta-2 n} a ; q^{2}\right)_{k}} q^{k}=(1-\delta) \frac{\left(q ; q^{2}\right)_{n}\left(q c / a ; q^{2}\right)_{n}}{\left(q / a ; q^{2}\right)_{n}} \tag{6}
\end{equation*}
$$

According to the relation

$$
\frac{\left(c ; q^{2}\right)_{k}\left(q c ; q^{2}\right)_{n}}{(c ; q)_{k}}= \begin{cases}\frac{\left(q c ; q^{2}\right)_{n}(c ; q)_{2 k}}{\left(q c ; q^{2}\right)_{k}(c ; q)_{k}}, & k \leq n \\ \frac{\left(c ; q^{2}\right)_{k}(c ; q)_{2 n}}{\left(c ; q^{2}\right)_{n}(c ; q)_{k}}, & k>n\end{cases}
$$

both sides of (6) are polynomials of degree $\leq n$ in c. In order to prove (5), it suffices to show that the equality holds for $n+1$ distinct values of c.

Let $\mathcal{S}(c)$ be the ${ }_{4} \phi_{3}$-series displayed in (5). Then for $c=q^{1-\delta-2 m} a$ with $1 \leq$ $m \leq n$, the right member equals zero. The corresponding left member can be restated as the following sum:

$$
\begin{aligned}
\mathcal{S}\left(q^{1-\delta-2 m} a\right) & =\sum_{k=0}^{\delta+2 n} \frac{\left(q^{-\delta-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{(a ; q)_{k}\left(q^{1-\delta-2 m} a ; q^{2}\right)_{k}}{\left(q^{1-\delta-2 m} a ; q\right)_{k}\left(q^{1-\delta-2 n} a ; q^{2}\right)_{k}} q^{k} \\
& =\sum_{k=0}^{\delta+2 n} \frac{\left(q^{-\delta-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{\left(q^{1-\delta-2 m+k} a ; q\right)_{\delta-1+2 m}\left(q^{1-\delta-2 n+2 k} a ; q^{2}\right)_{n-m}}{\left(q^{1-\delta-2 m} a ; q\right)_{\delta-1+2 m}\left(q^{1-\delta-2 n} a ; q^{2}\right)_{n-m}} q^{k} .
\end{aligned}
$$

In view of (1) and (2), the last sum vanishes for $1-\delta \leq m \leq n$ because it results in a multiple of the $(\delta+2 n)$ th q-derivatives of the polynomial

$$
\left(q^{1-\delta-2 m} a x ; q\right)_{\delta-1+2 m}\left(q^{1-\delta-2 n} a x^{2} ; q^{2}\right)_{n-m}
$$

of degree $\delta-1+2 n$ in x. Therefore, (5) is confirmed when $\delta=1$ because it holds for $n+1$ distinct values of $c \in\left\{q^{-2 m} a\right\}_{0 \leq m \leq n}$.

When $\delta=0$ and $m=0$, reformulating the last sum and then evaluating it by (3),

$$
\left.\begin{array}{rl}
\sum_{k=0}^{2 n} q^{k} \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{\left(q^{1-2 n+2 k} a ; q^{2}\right)_{n}}{\left(q^{1-2 n} a ; q^{2}\right)_{n}} \frac{1-a}{1-q^{k} a} & =a^{2 n} \frac{\left(q^{1-2 n} / a ; q^{2}\right)_{n}}{\left(q^{1-2 n} a ; q^{2}\right)_{n}} \frac{(q ; q)_{2 n}}{(q a ; q)_{2 n}} \\
& =\left[\left.\begin{array}{cc}
q, & q^{2} \\
q / a, q^{2} a
\end{array} \right\rvert\, q^{2}\right.
\end{array}\right]_{n}
$$

which coincides with the right member of (5) under the conditions $\delta=0$ and $c=q a$. Hence, we have validated (5) also when $\delta=0$ for $n+1$ distinct values of $c \in\left\{q^{1-2 m} a\right\}_{0 \leq m \leq n}$. This completes the proof of the theorem.

4 Two Balanced ${ }_{4} \phi_{3}$-Series

Unlike the q-Pfaff-Saalschütz theorem, there exist two summation formulae of balanced ${ }_{4} \phi_{3}$-series with one less free parameter. They are, in fact, the q-analogues of the particular case $b=2$ of the following well-known Hagen-Rothe convolution identity (cf. Chu [20] and Gould [25]):

$$
\sum_{k=0}^{n} \frac{a}{a+b k}\binom{a+b k}{k}\binom{c-b k}{n-k}=\binom{a+c}{n}
$$

The first one is due to Al-Salam and Verma [1]; see also Andrews [4, Eq. 7.6], Chu [11, Eq. 5.3b] and [30, Eq. 17.7.12].

Theorem 3.

$$
{ }_{4} \phi_{3}\left[\left.\begin{array}{r}
q^{-2 n}, a, q a, q^{2 n} b^{2} \tag{7}\\
b, q b, q^{2} a^{2}
\end{array} \right\rvert\, q^{2} ; q^{2}\right]=a^{n}\left[\left.\begin{array}{cc|}
-q, & b / a \\
-q a, & b
\end{array} \right\rvert\, q\right]_{n} .
$$

Proof. Multiplying both sides of (7) by $(-q a ; q)_{n}$ and observing that

$$
\frac{(a ; q)_{2 k}(-q a ; q)_{n}}{\left(q^{2} a^{2} ; q^{2}\right)_{k}}=\frac{(a ; q)_{2 k}\left(-q^{k+1} a ; q\right)_{n-k}}{(q a ; q)_{k}}
$$

we infer that the resulting equation is a polynomial identity of degree n in a. In order to prove (7), we need only to validate it for $n+1$ distinct values of a. First of all, (7) is obviously valid for $a=1$. Then denote by $\mathcal{S}(a)$ the ${ }_{4} \phi_{3}$-series in (7). For $a=q^{m-1} b$ with $1 \leq m \leq n$, the right member of (7) is equal to zero. The
corresponding left member can be reformulated as

$$
\begin{aligned}
\mathcal{S}\left(q^{m-1} b\right) & =\sum_{k=0}^{n} \frac{\left(q^{-2 n} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} \frac{\left(q^{m-1} b ; q\right)_{2 k}}{(b ; q)_{2 k}} \frac{\left(q^{2 n} b^{2} ; q^{2}\right)_{k}}{\left(q^{2 m} b^{2} ; q^{2}\right)_{k}} q^{2 k} \\
& =\sum_{k=0}^{n} \frac{\left(q^{-2 n} ; q^{2}\right)_{k}}{\left(q^{2} ; q^{2}\right)_{k}} \frac{\left(q^{2 k} b ; q\right)_{m-1}}{(b ; q)_{m-1}} \frac{\left(q^{2 m+2 k} b^{2} ; q^{2}\right)_{n-m}}{\left(q^{2 m} b^{2} ; q^{2}\right)_{n-m}} q^{2 k},
\end{aligned}
$$

which vanishes because in base q^{2}, it results in the nth q-derivative of the polynomial $(b x ; q)_{m-1}\left(q^{2 m} b^{2} x ; q^{2}\right)_{n-m}$ of degree $n-1$. This confirms (7).

The second balanced ${ }_{4} \phi_{3}$-series identity is due to Andrews [3, Eq. 4.3] \& [4, Eq. 7.7]; see also Gessel-Stanton [24, Eq. 4.22], Chu [12, Eq. 4.3d] and [30, Eq. 17.7.13].
Theorem 4 (Variant of Theorem 3).

$$
{ }_{4} \phi_{3}\left[\begin{array}{cc}
q^{-2 n}, a, q a, q^{2 n-2} b^{2} & q^{2} ; q^{2} \\
b, q b, & a^{2}
\end{array}\right]=a^{n}\left[\begin{array}{cc|c}
-q, b / a & \\
-a, & b & q
\end{array}\right]_{n} \frac{1-q^{n-1} b}{1-q^{2 n-1} b} .
$$

In exactly the same manner, this identity can be proved after the equation having been multiplied by $(-a ; q)_{n}$ across.

5 Four Terminating Well-Poised Series

This section will be devoted to four terminating well-poised series identities of Dixon's type. The first one is essentially due to Jackson [26, Eq. 2]. See Bailey [6, Eq. 2], Bressoud [8, Eq. 2]), Carlitz [9, Eq. 1.2], Chu [21], Verma-Joshi [33, Eq. 3.10] for different proofs, and Bailey [7, Eqs. 2.2 and 1.2], Chu [17], Verma-Jain [32, Eq. 5.5] for the nonterminating form.

Theorem 5. For $\delta=0$ or 1 and $n \in \mathbb{N}_{0}$, there holds the terminating series identity:

$$
\left.\begin{array}{rl}
{ }_{3} \phi_{2}\left[q^{-2 n},\right. & \left.\begin{array}{c}
b, \\
q^{1-2 n} / b, q^{1-2 n} / d
\end{array} \right\rvert\, q ; q^{1+\delta-n} / b d
\end{array}\right] \quad \begin{aligned}
& d \\
&=q^{n(\delta-1)}\left[\left.\begin{array}{c}
b, d \\
q, b d
\end{array} \right\rvert\, q\right]_{n}\left[\left.\begin{array}{c}
q, b d \\
b, d
\end{array} \right\rvert\, q\right]_{2 n} \tag{8}
\end{aligned}
$$

Proof. Multiplying across (8) by $\left(q^{n} b ; q\right)_{n}$, we may rewrite the resulting equation equivalently as

$$
\begin{equation*}
\sum_{k=0}^{2 n} \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{(b ; q)_{k}\left(q^{n} b ; q\right)_{n}(d ; q)_{k}}{\left(q^{1-2 n} / b ; q\right)_{k}\left(q^{1-2 n} / d ; q\right)_{k}}\left(\frac{q^{1+\delta-n}}{b d}\right)^{k}=\frac{\left(q^{n+1} ; q\right)_{n}\left(q^{n} b d ; q\right)_{n}}{q^{n(1-\delta)}\left(q^{n} d ; q\right)_{n}} \tag{9}
\end{equation*}
$$

Observing the relation

$$
\begin{aligned}
\frac{(b ; q)_{k}\left(q^{n} b ; q\right)_{n}}{b^{k}\left(q^{1-2 n} / b ; q\right)_{k}} & =(-1)^{k} q^{2 n k-\binom{k+1}{2}} \frac{(b ; q)_{k}\left(q^{n} b ; q\right)_{n}}{\left(q^{2 n-k} b ; q\right)_{k}} \\
& =(-1)^{k} q^{2 n k-\binom{k+1}{2}} \frac{(b ; q)_{k}(b ; q)_{2 n-k}}{(b ; q)_{n}}
\end{aligned}
$$

we assert that (9) is a polynomial identity of degree n in b. In order to prove (8), it suffices to show that the equality holds for $n+1$ distinct values of b.

Let $\mathcal{S}(b)$ be the ${ }_{3} \phi_{2}$-series displayed in (8). Then for $b=q^{m-2 n} / d$ with $1 \leq$ $m \leq n$, the right member equals zero. The corresponding left member can be written as the expression

$$
\begin{aligned}
\mathcal{S}\left(q^{m-2 n} / d\right) & =\sum_{k=0}^{2 n} \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left[\left.\begin{array}{cc}
d, & q^{m-2 n} / d \\
q^{1-m} d, & q^{1-2 n} / d
\end{array} \right\rvert\, q\right]_{k} q^{k(1+\delta-m+n)} \\
& =\sum_{k=0}^{2 n} \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left[\left.\begin{array}{cc}
q^{1+k-m} d, q^{1+k-2 n} / d \\
q^{1-m} d, & q^{1-2 n} / d
\end{array} \right\rvert\, q\right]_{m-1} q^{k(1+\delta-m+n)} .
\end{aligned}
$$

In view of (1) and (2), the last sum vanishes for $1 \leq m \leq n$ because it results in a multiple of the $(2 n)$ th q-derivative of the polynomial

$$
\left(q^{1-m} x d ; q\right)_{m-1}\left(q^{1-2 n} x / d ; q\right)_{m-1} x^{\delta-m+n}
$$

of degree $\delta-2+m+n<2 n$ in x.
When $m=0$, the last sum can be reformulated by partial fractions and then evaluated by (3) as

$$
\begin{aligned}
\sum_{k=0}^{2 n} q^{k} & \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{(1-d)\left(1-q^{-2 n} / d\right)}{\left(1-q^{k} d\right)\left(1-q^{k-2 n} / d\right)} q^{k(\delta+n)} \\
& =\frac{(1-d)\left(1-q^{-2 n} / d\right)}{1-q^{2 n} d^{2}} \sum_{k=0}^{2 n} q^{k} \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left\{\frac{q^{k(\delta+n)}}{1-q^{k-2 n} / d}-\frac{q^{k(\delta+n)+2 n} d^{2}}{1-q^{k} d}\right\} \\
& =\frac{(1-d)\left(1-q^{-2 n} / d\right)}{1-q^{2 n} d^{2}}\left\{\frac{(q ; q)_{2 n}\left(q^{2 n} d\right)^{\delta-n}}{\left(q^{-2 n} / d ; q\right)_{2 n+1}}-\frac{(q ; q)_{2 n} q^{2 n} d^{n-\delta+2}}{(d ; q)_{2 n+1}}\right\}
\end{aligned}
$$

The above expression can be easily simplified to

$$
\left(q^{\delta-1} d\right)^{n} \frac{(q ; q)_{2 n}}{(d ; q)_{2 n}} \frac{1-d}{1-q^{n} d}
$$

which agrees with the right member of (8) specified by $b=q^{-2 n} / d$. Therefore for $n+1$ distinct values of $b \in\left\{q^{m-2 n} / d\right\}_{0 \leq m \leq n}$, we have validated (8), which completes the proof.

The next formula serves as a counterpart of (8) whose nonterminating version was found by Bailey [7, Eq. 2.3]. For different proofs, the reader may refer to Carlitz [9, Eq. 2.12], Chu [17], Chu-Wang [21] and Verma-Joshi [33, Eq. 3.13].
Theorem 6. For $\delta=0$ or 1 and $n \in \mathbb{N}_{0}$, there holds the terminating series identity:

$$
\left.\begin{array}{rl}
{ }_{3} \phi_{2}\left[\left.\begin{array}{c}
q^{-1-2 n}, \\
q^{-2 n} / b, \\
q^{-2 n} / d
\end{array} \right\rvert\, q ; q^{2 \delta-n} / b d\right.
\end{array}\right] \quad \begin{aligned}
& \quad=\left\{1-q^{(2 n+1)(2 \delta-1)}\right\}\left[\left.\begin{array}{cc}
q b, & q d \\
q, q b d
\end{array} \right\rvert\, q\right]_{n}\left[\left.\begin{array}{c}
q, q b d \\
q b, \\
q d
\end{array} \right\rvert\, q\right]_{2 n}
\end{aligned}
$$

Proof. Multiplying across (10) by $\left(q^{n+1} b ; q\right)_{n}$, we may rewrite the resulting equation equivalently as

$$
\begin{align*}
& \sum_{k=0}^{2 n+1} \frac{\left(q^{-1-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{(b ; q)_{k}\left(q^{n+1} b ; q\right)_{n}(d ; q)_{k}}{\left(q^{-2 n} / b ; q\right)_{k}\left(q^{-2 n} / d ; q\right)_{k}}\left(\frac{q^{2 \delta-n}}{b d}\right)^{k} \\
&=\left(1-q^{(2 n+1)(2 \delta-1)}\right) \frac{\left(q^{n+1} ; q\right)_{n}\left(q^{n+1} b d ; q\right)_{n}}{\left(q^{n+1} d ; q\right)_{n}} \tag{11}
\end{align*}
$$

Observing that

$$
\begin{aligned}
\frac{(b ; q)_{k}\left(q^{n+1} b ; q\right)_{n}}{b^{k}\left(q^{-2 n} / b ; q\right)_{k}} & =(-1)^{k} q^{2 n k-\binom{k}{2}} \frac{(b ; q)_{k}\left(q^{n+1} b ; q\right)_{n}}{\left(q^{1+2 n-k} b ; q\right)_{k}} \\
& =(-1)^{k} q^{2 n k-\binom{k}{2}} \frac{(b ; q)_{k}(b ; q)_{1+2 n-k}}{(b ; q)_{n+1}}
\end{aligned}
$$

we assert that both sides of (11) are polynomials of degree n in b. In order to prove (10), it suffices to show that the equality holds for $n+1$ distinct values of b.

Let $\mathcal{S}(b)$ be the ${ }_{3} \phi_{2}$-series displayed in (10). Then for $b=q^{-m-n} / d$ with $1 \leq m \leq n$, the right member equals zero. The corresponding left member can be written as the expression

$$
\begin{aligned}
\mathcal{S}\left(q^{-m-n} / d\right) & =\sum_{k=0}^{2 n+1} \frac{\left(q^{-1-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left[\left.\begin{array}{cc}
d, & q^{-m-n} / d \\
q^{m-n} d, & q^{-2 n} / d
\end{array} \right\rvert\, q\right]_{k} q^{k(2 \delta+m)} \\
& =\sum_{k=0}^{2 n+1} \frac{\left(q^{-1-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left[\left.\begin{array}{cc}
q^{k+m-n} d, q^{k-2 n} / d \\
q^{m-n} d, & q^{-2 n} / d
\end{array} \right\rvert\, q\right]_{n-m} q^{k(2 \delta+m)} .
\end{aligned}
$$

In view of (1) and (2), the last sum vanishes for $1 \leq m \leq n$ because it is a multiple of the $(2 n+1)$ th q-derivative of the polynomial

$$
\left(q^{m-n} x d ; q\right)_{n-m}\left(q^{-2 n} x / d ; q\right)_{n-m} x^{2 \delta-1+m}
$$

of degree $2 n+2 \delta-m-1<2 n+1$ in x.
When $m=n+1$, we can rewrite the last sum by partial fractions and then evaluate it by (3) as

$$
\begin{aligned}
& \sum_{k=0}^{2 n+1} q^{k} \frac{\left(q^{-1-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{(1-d)\left(1-q^{-1-2 n} / d\right)}{\left(1-q^{k} d\right)\left(1-q^{k-1-2 n} / d\right)} q^{k(2 \delta+n)} \\
&= \frac{(1-d)\left(1-q^{-2 n-1} / d\right)}{1-q^{1+2 n} d^{2}} \\
& \quad \times \sum_{k=0}^{2 n+1} q^{k} \frac{\left(q^{-1-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left\{\frac{q^{k(2 \delta+n)}}{1-q^{k-1-2 n} / d}-\frac{q^{k(2 \delta+n)+1+2 n} d^{2}}{1-q^{k} d}\right\} \\
&= \frac{(1-d)\left(1-q^{-1-2 n} / d\right)}{1-q^{1+2 n} d^{2}} \\
& \quad \times\left\{\frac{(q ; q)_{2 n+1}\left(q^{1+2 n} d\right)^{2 \delta-1-n}}{\left(q^{-1-2 n} / d ; q\right)_{2 n+2}}-\frac{(q ; q)_{2 n+1} q^{1+2 n} d^{3+n-2 \delta}}{(d ; q)_{2 n+2}}\right\}
\end{aligned}
$$

The above expression can be further simplified to

$$
d^{n} \frac{(q ; q)_{2 n}}{(d ; q)_{2 n}} \frac{1-d}{1-q^{1+2 n} d}\left\{1-q^{(2 n+1)(2 \delta-1)}\right\}
$$

which agrees with the right member of (10) specified by $b=q^{-1-2 n} / d$. Therefore for $n+1$ distinct values of $b \in\left\{q^{m-2 n} / d\right\}_{1 \leq m \leq n+1}$, we have validated (10), which completes the proof.

There is also the following more general well-poised ${ }_{5} \phi_{4}$-series identity discovered by Jackson [26, Eq. 1], that different proofs can be found in Bailey [7, Eq. 3.1], Bressoud [8, Eq. 1], Chu [14, §2] and Verma-Joshi [33, Eq. 3.8].

Theorem 7. For $\delta=0$ or 1 and $n \in \mathbb{N}_{0}$, there holds the terminating series identity:

$$
\begin{align*}
&{ }_{5} \phi_{4}\left[\left.\begin{array}{ccc}
q^{-2 n}, & b, & c, \\
q^{1-2 n} / b, q^{1-2 n} / c, & d, & q^{1-2 n} / d, \\
q^{1-3 n} / b c d
\end{array} \right\rvert\, q ; q^{1+\delta}\right] \\
&=q^{n(\delta-1)}\left[\left.\begin{array}{cc}
b, & c, d, b c d \\
q, b c, b d, c d
\end{array} \right\rvert\, q\right]_{n}\left[\left.\begin{array}{l}
q, b c, b d, c d \\
b, c, d, b c d
\end{array} \right\rvert\, q\right]_{2 n} \tag{12}
\end{align*}
$$

Proof. Multiplying across (12) by $\left(q^{n} b ; q\right)_{n}\left(q^{n} b c d ; q\right)_{n}$, we may rewrite the resulting equation equivalently as

$$
\begin{align*}
& \sum_{k=0}^{2 n} \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{\left[b, c, d, q^{1-3 n} / b c d ; q\right]_{k}\left(q^{n} b ; q\right)_{n}\left(q^{n} b c d ; q\right)_{n}}{\left[q^{1-2 n} / b, q^{1-2 n} / c, q^{1-2 n} / d, q^{n} b c d ; q\right]_{k}} q^{k(1+\delta)} \\
&=q^{n(\delta-1)} \frac{\left(q^{n+1} ; q\right)_{n}\left(q^{n} b c ; q\right)_{n}\left(q^{n} b d ; q\right)_{n}\left(q^{n} c d ; q\right)_{n}}{\left(q^{n} c ; q\right)_{n}\left(q^{n} d ; q\right)_{n}} \tag{13}
\end{align*}
$$

According to the relation

$$
\begin{aligned}
\frac{(b ; q)_{k}\left(q^{n} b ; q\right)_{n}}{\left(q^{1-2 n} / b ; q\right)_{k}} & \frac{\left(q^{1-3 n} / b c d ; q\right)_{k}\left(q^{n} b c d ; q\right)_{n}}{\left(q^{n} b c d ; q\right)_{k}} \\
& =\left(\frac{q^{-n}}{c d}\right)^{k} \frac{(b ; q)_{k}\left(q^{n} b ; q\right)_{n}}{\left(q^{2 n-k} b ; q\right)_{k}} \frac{\left(q^{3 n-k} b c d ; q\right)_{k}\left(q^{n} b c d ; q\right)_{n}}{\left(q^{n} b c d ; q\right)_{k}} \\
& =\left(\frac{q^{-n}}{c d}\right)^{k} \frac{(b ; q)_{k}(b ; q)_{2 n-k}}{(b ; q)_{n}} \frac{(b c d ; q)_{2 n}(b c d ; q)_{3 n}}{(b c d ; q)_{n+k}(b c d ; q)_{3 n-k}},
\end{aligned}
$$

both sides of (13) become polynomials of degree $2 n$ in b. In order to prove (12), it suffices to show that the equality holds for $2 n+1$ distinct values of b.

First, for $b=1$ in (12), the ${ }_{5} \phi_{4}$-series becomes $1+q^{n(2 \delta-1)}$ because only the two extreme terms survive. This coincides with the corresponding right member.

Let $\mathcal{S}(b)$ be the ${ }_{5} \phi_{4}$-series displayed in (12). Then for $b=q^{m-2 n} / c$ with $1 \leq$ $m \leq n$, the right member equals zero. The corresponding left member can be
written as the expression

$$
\begin{aligned}
\mathcal{S}\left(q^{m-2 n} / c\right)= & \sum_{k=0}^{2 n} \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left[\left.\begin{array}{ccc}
c, & d, & q^{m-2 n} / c, q^{1-m-n} / d \\
q^{1-m} c, & q^{m-n} d, & q^{1-2 n} / c, \\
q^{1-2 n} / d
\end{array} \right\rvert\, q\right]_{k} q^{k(1+\delta)} \\
= & \sum_{k=0}^{2 n} \frac{\left(q^{-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left[\left.\begin{array}{cc}
q^{1+k-m} c, & q^{1+k-2 n} / c \\
q^{1-m} c, & q^{1-2 n} / c
\end{array} \right\rvert\, q\right]_{m-1} \\
& \quad \times\left[\left.\begin{array}{cc}
q^{k+m-n} d, q^{1+k-2 n} / d \\
q^{m-n} d, & q^{1-2 n} / d
\end{array} \right\rvert\, q\right]_{n-m} q^{k+k \delta} .
\end{aligned}
$$

In view of (1) and (2), the last sum vanishes for $1 \leq m \leq n$ because it results in a multiple of the $(2 n)$ th q-derivative of the following polynomial

$$
x^{\delta}\left[q^{1-m} x c, q^{1-2 n} x / c ; q\right]_{m-1}\left[q^{m-n} x d, q^{1-2 n} x / d ; q\right]_{n-m}
$$

of degree $\delta-2+2 n<2 n$ in x.
Because (12) is symmetric with respect to c and d, it holds also for $b=q^{m-2 n} / d$ with $1 \leq m \leq n$. Therefore for $2 n+1$ distinct values of

$$
b \in\{1\} \cup\left\{q^{m-2 n} / c\right\}_{1 \leq m \leq n} \cup\left\{q^{m-2 n} / d\right\}_{1 \leq m \leq n},
$$

we have validated (12), which completes the proof.
Finally, we record the following counterpart of (12) due to Bailey [7, Eq. 3.2] for which the reader can find different proofs in Carlitz [9, Eq. 3.4], Chu [14, §2] and Verma-Joshi [33, Eq. 3.12].
Theorem 8. For $\delta=0$ or 1 and $n \in \mathbb{N}_{0}$, there holds the terminating series identity:

$$
\begin{align*}
& { }_{5} \phi_{4}\left[\left.\begin{array}{ccc}
q^{-1-2 n}, & b, & c, \\
q^{-2 n} / b, q^{-2 n} / c, & d, & q^{-2 n} / d, \\
q^{-1-3 n} / b c d & q^{1+n} b c d
\end{array} \right\rvert\, q ; q^{1+2 \delta}\right] \\
& =\left(-q^{1+2 n}\right)^{\delta-1}(q ; q)_{2 n+1}\left[\left.\begin{array}{cc}
q b, & q c, \\
q, & q d, \\
q b c d \\
q, q c, q b d, & q c d
\end{array} \right\rvert\, q\right]_{n}\left[\left.\begin{array}{c}
q b c, q b d, q c d \\
q b, q c, q d, q b c d
\end{array} \right\rvert\, q\right]_{2 n} . \tag{14}
\end{align*}
$$

Proof. Multiplying across (14) by $\left(q^{n+1} b ; q\right)_{n}\left(q^{n+1} b c d ; q\right)_{n}$, we may rewrite the resulting equation equivalently as

$$
\begin{align*}
& \sum_{k=0}^{2 n} \frac{\left(q^{-1-2 n} ; q\right)_{k}}{(q ; q)_{k}} \frac{\left[b, c, d, q^{-1-3 n} / b c d ; q\right]_{k}\left(q^{n+1} b ; q\right)_{n}\left(q^{n+1} b c d ; q\right)_{n}}{\left[q^{-2 n} / b, q^{-2 n} / c, q^{-2 n} / d, q^{1+n} b c d ; q\right]_{k}} q^{k(1+2 \delta)} \\
& \quad=\left(-q^{1+2 n}\right)^{\delta-1} \frac{\left(q^{n+1} ; q\right)_{n+1}\left(q^{n+1} b c ; q\right)_{n}\left(q^{n+1} b d ; q\right)_{n}\left(q^{n+1} c d ; q\right)_{n}}{\left(q^{n+1} c ; q\right)_{n}\left(q^{n+1} d ; q\right)_{n}} \tag{15}
\end{align*}
$$

Observing that

$$
\begin{aligned}
\frac{(b ; q)_{k}\left(q^{n+1} b ; q\right)_{n}}{\left(q^{-2 n} / b ; q\right)_{k}} & \frac{\left(q^{-1-3 n} / b c d ; q\right)_{k}\left(q^{n+1} b c d ; q\right)_{n}}{\left(q^{n+1} b c d ; q\right)_{k}} \\
& =\left(\frac{q^{-n-1}}{c d}\right)^{k} \frac{(b ; q)_{k}\left(q^{n+1} b ; q\right)_{n}}{\left(q^{2 n+1-k} b ; q\right)_{k}} \frac{\left(q^{2+3 n-k} b c d ; q\right)_{k}\left(q^{n+1} b c d ; q\right)_{n}}{\left(q^{n+1} b c d ; q\right)_{k}} \\
& =\left(\frac{q^{-n-1}}{c d}\right)^{k} \frac{(b ; q)_{k}(b ; q)_{1+2 n-k}}{(b ; q)_{n+1}} \frac{(b c d ; q)_{2 n+1}(b c d ; q)_{3 n+2}}{(b c d ; q)_{n+k+1}(b c d ; q)_{3 n+2-k}}
\end{aligned}
$$

we assert that both sides of (15) are polynomials of degree $2 n$ in b. In order to prove (14), it suffices to show that the equality holds for $2 n+1$ distinct values of b.

First, for $b=1$ in (14), the corresponding ${ }_{5} \phi_{4}$-series reduces to $1-q^{(2 n+1)(2 \delta-1)}$ because only the two extreme terms survive. It is trivial to check that the right member has the same value in this case.

Let $\mathcal{S}(b)$ be the ${ }_{5} \phi_{4}$-series displayed in (14). Then for $b=q^{-m-n} / c$ with $1 \leq m \leq n$, the right member equals zero. The corresponding left member can be written as the expression

$$
\begin{aligned}
& \mathcal{S}\left(q^{-m-n} / c\right)= \sum_{k=0}^{2 n+1} \frac{\left(q^{-1-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left[\left.\begin{array}{rrr}
c, & d, & q^{-m-n} / c, \\
q^{m-n} c, & q^{1-m} d, & q^{-2 n} / c, \\
= & q^{-2 n} / d
\end{array} \right\rvert\, q\right]_{k} q^{k+2 k \delta} \\
&=\sum_{k=0}^{2 n+1} \frac{\left(q^{-1-2 n} ; q\right)_{k}}{(q ; q)_{k}}\left[\left.\begin{array}{cc}
q^{k+m-n} c, & q^{k-2 n} / c \\
q^{m-n} c, & q^{-2 n} / c
\end{array} \right\rvert\, q\right]_{n-m} \\
& \quad \times\left[\begin{array}{cc}
q^{1+k-m} d, q^{k-2 n} / d \\
q^{1-m} d, & q^{-2 n} / d
\end{array}\right]_{m-1} q^{k+2 k \delta}
\end{aligned}
$$

In view of (1) and (2), the last sum vanishes for $1 \leq m \leq n$ because it results in a multiple of the $(2 n+1)$ th q-derivative of the polynomial

$$
x^{2 \delta}\left[q^{m-n} x c, q^{-2 n} x / c ; q\right]_{n-m}\left[q^{1-m} x d, q^{-2 n} x / d ; q\right]_{m-1}
$$

of degree $2 \delta-2+2 n<2 n+1$ in x.
Analogously, (14) is valid also for $b=q^{-m-n} / d$ with $1 \leq m \leq n$ for its symmetry with respect to c and d. In conclusion, we have shown (14) for $2 n+1$ distinct values of $b \in\{1\} \cup\left\{q^{-m-n} / c\right\}_{1 \leq m \leq n} \cup\left\{q^{-m-n} / d\right\}_{1 \leq m \leq n}$, which completes the proof.

6 Gasper's q-Karlsson-Minton Formula

Finally, we examine the q-analogue of Gasper [22] (see also Chu [13]) for a classical hypergeometric sum due to Minton [29] and subsequently extended by Karlsson [27].

Theorem 9. For nonnegative integers m_{i} and n with $n \geq \sum_{i=1}^{\ell} m_{i}$, we have

$$
{ }_{\ell+2} \phi_{\ell+1}\left[\left.\begin{array}{ccc}
q^{-n}, & \lambda, & \left\{q^{m_{i}} a_{i}\right\}_{i=1}^{\ell} \tag{16}\\
q \lambda, & \left\{a_{i}\right\}_{i=1}^{\ell}
\end{array} \right\rvert\, q ; q\right]=\lambda^{n} \frac{(q ; q)_{n}}{(q \lambda ; q)_{n}} \prod_{i=1}^{\ell} \frac{\left(a_{i} / \lambda ; q\right)_{m_{i}}}{\left(a_{i} ; q\right)_{m_{i}}} .
$$

Its nonterminating form and extensions can be found in Gasper [22] and Chu [13], [15]. However, we believe that the proof given here is the simplest.

Proof. According to the relation

$$
\frac{\left(q^{m_{i}} a_{i} ; q\right)_{k}}{\left(a_{i} ; q\right)_{k}}=\frac{\left(q^{k} a_{i} ; q\right)_{m_{i}}}{\left(a_{i} ; q\right)_{m_{i}}}
$$

we may express (16) equivalently as the equality

$$
\begin{equation*}
\sum_{k=0}^{n} q^{k} \frac{\left(q^{-n} ; q\right)_{k}}{(q ; q)_{k}} \frac{\prod_{i=1}^{\ell}\left(q^{k} a_{i} ; q\right)_{m_{i}}}{1-q^{k} \lambda}=\lambda^{n} \frac{(q ; q)_{n}}{(\lambda ; q)_{n+1}} \prod_{i=1}^{\ell}\left(a_{i} / \lambda ; q\right)_{m_{i}} \tag{17}
\end{equation*}
$$

Writing the last sum in terms of q-derivatives (1) and then evaluating it, by (3), as

$$
\left.\mathcal{D}^{n} \frac{\prod_{i=1}^{\ell}\left(a_{i} x ; q\right)_{m_{i}}}{1-\lambda x}\right|_{x=1}=\lambda^{n} \frac{(q ; q)_{n}}{(\lambda ; q)_{n+1}} \prod_{i=1}^{\ell}\left(a_{i} / \lambda ; q\right)_{m_{i}}
$$

we confirm (17) and so Gasper's summation formula (16).

7 Concluding comments

It should be pointed out that the approach presented in this paper works only for some q-series identities. For example, we have failed to verify the following q-Whipple formula due to Andrews [2, Theorem 2] (cf. Chu [19, Corollary 10] and Verma-Jain [32, Eq. 1.2]):

$$
{ }_{4} \phi_{3}\left[\left.\begin{array}{c}
q^{-n}, q^{1+n}, \sqrt{c},-\sqrt{c} \\
-q, \\
-e, q c / e
\end{array} \right\rvert\, q ; q\right]=q^{\binom{n+1}{2}} \frac{\left(q^{-n} e ; q^{2}\right)_{n}\left(q^{1-n} c / e ; q^{2}\right)_{n}}{(e ; q)_{n}(q c / e ; q)_{n}},
$$

even though this will evidently become a polynomial identity of degree n in c if multiplying it by the factorial $(q c / e ; q)_{n}$.

References

[1] W.A. Al-Salam, A. Verma: On quadratic transformations of basic series. SIAM J. Math. 15 (1984) 414-420.
[2] G.E. Andrews: On q-analogues of the Watson and Whipple summations. SIAM J. Math. 7 (3) (1976) 332-336.
[3] G.E. Andrews: Connection coefficient problems and partitions. Proc. Sympos. Pure Math. 34 (1979) 1-24.
[4] G.E. Andrews: Pfaff's method (II): diverse applications. J. Comp. and Appl. Math. 68 (1-2) (1996) 15-23.
[5] W.N. Bailey: Generalized Hypergeometric Series. Cambridge University Press, Cambridge (1935).
[6] W.N. Bailey: A note on certain q-identities. Quart. J. Math. (Oxford) 12 (1941) 173-175.
[7] W.N. Bailey: On the analogue of Dixon's theorem for bilateral basic hypergeometric series. Quart. J. Math. (Oxford) 1 (1950) 318-320.
[8] D.M. Bressoud: Almost poised basic hypergeometric series. Proc. Indian Acad. Sci. Math. Sci. 97 (1-3) (1987) 61-66.
[9] L. Carlitz: Some formulas of F.H. Jackson. Monatsh. Math. 73 (1969) 193-198.
[10] L. Carlitz: Some q-expansion formulas. Glasnik Mat. 8 (28) (1973) 205-213.
[11] W. Chu: Inversion techniques and combinatorial identities: Basic hypergeometric identities. Publ. Math. Debrecen 44 (3-4) (1994) 301-320.
[12] W. Chu: Inversion techniques and combinatorial identities: Strange evaluations of basic hypergeometric series. Compos. Math. 91 (2) (1994) 121-144.
[13] W. Chu: Partial fractions and bilateral summations. J. Math. Phys. 35 (4) (1994) 2036-2042.
[14] W. Chu: Basic Almost-Poised Hypergeometric Series. Mem. Amer. Math. Soc. (1998).
[15] W. Chu: Partial-fraction expansions and well-poised bilateral series. Acta Sci. Mat. 64 (1998) 495-513.
[16] W. Chu: q-Derivative operators and basic hypergeometric series. Results Math. 49 (1-2) (2006) 25-44.
[17] W. Chu: Abel's Method on summation by parts and Bilateral Well-Poised ${ }_{3} \psi_{3}$-Series Identities. In: S. Elaydi et al.: Difference Equations, Special Functions and Orthogonal Polynomials Proceedings of the International Conference (München, Germany, July 2005). World Scientific Publishers (2007) 752-761.
[18] W. Chu: Divided differences and generalized Taylor series. Forum Math. 20 (6) (2008) 1097-1108.
[19] W. Chu: Abel's method on summation by parts and balanced q-series identities. Appl. Anal. Discrete Math. 4 (2010) 54-65.
[20] W. Chu: Elementary proofs for convolution identities of Abel and Hagen-Rothe. Electron. J. Combin. 17 (1) (2010) 24.
[21] W. Chu, C. Wang: Bilateral inversions and terminating basic hypergeometric series identities. Discrete Math. 309 (12) (2009) 3888-3904.
[22] G. Gasper: Summation formulas for basic hypergeometric series. SIAM J. Math. Anal. 12 (2) (1981) 196-200.
[23] G. Gasper, M. Rahman: Basic Hypergeometric Series. Cambridge University Press (2004). 2nd Ed.
[24] I.M. Gessel, D. Stanton: Applications of q-Lagrange inversion to basic hypergeometric series. Trans. Amer. Math. Soc. 277 (1983) 173-201.
[25] H.W. Gould: Some generalizations of Vandermonde's convolution. Amer. Math. Monthly 63 (1) (1956) 84-91.
[26] F.H. Jackson: Certain q-identities. Quart. J. Math. 12 (1941) 167-172.
[27] P.W. Karlsson: Hypergeometric formulas with integral parameter differences. J. Math. Phys. 12 (2) (1971) 270-271.
[28] Z. Liu: An expansion formula for q-series and applications. Ramanujan J. 6 (4) (2002) 429-447.
[29] B.M. Minton: Generalized hypergeometric function of unit argument. J. Math. Phys. 11 (4) (1970) 1375-1376.
[30] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/17.7
[31] I.J. Slater: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966).
[32] A. Verma, V.K. Jain: Some summation formulae for nonterminating basic hypergeometric series. SIAM J. Math. Anal. 16 (3) (1985) 647-655.
[33] A. Verma, C.M. Joshi: Some remarks on summation of basic hypergeometric series. Houston J. Math. 5 (2) (1979) 277-294.

Received: 25 February, 2017
Accepted for publication: 14 June, 2018
Communicated by: Karl Dilcher

[^0]: 2010 MSC: Primary 33C20, Secondary 05A30
 Key words: Terminating q-series, the q-derivative operator, well-poised series, balanced series, Pfaff-Saalschütz summation theorem, Gasper's q-Karlsson-Minton formula

 Affiliation:
 X. Wang - School of Science, Dalian Jiaotong University, Dalian 116028, P. R. China E-mail: xiaoyuanwang27@yahoo.com
 W. Chu - School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou (Henan), P. R. China and Dipartimento di Matematica e Fisica, Università del Salento, Arnesano, P. O. Box 193, 73100 Lecce, Italy

 E-mail: chu.wenchang@unisalento.it

