A Study on ϕ-recurrence $\boldsymbol{\tau}$-curvature tensor in (k, μ)-contact metric manifolds

Gurupadavva Ingalahalli, C.S. Bagewadi

Abstract

In this paper we study ϕ-recurrence τ-curvature tensor in (k, μ)-contact metric manifolds.

1 Introduction

In [11], S. Tanno introduced the notion of k-nullity distribution of a contact metric manifold as a distribution such that the characteristic vector field ξ of the contact metric manifold belongs to the distribution. The contact metric manifold with ξ belonging to the k-nullity distribution is called $N(k)$-contact metric manifold and such a manifold is also studied by various authors. Generalizing this notion in 1995, D.E. Blair, T. Koufogiorgos and B.J. Papantoniou [2] introduced the notion of a contact metric manifold with ξ belonging to the (k, μ)-nullity distribution, where k and μ are real constants. In particular, if $\mu=0$ then the notion of (k, μ)-nullity distribution reduces to the notion of k-nullity distribution.

In [13], M.M. Tripathi and et al. introduced the τ-curvature tensor which consists of known curvatures like conformal, concircular, projective, M-projective, W_{i}-curvature tensor $(i=0, \ldots, 9)$ and W_{j}^{*}-curvature tensor $(j=0,1)$. Further, in [14] and [15] M.M. Tripathi and et al. studied τ-curvature tensor in K-contact, Sasakian and semi-Riemannian manifolds. Later in [6] the authors studied some properties of τ-curvature tensor and they obtained some interesting results.

[^0]The notion of local symmetry of a Riemannian manifold has been weakened by many authors in several ways to a different extent. In the context of contact geometry the notion of ϕ-symmetry is introduced and studied by E. Boeckx, P. Buecken and L. Vanhecke [3] with several examples. As a weaker version of local symmetry, T. Takahashi [12] introduced the notion of locally ϕ-symmetry on a Sasakian manifold. Generalizing the notion of ϕ-symmetry De et al. [5] introduced the notion of ϕ-recurrent Sasakian manifold. In [4], the authors studied ϕ-recurrent $N(k)$-contact metric manifolds. Motivated by all these work in this paper we study the ϕ-recurrent τ-curvature tensor in (k, μ)-contact metric manifold.

2 Preliminaries

A $(2 n+1)$-dimensional differential manifold M is said to have an almost contact structure (ϕ, ξ, η) if it carries a tensor field ϕ of type $(1,1)$, a vector field ξ and 1 -form η satisfying

$$
\begin{equation*}
\phi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \eta \circ \phi=0, \quad \phi \xi=0 \tag{1}
\end{equation*}
$$

Let g be a compatible Riemannian metric with almost contact structure (ϕ, ξ, η) such that,

$$
\begin{align*}
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y), \tag{2}\\
g(\phi X, Y) & =-g(X, \phi Y) \tag{3}
\end{align*} \quad g(X, \xi)=\eta(X),
$$

where X, Y are vector fields defined on M. Then the structure (ϕ, ξ, η, g) on M is said to have an almost contact metric structure and the manifold M equipped with this structure is called an almost contact metric manifold.

An almost contact metric structure (ϕ, ξ, η, g) becomes a contact metric structure if

$$
\mathrm{d} \eta(X, Y)=g(X, \phi Y)
$$

for all vector fields X, Y on M.
Given a contact metric manifold $M(\phi, \xi, \eta, g)$, we define a $(1,1)$ tensor field h by $h=\frac{1}{2} \mathfrak{L} \phi$, where \mathfrak{L} denotes the Lie differentiation. Then h is symmetric and satisfies $h \phi=-\phi h$. Also we have $\operatorname{tr}(h)=\operatorname{tr}(\phi h)=0$ and $h \xi=0$. Moreover, if ∇ denotes the Riemannian connection on M, then the following relation holds:

$$
\begin{equation*}
\nabla_{X} \xi=-\phi X-\phi h X \tag{4}
\end{equation*}
$$

In contact metric manifold $M(\phi, \xi, \eta, g)$, the (k, μ)-nullity distribution is

$$
\begin{align*}
p \rightarrow N_{p}(k, \mu)=\left\{Z \in T_{p} M: R(X, Y) Z=\right. & k[g(Y, Z) X-g(X, Z) Y] \\
& +\mu[g(Y, Z) h X-g(X, Z) h Y]\}, \tag{5}
\end{align*}
$$

for all vector fields $X, Y \in T_{p} M$ and k, μ are real numbers and R is the curvature tensor. Hence, if the characteristic vector field ξ belongs to the (k, μ)-nullity distribution, then we have

$$
\begin{equation*}
R(X, Y) \xi=k[\eta(Y) X-\eta(X) Y]+\mu[\eta(Y) h X-\eta(X) h Y] \tag{6}
\end{equation*}
$$

Thus a contact metric manifold satisfying (6) is called a (k, μ)-contact metric manifold. In particular, if $\mu=0$, then the notion of (k, μ)-nullity distribution reduces to the notion of k-nullity distribution introduced by S . Tanno [11]. In a (k, μ)-contact metric manifold the following relations hold [2], [9]:

$$
\begin{align*}
h^{2}= & (k-1) \phi^{2}, \quad k \leq 1, \tag{7}\\
\left(\nabla_{X} \phi\right) Y= & g(X+h X, Y) \xi-\eta(Y)[X+h X], \\
\left(\nabla_{X} h\right) Y= & {[(1-k) g(X, \phi Y)+g(X, h \phi Y)] \xi } \\
& +\eta(Y)[h(\phi X+\phi h X)]-\mu \eta(X) \phi h Y, \\
R(\xi, X) Y= & k[g(X, Y) \xi-\eta(Y) X]+\mu[g(h X, Y) \xi-\eta(Y) h X], \\
\eta(R(X, Y) Z)= & k[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \\
& +\mu[g(h Y, Z) \eta(X)-g(h X, Z) \eta(Y)], \\
S(X, \xi)= & 2 n k \eta(X), \tag{8}\\
S(X, Y)= & {[2(n-1)-n \mu] g(X, Y)+[2(n-1)+\mu] g(h X, Y) } \\
& +[2(1-n)+n(2 k+\mu)] \eta(X) \eta(Y), \quad n \geq 1, \tag{9}\\
Q X= & {[2(n-1)-n \mu] X+[2(n-1)+\mu] h X } \\
& +[2(1-n)+n(2 k+\mu)] \eta(X) \xi, \quad n \geq 1, \tag{10}\\
r= & 2 n[2 n-2+k-n \mu], \\
S(\phi X, \phi Y)= & S(X, Y)-2 n k \eta(X) \eta(Y)-2(2 n-2+\mu) g(h X, Y), \tag{11}
\end{align*}
$$

where S is the Ricci tensor of type (0,2), Q is the Ricci operator, that is, $S(X, Y)=$ $g(Q X, Y)$ and r is the scalar curvature of the manifold. From (3), it follows that

$$
\left(\nabla_{X} \eta\right) Y=g(X+h X, \phi Y)
$$

Definition 1. A (k, μ)-contact metric manifold M is said to be locally ϕ-symmetric if

$$
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=0
$$

for all vector fields X, Y, Z, W orthogonal to ξ. This notion was introduced by T. Takahashi [12] for Sasakian manifolds.

A field that is at every point and for every direction proportional to its covariant differential is called recurrent. Based on this concept we define the following definition:

Definition 2. A (k, μ)-contact metric manifold M is said to be ϕ-recurrent if and only if there exists a non zero 1 -form A such that

$$
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y) Z\right)=A(W) R(X, Y) Z
$$

for all arbitrary vector fields X, Y, Z, W which are not necessarily orthogonal to ξ.

If the 1-form A vanishes identically, then the manifold is said to be a locally ϕ-symmetric manifold.

Definition 3. A (k, μ)-contact metric manifold M is said to be ϕ - τ-recurrent if and only if there exists a non zero 1 -form A such that

$$
\phi^{2}\left(\left(\nabla_{W} \tau\right)(X, Y) Z\right)=A(W) \tau(X, Y) Z,
$$

for all arbitrary vector fields X, Y, Z, W which are not necessarily orthogonal to ξ.

The τ-curvature tensor [13] is given by

$$
\begin{align*}
\tau(X, Y) Z= & a_{0} R(X, Y) Z+a_{1} S(Y, Z) X+a_{2} S(X, Z) Y+a_{3} S(X, Y) Z \\
& +a_{4} g(Y, Z) Q X+a_{5} g(X, Z) Q Y+a_{6} g(X, Y) Q Z \tag{12}\\
& +a_{7} r[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where a_{0}, \ldots, a_{7} are all constants on M. For different values of a_{0}, \ldots, a_{7} the τ-curvature tensor reduces to the curvature tensor R, quasi-conformal curvature tensor, conformal curvature tensor, conharmonic curvature tensor, concircular curvature tensor, pseudo-projective curvature tensor, projective curvature tensor, M projective curvature tensor, W_{i}-curvature tensors $(i=0, \ldots, 9)$, W_{j}^{*}-curvature tensors $(j=0,1)$.

$3 \boldsymbol{\phi}$ - τ-recurrent (k, μ)-contact metric manifold

In this section, we define ϕ - τ-recurrent (k, μ)-contact metric manifold

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} \tau\right)(X, Y) Z\right)=A(W) \tau(X, Y) Z \tag{13}
\end{equation*}
$$

for all vector fields X, Y, Z, W. By using (9) and (10) in (12), we get

$$
\begin{align*}
\tau(X, Y) Z= & a_{0} R(X, Y) Z+a_{1}[\alpha g(Y, Z) X+\beta g(h Y, Z) X+\gamma \eta(Y) \eta(Z) X] \\
& +a_{2}[\alpha g(X, Z) Y+\beta g(h X, Z) Y+\gamma \eta(X) \eta(Z) Y] \\
& +a_{3}[\alpha g(X, Y) Z+\beta g(h X, Y) Z+\gamma \eta(X) \eta(Y) Z] \\
& +a_{4} g(Y, Z)[\alpha X+\beta h X+\gamma \eta(X) \xi] \tag{14}\\
& +a_{5} g(X, Z)[\alpha Y+\beta h Y+\gamma \eta(Y) \xi] \\
& +a_{6} g(X, Y)[\alpha Z+\beta h Z+\gamma \eta(Z) \xi] \\
& +a_{7} r[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where $\alpha=[2(n-1)-n \mu], \beta=[2(n-1)+\mu]$ and $\gamma=[2(1-n)+n(2 k+\mu)]$.

Differentiating (14) with respect to W, we obtain

$$
\begin{align*}
\left(\nabla_{W} \tau\right)(X, Y) Z= & a_{0}\left(\nabla_{W} R\right)(X, Y) Z \\
& +a_{1}\left[\beta g\left(\left(\nabla_{W} h\right) Y, Z\right) X+\gamma\left\{\left(\nabla_{W} \eta\right) Y \eta(Z) X+\left(\nabla_{W} \eta\right) Z \eta(Y) X\right\}\right] \\
& +a_{2}\left[\beta g\left(\left(\nabla_{W} h\right) X, Z\right) Y+\gamma\left\{\left(\nabla_{W} \eta\right) X \eta(Z) Y+\left(\nabla_{W} \eta\right) Z \eta(X) Y\right\}\right] \\
& +a_{3}\left[\beta g\left(\left(\nabla_{W} h\right) X, Y\right) Z+\gamma\left\{\left(\nabla_{W} \eta\right) X \eta(Y) Z+\left(\nabla_{W} \eta\right) Y \eta(X) Z\right\}\right] \\
& +a_{4} g(Y, Z)\left[\beta\left(\nabla_{W} h\right) X+\gamma\left\{\left(\nabla_{W} \eta\right)(X) \xi+\eta(X) \nabla_{W} \xi\right\}\right] \\
& +a_{5} g(X, Z)\left[\beta\left(\nabla_{W} h\right) Y+\gamma\left\{\left(\nabla_{W} \eta\right)(Y) \xi+\eta(Y) \nabla_{W} \xi\right\}\right] \\
& +a_{6} g(X, Y)\left[\beta\left(\nabla_{W} h\right) Z+\gamma\left\{\left(\nabla_{W} \eta\right)(Z) \xi+\eta(Z) \nabla_{W} \xi\right\}\right] \\
& +a_{7}\left(\nabla_{W} r\right)[g(Y, Z) X-g(X, Z) Y] . \tag{15}
\end{align*}
$$

By virtue of (1), (13), we have

$$
\begin{equation*}
-\left(\nabla_{W} \tau\right)(X, Y) Z+\eta\left(\left(\nabla_{W} \tau\right)(X, Y) Z\right) \xi=A(W) \tau(X, Y) Z \tag{16}
\end{equation*}
$$

By taking an inner product with U, we obtain

$$
\begin{equation*}
-g\left(\left(\nabla_{W} \tau\right)(X, Y) Z, U\right)+\eta\left(\left(\nabla_{W} \tau\right)(X, Y) Z\right) g(\xi, U)=A(W) g(\tau(X, Y) Z, U) \tag{17}
\end{equation*}
$$

Let $\left\{e_{i}: i=1,2, \ldots, 2 n+1,\right\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $X=U=e_{i}$ in (17) and taking summation over i, we get

$$
\begin{equation*}
-g\left(\left(\nabla_{W} \tau\right)\left(e_{i}, Y\right) Z, e_{i}\right)+\eta\left(\left(\nabla_{W} \tau\right)\left(e_{i}, Y\right) Z\right) g\left(\xi, e_{i}\right)=A(W) g\left(\tau\left(e_{i}, Y\right) Z, e_{i}\right) \tag{18}
\end{equation*}
$$

By using (15) in (18), we obtain

$$
\begin{align*}
& -a_{0}\left(\nabla_{W} S\right)(Y, Z)-\left[2 n a_{1}+a_{2}+a_{5}\right][\beta\{[(1-k) g(W, \phi Y)+g(W, h \phi Y)] \eta(Z) \\
& +\eta(Y) g(h(\phi W+\phi h W), Z)-\mu \eta(W) g(\phi h Y, Z)\}+\gamma\{g(W+h W, \phi Y) \eta(Z) \\
& +\eta(Y) g(W+h W, \phi Z)\}]-\left(a_{3}+a_{6}\right)[\beta\{[(1-k) g(W, \phi Z)+g(W, h \phi Z)] \eta(Y) \\
& +\eta(Z) g(h(\phi W+\phi h W), Y)-\mu \eta(W) g(\phi h Z, Y)\}+\gamma\{g(W+h W, \phi Z) \eta(Y) \\
& +\eta(Z) g(W+h W, \phi Y)\}]-a_{7}\left(\nabla_{W} r\right)[2 n g(Y, Z)]+a_{0} \eta\left(\left(\nabla_{W} R\right)(\xi, Y) Z\right) \\
& +a_{2}[\beta g(h(\phi W+\phi h W), Z) \eta(Y)+\gamma g(W+h W, \phi Z) \eta(Y)] \\
& +a_{3}[\beta g(h(\phi W+\phi h W), Y) \eta(Z)+\gamma g(W+h W, \phi Y) \eta(Z)] \\
& +a_{5}[\beta\{(1-k) g(W, \phi Y)+g(W, h \phi Y)\} \eta(Z)+\gamma \eta(Z) g(W+h W, \phi Y)] \\
& +a_{6}[\beta\{(1-k) g(W, \phi Z)+g(W, h \phi Z)\} \eta(Y)+\gamma \eta(Y) g(W+h W, \phi Z)] \\
& +a_{7}\left(\nabla_{W} r\right)[g(Y, Z)-\eta(Y) \eta(Z)] \\
& =A(W)\left[a_{4}+2 n a_{7}\right] r g(Y, Z)+A(W)\left[a_{0}+(2 n+1) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right] S(Y, Z) . \tag{19}
\end{align*}
$$

Putting $Z=\xi$ in (19) and on simplification, we get

$$
\begin{align*}
& -a_{0}\left(\nabla_{W} S\right)(Y, \xi)-\left(2 n a_{1}+a_{2}+a_{6}\right)[\beta\{(1-k) g(W, \phi Y)+g(W, h \phi Y)\} \\
& +\gamma g(W+h W, \phi Y)]-2 n a_{7}\left(\nabla_{W} r\right) \eta(Y) \tag{20}\\
= & A(W) \eta(Y)\left[\left[a_{0}+(2 n+1) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right] 2 n k+\left[a_{4}+2 n a_{7}\right] r\right] .
\end{align*}
$$

We know that

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=\nabla_{W} S(Y, \xi)-S\left(\nabla_{W} Y, \xi\right)-S\left(Y, \nabla_{W} \xi\right) \tag{21}
\end{equation*}
$$

By using (4), (8) in (21), we obtain

$$
\begin{equation*}
\left(\nabla_{W} S\right)(Y, \xi)=S(Y, \phi W)+S(Y, \phi h W)-2 n k g(Y, \phi W)-2 n k g(Y, \phi h W) \tag{22}
\end{equation*}
$$

Substituting (22) in (20), we get

$$
\begin{align*}
& -a_{0}\{S(Y, \phi W)+S(Y, \phi h W)-2 n k g(Y, \phi W)-2 n k g(Y, \phi h W)\} \\
& -\left(2 n a_{1}+a_{2}+a_{6}\right)[\beta\{(1-k) g(W, \phi Y)+g(W, h \phi Y)\}+\gamma g(W+h W, \phi Y)] \\
& -2 n a_{7}\left(\nabla_{W} r\right) \eta(Y) \\
= & A(W) \eta(Y)\left[\left[a_{0}+(2 n+1) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right] 2 n k+\left[a_{4}+2 n a_{7}\right] r\right] . \tag{23}
\end{align*}
$$

Replacing Y by ϕY in (23) and simplifying, we have

$$
\begin{align*}
& -a_{0} S(Y, W)-a_{0} S(Y, h W)+\left[2 a_{0} \beta+2 n k a_{0}+\left(2 n a_{1}+a_{2}+a_{6}\right)(\beta+\gamma)\right] g(h W, Y) \\
& +\left[2 n k a_{0}+\left(2 n a_{1}+a_{2}\right)\{\beta(1-k)+\gamma\}+a_{6} \gamma-\left(2 a_{0}+a_{6}\right) \beta(k-1)\right] g(W, Y) \\
& +\left[\left(2 a_{0}+a_{6}\right) \beta(k-1)-\left(2 n a_{1}+a_{2}\right)\{\beta(1-k)+\gamma\}-a_{6} \gamma\right] \eta(W) \eta(Y)=0 . \tag{24}
\end{align*}
$$

Replacing W by $h W$ in (24) and by virtue of (7), (9) and on simplification, we get

$$
\begin{align*}
& -a_{0} S(Y, h W)+a_{0}(k-1) S(Y, W) \\
& +(k-1)\left[2 a_{0} \beta+\left(2 n a_{1}+a_{2}+a_{6}\right)(\beta+\gamma)\right] \eta(W) \eta(Y) \\
& +\left[2 n k a_{0}+\left(2 n a_{1}+a_{2}\right)\{\beta(1-k)+\gamma\}+a_{6} \gamma-\left(2 a_{0}+a_{6}\right) \beta(k-1)\right] g(h W, Y) \\
& -(k-1)\left[2 a_{0} \beta+2 n k a_{0}+\left(2 n a_{1}+a_{2}+a_{6}\right)(\beta+\gamma)\right] g(W, Y)=0 . \tag{25}
\end{align*}
$$

Subtracting (24) and (25) and by virtue of (9), we obtain

$$
\begin{equation*}
g(Y, h W)=\frac{E}{F} g(Y, W)+\frac{G}{F} \eta(Y) \eta(W), \tag{26}
\end{equation*}
$$

where

$$
\begin{gathered}
E=\left[a_{0}(\beta-2 n k)+\left(2 n a_{1}+a_{2}+a_{6}\right) \gamma\right] \\
F=\left[a_{0}(2 \beta-\alpha)+\beta\left(2 n a_{1}+a_{2}\right)\right]
\end{gathered}
$$

and

$$
G=\gamma\left(-a_{0}+2 n a_{1}+a_{2}+a_{6}\right) .
$$

By substituting (26) in (24), we get

$$
S(Y, W)=\left[\frac{N E}{a_{0} F}+\frac{P}{a_{0}}\right] g(Y, W)+\left[\frac{G N}{F a_{0}}+\frac{Q}{a_{0}}\right] \eta(Y) \eta(W),
$$

where

$$
\begin{gathered}
N=\left[[2 n k-\alpha+2 \beta] a_{0}+\left(2 n a_{1}+a_{2}+a_{6}\right)(\beta+\gamma)\right], \\
P=\left[2 n k a_{0}-\beta(k-1)\left[a_{0}+2 n a_{1}+a_{2}+a_{6}\right]+\gamma\left[2 n a_{1}+a_{2}+a_{6}\right]\right]
\end{gathered}
$$

and

$$
Q=\left[\beta(k-1)\left[a_{0}+2 n a_{1}+a_{2}+a_{6}\right]-\gamma\left[2 n a_{1}+a_{2}+a_{6}\right]\right] .
$$

Hence, we state the following:
Theorem 1. $A \phi$ - τ-recurrent (k, μ)-contact metric manifold is an η-Einstein manifold with $a_{0} \neq 0$.

$4 \boldsymbol{\eta}$ - $\boldsymbol{\tau}$-Ricci-recurrent (k, μ)-contact metric manifold

Definition 4. A (k, μ)-contact metric manifold M is said to be η - τ-Ricci-recurrent if it satisfies the condition

$$
\begin{equation*}
\left(\nabla_{X} S_{\tau}\right)(\phi Y, \phi Z)=A(X) S_{\tau}(\phi Y, \phi Z) \tag{27}
\end{equation*}
$$

for all vector fields X, Y, Z on M
From (12), we have

$$
\begin{equation*}
S_{\tau}(Y, Z)=\left[a_{0}+(2 n+1) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right] S(Y, Z)+r\left[a_{4}+2 n a_{7}\right] g(Y, Z) \tag{28}
\end{equation*}
$$

Replacing $Y=\phi Y$ and $Z=\phi Z$ in (28), we obtain

$$
\begin{align*}
S_{\tau}(\phi Y, \phi Z)= & {\left[a_{0}+(2 n+1) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right] S(\phi Y, \phi Z) } \\
& +\left[a_{4}+2 n a_{7}\right] r g(\phi Y, \phi Z) . \tag{29}
\end{align*}
$$

Differentiating (29) with respect to X, we get

$$
\begin{align*}
\left(\nabla_{X} S_{\tau}\right)(\phi Y, \phi Z)= & {\left[a_{0}+(2 n+1) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right]\left(\nabla_{X} S\right)(\phi Y, \phi Z) } \tag{30}\\
& +\left[a_{4}+2 n a_{7}\right]\left(\nabla_{X} r\right) g(\phi Y, \phi Z) .
\end{align*}
$$

By using (30) and (29) in (27), we have

$$
\begin{equation*}
L\left(\nabla_{X} S\right)(\phi Y, \phi Z)+M\left(\nabla_{X} r\right) g(\phi Y, \phi Z)=A(X)\{L S(\phi Y, \phi Z)+\operatorname{Mrg}(\phi Y, \phi Z)\} \tag{31}
\end{equation*}
$$

where $L=\left[a_{0}+(2 n+1) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}\right]$ and $M=\left[a_{4}+2 n a_{7}\right]$.
Now, differentiating (11), we have

$$
\begin{align*}
\left(\nabla_{X} S\right)(\phi Y, \phi Z)= & \left(\nabla_{X} S\right)(Y, Z)-2 n k[-\eta(Z) g(Y, \phi X)-\eta(Z) g(Y, \phi h X) \\
& -\eta(Y) g(Z, \phi X)-\eta(Y) g(Z, \phi h X)] \\
& -2[2 n-2+\mu][(1-k) g(X, \phi Y) \eta(Z) \\
& +g(X, h \phi Y) \eta(Z)+\eta(Y) g(h(\phi X+\phi h X), Z) \tag{32}\\
& -\mu \eta(X) g(\phi h Y, Z)] \\
& +\eta(Y) S(X+h X, \phi Z)+\eta(Z) S(\phi Y, X+h X) .
\end{align*}
$$

Substituting (32) in (31) and on simplification, we obtain

$$
\begin{align*}
\left(\nabla_{X} S\right)(Y, Z)= & -2 n k[\eta(Z) g(Y, \phi X)+\eta(Z) g(Y, \phi h X)+\eta(Y) g(Z, \phi X) \\
& +\eta(Y) g(Z, \phi h X)]+2[2 n-2+\mu][(1-k) g(X, \phi Y) \eta(Z) \\
& +g(X, h \phi Y) \eta(Z)+\eta(Y) g(h(\phi X+\phi h X), Z)-\mu \eta(X) g(\phi h Y, Z)] \\
& -\eta(Y) S(X+h X, \phi Z)-\eta(Z) S(\phi Y, X+h X) \\
& -\frac{M}{L}\left(\nabla_{X} r\right) g(\phi Y, \phi Z)+A(X)\{S(Y, Z)-2 n k \eta(Y) \eta(Z) \\
& \left.-2[2 n-2+\mu] g(h Y, Z)+\frac{M r}{L} g(\phi Y, \phi Z)\right\} . \tag{33}
\end{align*}
$$

Let $\left\{e_{i}: i=1,2, \ldots, 2 n+1\right\}$ be an orthonormal frame field at any point of the manifold. Then contracting Y and Z in (33), we have

$$
\begin{equation*}
\mathrm{d} r(X)=A(X)\left[r-\frac{2 n k L}{(L+2 n M)}\right] \tag{34}
\end{equation*}
$$

Again, contracting over X and Z in (33), we get

$$
\begin{align*}
\frac{1}{2} \mathrm{~d} r(Y) & =\left[-2 n k \operatorname{tr}(\phi)+2(2 n-2+\mu) \operatorname{tr}(h \phi h)-\operatorname{tr}(Q \phi)-\operatorname{tr}(Q h \phi)+\frac{(\xi r) M}{L}\right] \eta(Y) \\
& -\left[2 n k+\frac{r M}{L}\right] A(\xi) \eta(Y)-\frac{M}{L} d r(Y)+S(Y, \rho)-2(2 n-2+\mu) A(h Y) \\
& +\frac{r M}{L} A(Y) . \tag{35}
\end{align*}
$$

By using (34) in (35) and on simplification, we get

$$
\begin{align*}
& A(Y)\left[\frac{r}{2}-\frac{n k(L+2 M)}{(L+2 n M)}\right]=[-2 n k \operatorname{tr}(\phi)+2(2 n-2+\mu) \operatorname{tr}(h \phi h) \\
&\left.-\operatorname{tr}(Q \phi)-\operatorname{tr}(Q h \phi)-\frac{2 n k(L+M+2 n M)}{(L+2 n M)} A(\xi)\right] \eta(Y) \\
&+S(Y, \rho)-2(2 n-2+\mu) A(h Y) . \tag{36}
\end{align*}
$$

Replacing $Y=h Y$ in (36) and by virtue of (9), we obtain

$$
\begin{equation*}
A(h Y)=\frac{2(L+2 n M)}{[(r-2 \alpha)(L+2 n M)-2 n k(L+2 M)]}[\beta(k-1)\{A(Y)-A(\xi) \eta(Y)\}] \tag{37}
\end{equation*}
$$

where $\alpha=[2(n-1)-n \mu]$ and $\beta=[2(n-1)+\mu]$.

Substituting (37) in (36), we have

$$
\begin{align*}
& A(Y)\left[\frac{r}{2}-\frac{n k(L+2 M)}{(L+2 n M)}+\frac{4 \beta^{2}(L+2 n M)(k-1)}{[(r-2 \alpha)(L+2 n M)-2 n k(L+2 M)]}\right] \\
& \quad=[-2 n k \operatorname{tr}(\phi)+2 \beta \operatorname{tr}(h \phi h)-\operatorname{tr}(Q \phi)-\operatorname{tr}(Q h \phi)] \eta(Y) \\
& +\left[\frac{4 \beta^{2}(L+2 n M)(k-1)}{[(r-2 \alpha)(L+2 n M)-2 n k(L+2 M)]}-\frac{2 n k(L+M+2 n M)}{(L+2 n M)}\right] A(\xi) \eta(Y) \\
& +S(Y, \rho) . \tag{38}
\end{align*}
$$

Putting $Y=\xi$ in (38), we get

$$
\begin{equation*}
A(\xi)\left[\frac{r}{2}-\frac{n k L}{(L+2 n M)}\right]=[-2 n k \operatorname{tr}(\phi)+2 \beta \operatorname{tr}(h \phi h)-\operatorname{tr}(Q \phi)-\operatorname{tr}(Q h \phi)] . \tag{39}
\end{equation*}
$$

From (39) and (38), we have

$$
\begin{align*}
S(Y, \rho) & =\left[\frac{r}{2}-\frac{n k(L+2 M)}{(L+2 n M)}+\frac{4 \beta^{2}(L+2 n M)(k-1)}{[(r-2 \alpha)(L+2 n M)-2 n k(L+2 M)]}\right] g(Y, \rho) \\
& +\left[-\frac{r}{2}+\frac{n k L}{(L+2 n M)}-\frac{4 \beta^{2}(L+2 n M)(k-1)}{[(r-2 \alpha)(L+2 n M)-2 n k(L+2 M)]}\right. \\
& \left.+\frac{2 n k(L+M+2 n M)}{(L+2 n M)}\right] \eta(Y) \eta(\rho) \tag{40}
\end{align*}
$$

From (40), we have

$$
\begin{align*}
Q Y & =\left[\frac{r}{2}-\frac{n k(L+2 M)}{(L+2 n M)}+\frac{4 \beta^{2}(L+2 n M)(k-1)}{[(r-2 \alpha)(L+2 n M)-2 n k(L+2 M)]}\right] Y \\
& +\left[-\frac{r}{2}+\frac{n k L}{(L+2 n M)}-\frac{4 \beta^{2}(L+2 n M)(k-1)}{[(r-2 \alpha)(L+2 n M)-2 n k(L+2 M)]}\right. \tag{41}\\
& \left.+\frac{2 n k(L+M+2 n M)}{(L+2 n M)}\right] \eta(Y) \xi .
\end{align*}
$$

Hence, we state the following:
Theorem 2. If the Ricci tensor of a (k, μ)-contact metric manifold is η - τ-Ricci--recurrent then its Ricci tensor along the associated vector field of the 1-form is given by (40) and the eigen value of the Ricci tensor with respect to the characteristic vector ξ is given by (41).

Acknowledgement

The authors are very grateful to the referees for their valuable suggestions and opinions.

References

[1] D.E. Blair: Contact metric manifolds in Riemannian geometry. Springer-Verlag, Berlin-New-York (1976). Lecture Notes in Mathematics 509
[2] D.E. Blair, T. Koufogiorgos, B.J. Papantoniou: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91 (1995) 189-214.
[3] E. Boeckx, P. Buecken, L. Vanhecke: ϕ-symmetric contact metric spaces. Glasgow Math. J. 41 (1999) 409-416.
[4] U.C. De, A.K. Gazi: On ϕ-recurrent $N(k)$-contact metric manifolds. Math. J. Okayama Univ. 50 (2008) 101-112.
[5] U.C. De, A.A. Shaikh, S. Biswas: On ϕ-recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2003) 13-48.
[6] H.G. Nagaraja, G. Somashekhara: τ-curvature tensor in (k, μ)-contact metric manifolds. Mathematica Aeterna 2 (6) (2012) 523-532.
[7] B.J. Papantonion: Contact Riemannian manifolds satisfying $R(\xi, X) \cdot R=0$ and $\xi \in(k, \mu)$-nullity distribution. Yokohama Math. J. 40 (2) (1993) 149-161.
[8] C.R. Premalatha, H.G. Nagaraja: On Generalized (k, μ)-space forms. Journal of Tensor Society 7 (2013) 29-38.
[9] A.A. Shaikh, K.K. Baishya: On (k, μ)-contact metric manifolds. Differential Geometry Dynamical Systems 8 (2006) 253-261.
[10] R. Sharma, D.E. Blair: Conformal motion of contact manifolds with characteristic vector field in the k-nullity distribution. Illinois J. Math. 42 (1998) 673-677.
[11] S. Tanno: Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J. 40 (1988) 441-448.
[12] T. Takahashi: Sasakian ϕ-symmetric spaces. Tohoku Math. J. 29 (1977) 91-113.
[13] M.M. Tripathi, P. Gupta: τ-curvature tensor on a semi-Riemannian manifold. J. Adv. Math. Stud. 4 (1) (2011) 117-129.
[14] M.M. Tripathi, P. Gupta: On τ-curvature tensor in K-contact and Sasakian manifolds. International Electronic Journal of Geometry 4 (2011) 32-47.
[15] M.M. Tripathi, P. Gupta: $(N(k), \xi)$-semi-Riemannian manifolds: Semisymmetries. arXiv:1202.6138v[math.DG] 28 (2012).

Received: 24 April, 2017
Accepted for publication: 15 May, 2018
Communicated by: Haizhong Li

[^0]: 2010 MSC: 53C15, 53C25, 53D15.
 Key words: Contact metric manifold, curvature tensor, Ricci tensor, Ricci operator. Affiliation:

 Gurupadavva Ingalahalli - Department of Mathematics, Kuvempu University, Shankaraghatta, 577 451, Shimoga, Karnataka, India.
 E-mail: gurupadavva@gmail.com
 C.S. Bagewadi - Department of Mathematics, Kuvempu University, Shankaraghatta, 577 451, Shimoga, Karnataka, India.
 E-mail: prof_bagewadi@yahoo.co.in

