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A new class of almost complex structures on tangent
bundle of a Riemannian manifold

Amir Baghban, Esmaeil Abedi

Abstract. In this paper, the standard almost complex structure on the tan-
gent bunle of a Riemannian manifold will be generalized. We will generalize
the standard one to the new ones such that the induced (0, 2)-tensor on the
tangent bundle using these structures and Liouville 1-form will be a Rie-
mannian metric. Moreover, under the integrability condition, the curvature
operator of the base manifold will be classified.

1 Introduction

Let (M, g) be a Riemannian manifold and V represents the Levi-Civita connection
of g and suppose 7: TM — M is the tangent bundle of M. Furthermore, we de-
note by X" and XV the horizontal and vertical lifts of any vector field X on M,
respectively. There are many papers ([1], [3], [5], [10], [8], [9]) which are on differ-
ential geometric structures on tangent and cotangent bundles like the Riemannian
metrics, harmonic sections, almost complex structures, connections and so on.
Almost complex structures are some important structures in differential geome-
try. These structures obtained many applications in physics, signal processing and
information geometry. Kéhlerian manifolds as a special class of complex manifolds
plays an important role in signal processing. Choi and Mullhaupt [4] proved a
correspondence between the information geometry of a signal filter and a Kahler
manifold; the information geometry of a minimum-phase linear system with a fi-
nite complex spectrum norm is a Kéhler manifold. In [11], the authors investigated
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the necessary conditions for a divergence function on a manifold M such that the
manifold M x M admits a Kihlerian structure. Lisi [6] investigated the applica-
tions of pseudo-holomorphic curves to problems in Hamiltonian dynamics using the
structures of symplectic manifolds.

The classical almost complex structure Jy o: TTM — TTM is defined by

Jio(XM) =XY, Jio(XY)=-X"

for vector field X on M. In [2], Aguilar generalized this structure to a class of
almost complex structures and called them isotropic almost complex structures
Js5,» with definition

J50(X") =aX " +0X", J;o(XY) = —0X" - 6X",

for functions a,d,0: TM — R which satisfy aé — 02 = 1. He showed that there
exists an integrable isotropic almost complex structure on an open subset A C T M
if and only if the sectional curvature of (7(A), g) is constant.

To make a metrical discussion, let © be the Liouville 1-form on TM and Js
be an almost isotropic structure. If « is a positive valued function on T'M then
the (0, 2)-tensor

9s,0(A, B) =dO(J5,,A, B), A BeTTM

will be a Riemannian metric on TM. Now, let J be an almost complex structure
on the tangent bundle of a Riemannian manifold. The (0, 2)-tensor

G(A,B)=dO(JA,B), A,BeTTM,

is not a symmetric tensor, in general. So, we would like to generalize .J1 o to a class
of structures J with definition

J(XM) = aX® + J (XM, J(XV)=Jo(X?)—0X", (1)
such that the tensor G(A, B) = dO(JA, B) is a Riemannian metric where
a,8: TM — RT

are smooth mappings, J;: HTM — HTM and Jy: VI'M — VTM are linear
bundle maps where HT M is the horizontal sub-bundle and VT M is the vertical
sub-bundle of TT'M, respectively.

As a relevance between the generalized structure J and isotropic almost complex
structure Js, it can be said that if J;: HT'M — HTM and Jo: VI'M — VI'M
are multiples of identity bundle maps id: HT'M — HTM and id: VIM — VT M,
respectively, then .J will be an isotropic almost complex structure.

We know that the necessary condition for integrability of the isotropic almost
complex structures is that the base manifold is a space form, i.e., the curvature op-
erator of the base manifold is a constant multiple of the identity operator. But the
necessary condition for the integrability of a generalized one is that the curvature
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operator is diagonalizable and has three square blocks; two of them are arbitrary
multiple of the identity matrix and one of them is the zero matrix.

By supposing K : TT M — T M the connection map with respect to the metric g
and 7, the differentiate of w: T M — M, the following theorem states the necessary
and sufficient conditions for G to be a Riemannian metric.

Theorem 1. Let (M, g) be a Riemannian manifold and J: TTM — TTM be an
almost complex structure on T M given by (1). Then G is a Riemannian metric on
TM if and only if 7, X" = —KJ>,X" and ad — 1 > 0 and J, is symmetric with
respect to G, i.e., G(J; X" Y") = G(X", J;Y"), and has at most two eigen-values

—Vad—1=—-0,vV/ad—1=o0.

Let (2,...,2") be a locally coordinate system on (M, g) then we may assume
g = gijdxz" ® dz’ in this coordinate. We suppose that (¢*/) is the inverse matrix of
(gij). One can extend metric g on every tensor bundle ®FM of M for sections

, o ) 0
— Il 11 1k -
F= Filw.,ik dz™ @ ®dz™ @ O ® ® Oxit’
and P
— S13.++,81 T Tk -
G= Gri,mﬂ“kdx '® ®dz™ @ Orst ® ® Oxst ’

with the following definition
g(Fa G) = gilrl s gikagjlsl B gjlslGii’:”’Sl Fjl """" o

T o P S TR SRS
where we denoted the new metric by g, again. Since the bivector bundle AZM is a
sub-bundle of ®;M, we can restrict the extended metric g to this sub-bundle and

denote it by g, again. It is notable that an orthonormal frame on a tensor bundle
contains tensorial product of orthonormal vectors.

Definition 1. (see [7]) If we suppose that R is the curvature tensor of manifold
(M, g) then its curvature operator R: A% M — A%2M is defined by

JRIXAY),VAW) = R(X,Y,W,V).

If H, and H_, denote the sub-distributions of HT M including the eigen-vectors
of Jy: HT' M — HT M associated to ¢ and —o, respectively, then we will prove the
following theorem.

Theorem 2. Suppose {X1,..., X, Xni1,--.s Xntm} be a set of locally orthonor-
mal frame field on M such that H, is spanned by { X!, ..., X} and H_,, is spanned
by {Xh ..., X} .} If a,é are functions of E(u) = g(u,u) then the curvature
operator R is diagonalizable with respect to this frame and we have

R(XiNXj)=fXinX;, foralll<ij<n,

and
R(X;NX;)=0, foralll<i<nandn+1<j<n+m,

and
R(Xz/\X])ZhXIL/\XJ, fOl“&HTL-FlSZ,an—Fm,

for some mappings f,h on M.
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2 Generalization and integrability discussion
Let (N,J) be an almost complex manifold and 7 (N) be the complexfication
of TN. For x € N, define the spaces Téo’l)(N) and ngl’o)(N) of TS (N) as following

TOV(N) = {X, + V-1, X, |X(z) € T,(N)},

and
TUONN) = {X, — V=1J,X,| X (z) € To(N)}.

Now, let TOD(N) = U, TV (N) and TEO(N) = (U, TSV (N). Tt is a well
known fact that J is an integrable structure if and only if for all sections A, B €
T(TOD(N)) we have [A, B] € T(TD(N)); equivalently, for an arbitrary 1-form ¢
of the dual space of T(19)(N) (where denoted by 739 (N)*) we have

d¢ e A2 THO(N)*,

Definition 2. Let 7,71',...,n" be 1-forms on a differentiable manifold N. We say
that dn =0 mod {n',...,n"},if and only if dny = D fijnAn?, for some functions
fij on N.

So, if ¢*,...,¢" are locally (1,0)-forms generating I'(T(*%) (N)*), then .J is inte-
grable if and only if d¢ =0 mod {¢',...,¢"},V¢ € T(TMO(N)*).

When we work with O, it is convenient to work with a locally orthonormal
frame field on (M",g) like X4,...,X,. Because, if we suppose that m, K are the
natural projection from 7'M to M and the connection map, respectively and if we
suppose §° is the dual 1-forms of X; then

dO =Y (0 0 K) A (z0),
i=1

where {0° o K, 7*0%} is the dual basis of {X?, X/}

Proof of Theorem 1. Since G is a Riemannian metric, using the symmetric prop-
erty of G, i.e., G(X]', XV) = G(XY, X]) for all [, s, gives us

then using the equation d© = 1" (8% o K) A (7*0") gives
i X" = —KLX".

Now, from G(JX", JY") = G(JY",JX") and W*L]}Xh = —KJyX" one can get
that J; is a symmetric linear bundle map. Finally, .J? = —id gives us the equation

J? = (ad — 1)id,

and since J; is symmetric it has at most two real eigenvalues, i.e., ad — 1 > 0, and
so vad — 1 and —v/«ad — 1 are the eigenvalues of J; and the proof is completed. [J
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The following lemma shows that the dimension of H, and H_, are constant
along T'M.

Lemma 1. Let J be a generalized structure then the dimension of H, and H_,
are constant along T M. Consequently, if M is connected and if there is a point
w € TM such that o(u) # 0 then o # 0 every where.

Proof. First, note that if o = 0 on TM then the generalized structure .J is an
isotropic almost complex structure. So, we suppose that there exists a point v €
TM such that o(v) # 0. Let r,,s, € N be the multiplicities of H,, H_, at v,
respectively. By using the continuty of tr.J; at v, there exist an open subset of
TM like U containing v such that [tr Ji(v) — tr J1(v')| < € for a given € € RT and
for any vector v’ € U. Let r,y = 7, + a and s,» = s, — a for some a € NT, then we
have
ltr J1(v) — tr J1 (V)] = (10 — 80)0(v) = (T = $07)a (V)]

= |(ro = su)(0(v) = 0(v")) = 2a0 (V') < e.

When v — v we get that |2ac(v)| < e. Since o(v) # 0 and € was arbitrary, a must
be zero. This shows that the dimensions of H,,H_, are locally constants. So, if
M is connected then the dimension of H,,H_, are nonzero and the second part is
proved. O

In general, the eigen-spaces H,, H_, can not be spanned by the horizontal lifts
of locally vector fields. The following proposition shows this matter in more details.

Proposition 1. Suppose H, and H_, be the eigen-spaces of J. Then there ex-
ist locally vector fields {X1,...,Xn, Xnt1, -+, Xntmt on M with the conditions
span{X?{,..., X!} = H, and span{X]" |, ..., X 1} =H_, if and only if

Tk (Ha)u = T« (HG)U and T, (H—o)u = T« (H—O')’U

for all u,v € T,M and for all p where we mean by (Hs)u, (H—s)u the eigen-spaces
of J at v € T, M with respect to o and —o.

Proof. =) The key of proof is that m,: HTM — TM is a vector bundle isomor-
phism.

<) We know that the dimension of H, and H_, are constants over TM. We
will only prove that there exist locally vector fields Xi,..., X, on M such that
span{ X7}, ..., X"} = H, and the other one is similar. Since, T«(Ho)u = T+ (Ho)w
for all u,v € T, M then m,H, is a smooth distribution on M. So, there exist locally
vector fields X1, ..., X,, on M such that span{X}, ..., X"} = H,. O

From now on, we would like to investigate the integrability of the structures
J which satisfies the proposition 1. So, suppose {X1,..., Xy, Xpni1,---s Xnim}
be an orthonormal frame field on M such that span(X},..., X") = H,, and
span(X/", ..., X" Y =H_,. Therefore, we have

9 n+m

J(X!) =0 X! +aX?, J(XP)=—-0X!—0X}, fori=1,...,n,
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and
J(XM = —oX!+aXy, J(XP)=—-6X!+oXP, fori=n+1,...,n+m,
and the following 1-forms are a locally basis for (1,0)-forms.
u' = (1 —+/—lo)yy' ++/—16¢", fori=1,...,n,

and
u' = (1+v—1o)n' ++/—16¢, fori=n+1,...,n+m.

Furthermore, the following vector fields are the locally basis for (0,1) vectors
Vi =(1+V-10)X]+V—-1laX}, V1<k<n,

and
Vi=(1- \/—la)X,’: +v-laX;, Vn+1<k<n+m.

Let 6%,...,0™"™ be the dual 1-forms of Xi,..., X, 1,m. If we suppose that
n' = 70" and &' = 6" 0 K then we have

n+m n+m
dn' = Z " AT*wi, and dgt = Z (€8 AWl 4 1057 QL), (2)
k=1 k=1

where w},, i are the connection 1-forms and curvature 2-forms of the metric g, re-
spectively. Moreover, suppose that §6°(u) = 6°(u) for u € TM is a locally mapping
on the tangent bundle. Using the above notations, the following propositions can
be concluded as the integrability conditions.

Proposition 2. Let J be an integrable structure on the tangent bundle of (M™+™ g)
which satisfies the proposition 1. If n > 3 then we have

Ry, =0, i#kl, 1<ikli<n, 1<s<n+m, (3)
and if m > 3 we have

i=0, i#kl, n+l<ikli<nt+m, 1<s<n+m. @
Proof. Using the equations (2) we get

du’ = —v/=1do A7 + (1 — V=10)n" AW +/—1d6 A €

) ) 5
+ V-1 AT'w +10"7*Q;), fori=1,...,n, (5)

and
du’ = v/—~1do An' + (1 + vV=10)n" Aw! 4+ v/—1ds A &
+ V16 AT 10T TFQL), fori=n+1,...,n+m.
Let 1 <4,k,l <nandi# k,l. If J is integrable then

du'=0 modut, ..., u"™,
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so from (5) we will have
0= du'(Vi, Vi) = 6V=1(1 + V=10)30" Ry, (7)

so we have R.,, = 0 for i # k,l and 1 < 4,k,l < n. The same argument can be
done for prove the equation 4. O

Now, one can get the following proposition as an integrability condition for .J.

Proposition 3. Let J be an integrable structure on the tangent bundle of (M™+™ g)
which satisfies the proposition 1. If «, § are functions of E(u) = g(u,u) then

R, =0, 1<i<n, n+1<kl<n+m, 1<j<n+m, (8)

and

Ry =0, n+l<i<n+m, 1<kl<n, 1<j<n+m. 9)

Proof. We only prove the equation (8) and the proof of second one is similar. Let
1<i<nandn+1<Ek,l<n+m then by considering the integrability of J we
will have

0 = du'(Vi, Vi) = (1 — vV—=10)%wi (X))
+V=10[V=Ta(l = V=To)wi (X)) + 40° (1 — vV=10)*Ry],

The complex equation (10) results the following equations

(10)

wi(X))(1 —0? —ad) + o640° R, =0, and — 20wk (X)) + 60°RE,, = 0. (11)
Since, o # 0 and ad — 02 = 1, the above equations are the same. So,

—20

Toﬂ( 1)+ U0 R, = (12)

If we suppose that there exist mappings f, h: R — R such that

5(u) = Flg(u, ) = f(f 01

and

7(u) = hlg(u,u)) = h(g(u. ) —h(ﬂfuoz ?).

for u = >"""" 10 X; then from (12) we have d(ugs/)52 = 0. Letting

(Z)w = o(rffn(nen?)

i=1
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for u = Zﬂjm 10 X; and for some mapping o: R — R then

=1
8 5 . n+m .
aiés — %0 (Z (40 )2> .

=1

So, we have 0 = % = 20" + (240%)%0". If we consider s = 1,...,n + m the

result is that o’ = 0. So, the equation (12) gives us

R_’;'kl = 0, (13)

forl<i<mnandn+1<kl<n+mandl<j<n+m. O
Now, we can prove the main Theorem 2.

Proof of Theorem 2. The proof will be done in two parts; for n, m > 3 and the cases
that n,m < 3 and the way is that we prove the curvature operator is diagonalizable.
First note that when we say that for example R;kl =0forl <7< nand
n+1<kl<n+mandforall 1 <j<n+m,itmeans R(X;, Xi, X;, X;) =0.
When n,m > 3 then using the propositions 2, 3 the theorem will be easily proved.
If n = 2 and m = 3, using the propositions 2 and 3 we will get that
R(X3 A Xy) = f3aX3 N Xy,
R(X3 A X5) = f35X3 A Xs,
R(Xy AN X5) = fas Xa N X5,

for some functions f;; on M. On the other hand, the proposition 3 says that
R(XiANX;)=0, R(X2AX;)=0, Vi=3,4,5,

and so R(X; A X2) = f12X1 A X for some mapping f12 on M. Now, let n =m =2
then again using the proposition 3 and the same argument we will get

R(Xl A XQ) = f12X1 A XQ, R(Xg A X4) = f34X3 A )(47

for some functions fi2, f34 on M. If n =1 and m = 2, we get the same result and
finally if n = m = 1, then using the proposition 3 we get that the base manifold
must be flat and the theorem is proved. O

The following is an example of generalized structures.

Example 1. Let (M, g) be the Euclidean space (R%,(,-,)) and (z!,...,2%) be its
standard coordinate system and (z',... 2% y!, ... y*) be the coordinate system
on its tangent bundle. Then the almost complex structure J defined by

1(55) = +8iy“ j(a?/i) - _Qaii B a%" fori=1.2

and

T(50) =g a%’ j(a(zi) -2t aiyi’ fori=3.1

is an integrable structure.
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