

Communications in Mathematics 27 (2019) 1–12 DOI: 10.2478/cm-2019-0001 ©2019 D.H. Jin, J.W. Lee This is an open access article licensed under the CC BY-NC-ND 3.0

Lightlike hypersurfaces of an indefinite Kaehler manifold of a quasi-constant curvature

Dae Ho Jin, Jae Won Lee

Abstract. We study lightlike hypersurfaces M of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature subject to the condition that the characteristic vector field ζ of \overline{M} is tangent to M. First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface M of \overline{M} such that

(1) the screen distribution S(TM) is totally umbilical or

(2) M is screen conformal.

1 Introduction

In the classical theory of Riemannian geometry, Chen-Yano [2] introduced the notion of a Riemannian manifold of a quasi-constant curvature as a Riemannian manifold (\bar{M}, \bar{g}) endowed with a curvature tensor \bar{R} satisfying

$$\bar{R}(\bar{X},\bar{Y})\bar{Z} = f_1 \{ \bar{g}(\bar{Y},\bar{Z})\bar{X} - \bar{g}(\bar{X},\bar{Z})\bar{Y} \}
+ f_2 \{ \theta(\bar{Y})\theta(\bar{Z})\bar{X} - \theta(\bar{X})\theta(\bar{Z})\bar{Y} + \bar{g}(\bar{Y},\bar{Z})\theta(\bar{X})\zeta - \bar{g}(\bar{X},\bar{Z})\theta(\bar{Y})\zeta \}, \quad (1)$$

where f_1 and f_2 are smooth functions which are called the *curvature functions*, ζ is a vector field which is called the *characteristic vector field* of \overline{M} , and θ is a 1-form associated with ζ by $\theta(X) = \overline{g}(X, \zeta)$. In the followings, we denote by $\overline{X}, \overline{Y}$ and \overline{Z} the smooth vector fields on \overline{M} . If $f_2 = 0$, then \overline{M} is reduced to a space of constant curvature.

²⁰¹⁰ MSC: 53C25, 53C40, 53C50

Key words: Totally umbilical, Screen conformal, quasi-constant curvature

^{*} Corresponding author

Affiliation:

Dae Ho Jin – Department of Mathematics Dongguk University Kyongju 780-714, Korea

E-mail: jindh@dongguk.ac.kr

Jae Won Lee (Corresponding author) – Department of Mathematics Education and RINS, Gyeongsang National University of Education, Jinju 52828, Republic of Korea

E-mail: leejaew@gnu.ac.kr

In this paper, we study lightlike hypersurfaces M of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature subject such that ζ is tangent to M. After then, under the condition that ζ is tangent to M, we investigate lightlike hypersurfaces M of \overline{M} such that

- (1) the screen distribution S(TM) of M is totally umbilical in M or
- (2) M is screen conformal.

2 Preliminaries

Let (M, g) be a lightlike hypersurface, with a screen distribution S(TM), of a semi-Riemannian manifold \overline{M} . Denote by F(M) the algebra of smooth functions on Mand by $\Gamma(E)$ the F(M) module of smooth sections of a vector bundle E. Also denote by $(8)_i$ the *i*-th equation of (8). We use same notations for any others. We follow Duggal-Bejancu [3] for notations and structure equations used in this article. It is well known that

$$TM = TM^{\perp} \oplus_{\text{orth}} S(TM),$$

where \oplus_{orth} denotes the orthogonal direct sum. For any null section ξ of TM^{\perp} on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section N of a unique lightlike vector bundle $\operatorname{tr}(TM)$ of rank 1 in the orthogonal complement $S(TM)^{\perp}$ of S(TM) in \overline{M} satisfying

$$\bar{g}(\xi, N) = 1, \quad \bar{g}(N, N) = \bar{g}(N, X) = 0, \quad \forall X \in \Gamma(S(TM)).$$

Then the tangent bundle $T\overline{M}$ of \overline{M} is decomposed as follow

$$T\overline{M} = TM \oplus \operatorname{tr}(TM) = \{TM^{\perp} \oplus \operatorname{tr}(TM)\} \oplus_{\operatorname{orth}} S(TM).$$

We call tr(TM) and N the transversal vector bundle and the null transversal vector field of M with respect to S(TM), respectively.

Let ∇ be the Levi-Civita connection of M and P the projection morphism of TM on S(TM). In the sequel, denote by X, Y, Z and W the smooth vector fields on M, unless otherwise specified. The local Gauss and Weingartan formulae for M and S(TM) are given respectively by

$$\bar{\nabla}_X Y = \nabla_X Y + B(X, Y)N,\tag{2}$$

$$\bar{\nabla}_X N = -A_N X + \tau(X) N, \tag{3}$$

$$\nabla_X PY = \nabla_X^* PY + C(X, PY)\xi,\tag{4}$$

$$\nabla_X \xi = -A_{\xi}^* X - \tau(X)\xi, \tag{5}$$

where ∇ and ∇^* are the liner connections on TM and S(TM), respectively, B and C are the local second fundamental forms on TM and S(TM), respectively, A_N and $A_{\mathcal{E}}^*$ are the shape operators and τ is a 1-form on TM.

Since $\overline{\nabla}$ is torsion-free, ∇ is also torsion-free and B is symmetric. As $B(X,Y) = \overline{g}(\overline{\nabla}_X Y, \xi)$, B is independent of the choice of S(TM) and

$$B(X,\xi) = 0. \tag{6}$$

The induced connection ∇ of M is not metric and satisfies

$$(\nabla_X g)(Y, Z) = B(X, Y)\eta(Z) + B(X, Z)\eta(Y), \tag{7}$$

where η is a 1-form such that $\eta(X) = \bar{q}(X, N)$. But ∇^* is metric. The above local second fundamental forms are related to their shape operators by

$$B(X,Y) = g(A_{\xi}^*X,Y), \qquad \bar{g}(A_{\xi}^*X,N) = 0,$$
 (8)

$$C(X, PY) = g(A_N X, PY), \qquad \bar{g}(A_N X, N) = 0.$$
(9)

From (8), A_{ξ}^* is S(TM)-valued and self-adjoint on TM such that

$$A^*_{\xi}\xi = 0. \tag{10}$$

Denote by \overline{R}, R and R^* the curvature tensors of the connections $\overline{\nabla}, \nabla$ and ∇^* , respectively. Using (2)–(5), we obtain the Gauss-Codazzi equations:

$$\bar{R}(X,Y)Z = R(X,Y)Z + B(X,Z)A_NY - B(Y,Z)A_NX + \{ (\nabla_X B)(Y,Z) - (\nabla_Y B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z) \} N, \quad (11)$$

$$R(X,Y)N = -\nabla_X (A_N Y) + \nabla_Y (A_N X) + A_N [X,Y] + \tau(X)A_N Y - \tau(Y)A_N X + \{B(Y,A_N X) - B(X,A_N Y) + 2d\tau(X,Y)\}N,$$
(12)

$$R(X,Y)PZ = R^{*}(X,Y)PZ + C(X,PZ)A_{\xi}^{*}Y - C(Y,PZ)A_{\xi}^{*}X + \{(\nabla_{X}C)(Y,PZ) - (\nabla_{Y}C)(X,PZ) + \tau(Y)C(X,PZ) - \tau(X)C(Y,PZ)\}\xi,$$
(13)

$$R(X,Y)\xi = -\nabla_X^*(A_\xi^*Y) + \nabla_Y^*(A_\xi^*X) + A_\xi^*[X,Y] - \tau(X)A_\xi^*Y + \tau(Y)A_\xi^*X + \{C(Y,A_\xi^*X) - C(X,A_\xi^*Y) - 2d\tau(X,Y)\}\xi.$$
 (14)

In the case R = 0, we say that M is flat. The Ricci tensor, denoted by $\overline{\text{Ric}}$, of \overline{M} is defined by

$$\overline{\operatorname{Ric}}(\bar{X}, \bar{Y}) = \operatorname{trace}\{\bar{Z} \to \bar{R}(\bar{X}, \bar{Z})\bar{Y}\}.$$

Let dim $\overline{M} = n + 2$. Locally, $\overline{\text{Ric}}$ is given by

$$\overline{\operatorname{Ric}}(\bar{X},\bar{Y}) = \sum_{i=1}^{n+2} \epsilon_i \bar{g} \big(\bar{R}(E_i,\bar{X})\bar{Y},E_i \big),$$

where $\{E_1, \ldots, E_{n+2}\}$ is an orthonormal basis of $T\overline{M}$. Let $R^{(0,2)}$ denote the induced tensor of type (0,2) on M given by

$$R^{(0,2)}(X,Y) = \operatorname{trace}\{Z \to R(X,Z)Y\}.$$
(15)

Due to [4], using (8), (9) and the Gauss equation (11), we get

$$R^{(0,2)}(X,Y) = \overline{\text{Ric}}(X,Y) + B(X,Y) \operatorname{tr} A_N - g(A_N X, A_{\xi}^* Y) - \bar{g}(\bar{R}(\xi,Y)X,N).$$
(16)

Using the transversal part of (12) and the first Bianchi's identity, we obtain

$$R^{(0,2)}(X,Y) - R^{(0,2)}(Y,X) = 2d\tau(X,Y).$$

This shows that $R^{(0,2)}$ is not symmetric. A tensor field $R^{(0,2)}$ of M, given by (15), is called the *induced Ricci tensor*, denoted by Ric, of M if it is symmetric. In this case, M is said to be *Ricci flat* if Ric = 0. M is called an *Einstein manifold* if there exist a smooth function κ such that

$$\operatorname{Ric} = \kappa g. \tag{17}$$

Let $\nabla_X^{\perp} N = \pi_1(\bar{\nabla}_X N)$, where π_1 is the projection morphism of $T\bar{M}$ on $\operatorname{tr}(TM)$. Then ∇^{\perp} is a linear connection on the transversal vector bundle $\operatorname{tr}(TM)$ of M. We say that ∇^{\perp} is the transversal connection of M. We define the curvature tensor R^{\perp} on $\operatorname{tr}(TM)$ by

$$R^{\perp}(X,Y)N = \nabla_X^{\perp}\nabla_Y^{\perp}N - \nabla_Y^{\perp}\nabla_X^{\perp}N - \nabla_{[X,Y]}^{\perp}N.$$

The transversal connection ∇^{\perp} of M is said to be flat [5] if $R^{\perp} = 0$.

We quote the following result due to Jin [5].

Theorem 1. Let M be a lightlike hypersurface of a semi-Riemannian manifold \overline{M} . The following assertions are equivalent:

- (1) The transversal connection of M is flat, i.e., $R^{\perp} = 0$.
- (2) The 1-form τ is closed, i.e., $d\tau = 0$, on any neighborhood $\mathcal{U} \subset M$.
- (3) The Ricci type tensor $R^{(0,2)}$ is an induced Ricci tensor of M.

Remark 1. Due to [3, Section 4.2–4.3], we shown the following results:

- (1) $d\tau$ is independent to the choice of the section $\xi \in \Gamma(TM^{\perp})$, that is, suppose τ and $\bar{\tau}$ are 1-forms with respect to the sections ξ and $\bar{\xi}$, respectively, then $d\tau = d\bar{\tau}$.
- (2) If $d\tau = 0$, then we can take a 1-form τ such that $\tau = 0$.

3 Quasi-constant curvature

Let $\overline{M} = (\overline{M}, J, \overline{g})$ be a real 2*m*-dimensional indefinite Kaeler manifold, where \overline{g} is a semi-Riemannian metric of index q = 2v, 0 < v < m, and J is an almost complex metric structure on \overline{M} satisfying

$$J^2 = -I, \qquad \bar{g}(J\bar{X}, J\bar{Y}) = \bar{g}(\bar{X}, \bar{Y}), \qquad (\bar{\nabla}_{\bar{X}}J)\bar{Y} = 0.$$
(18)

Let (M, g) be a lightlike hypersurface of an indefinite Kaeler manifold M, where g is a degenerate metric on M induced by \overline{g} . Due to [3, Section 6.2], we show that $J(TM^{\perp}) \oplus J(\operatorname{tr}(TM))$ is a subbundle of S(TM) of rank 2. There exist two non-degenerate almost complex distributions D_o and D on M with respect to J, i.e., $J(D_o) = D_o$ and J(D) = D, such that

$$S(TM) = \left\{ J(TM^{\perp}) \oplus J(\operatorname{tr}(TM)) \right\} \oplus_{\operatorname{orth}} D_o,$$
$$D = \left\{ TM^{\perp} \oplus_{\operatorname{orth}} J(TM^{\perp}) \right\} \oplus_{\operatorname{orth}} D_o.$$

In this case, TM is decomposed as follow

$$TM = D \oplus J(\operatorname{tr}(TM)). \tag{19}$$

Consider lightlike vector fields U and V, and their 1-forms u and v such that

$$U = -JN, \quad V = -J\xi, \quad u(X) = g(X, V), \quad v(X) = g(X, U).$$
 (20)

Denote by S the projection morphism of TM on D with respect to (19). Then, for any vector field X on M, JX is expressed as follow

$$JX = FX + u(X)N, (21)$$

where F is a tensor field of type (1, 1) globally defined on M by $F = J \circ S$. Applying $\overline{\nabla}_X$ to $(20)_{1,2}$ and using (2)–(5) and (18)–(21), we have

$$B(X,U) = C(X,V),$$
(22)

$$\nabla_X U = F(A_N X) + \tau(X)U, \tag{23}$$

$$\nabla_X V = F(A_{\mathcal{E}}^* X) - \tau(X)V.$$
(24)

From now and in the sequel, let \overline{M} be an indefinite Kaeler manifold of a quasiconstant curvature. We shall assume that the characteristic vector field ζ of \overline{M} is tangent to M and let $\alpha = \theta(N)$.

Theorem 2. Let M be a lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. Then the curvature functions f_1 and f_2 , given by (1), are satisfied

$$f_1 = 0, \qquad f_2 \theta(V) = 0, \qquad \alpha f_2 = 0.$$

Proof. Comparing the tangent and transversal components of the two forms (1) and (11) of the curvature tensor \bar{R} of \bar{M} , we get

$$R(X,Y)Z = B(Y,Z)A_{N}X - B(X,Z)A_{N}Y + f_{1}\{\bar{g}(Y,Z)X - \bar{g}(X,Z)Y\} + f_{2}\{[\theta(Y)X - \theta(X)Y]\theta(Z) + [g(Y,Z)\theta(X) - g(X,Z)\theta(Y)]\zeta\},$$
(25)

$$(\nabla_{X}B)(Y,Z) - (\nabla_{Y}B)(X,Z) + \tau(X)B(Y,Z) - \tau(Y)B(X,Z) = 0.$$
(26)

Taking the product with N to (11) and using $(9)_2$ and (13), we get

$$(\nabla_X C)(Y, PZ) - (\nabla_Y C)(X, PZ) - \tau(X)C(Y, PZ) + \tau(Y)C(X, PZ) = f_1\{\eta(X)g(Y, PZ) - \eta(Y)g(X, PZ)\} + f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ) + \alpha f_2\{\theta(X)g(Y, PZ) - \theta(Y)g(X, PZ)\}.$$
(27)

Applying ∇_Y to (22) and using (8), (9) and (22)–(24), we have

$$(\nabla_X B)(Y,U) = (\nabla_X C)(Y,V) - 2\tau(X)C(Y,V) - g(A_\xi^* X, F(A_N Y)) - g(A_\xi^* Y, F(A_N X)).$$

Substituting this equation into (26) with Z = U, we get

$$(\nabla_X C)(Y,V) - (\nabla_Y C)(X,V) - \tau(X)C(Y,V) + \tau(Y)C(X,V) = 0.$$

Comparing this equation and (27) such that PZ = V, we obtain

$$f_1\{\eta(X)u(Y) - \eta(Y)u(X)\} + f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(V) + f_2\alpha\{\theta(X)u(Y) - \theta(Y)u(X)\} = 0.$$
(28)

Replacing Y by ξ to this equation and using the fact that $\theta(\xi) = 0$, we have

$$f_1 u(X) + f_2 \theta(X) \theta(V) = 0.$$

Taking X = V and X = U to this equation by turns, we get

$$f_2\theta(V) = 0, \qquad f_1 + f_2\theta(U)\theta(V) = 0.$$

From these two equations, we get $f_1 = 0$. Taking $Y = \zeta$ to (28) and using $f_1 = 0$ and $f_2\theta(V) = 0$, we have $\alpha f_2 u(X) = 0$. It follows that $\alpha f_2 = 0$.

4 Totally umbilical screen distribution

Definition 1. A screen distribution S(TM) is said to be totally umbilical [3], [6] in M if there exists a smooth function γ such that $A_N X = \gamma P X$, i.e.,

$$C(X, PY) = \gamma g(X, Y). \tag{29}$$

In case $\gamma = 0$, we say that S(TM) is totally geodesic in M.

Theorem 3. Let M be a lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. If S(TM) is totally umbilical, then

- (1) S(TM) is totally geodesic and parallel distribution,
- (2) $f_1 = f_2 = 0$, i.e., \overline{M} is flat, and M is also flat,
- (3) the transversal connection of M is flat, and

(4) *M* is locally a product manifold $C_{\xi} \times M^*$, where C_{ξ} is a null geodesic tangent to TM^{\perp} , and M^* is a semi-Euclidean leaf of S(TM).

Proof. Applying ∇_X to $C(Y, PZ) = \gamma g(Y, PZ)$ and using (7), we have

$$(\nabla_X C)(Y, PZ) = (X\gamma)g(Y, PZ) + \gamma B(X, PZ)\eta(Y).$$

Substituting this and (29) into (27) such that $f_1 = f_2 \alpha = 0$, we obtain

$$\{X\gamma - \gamma\tau(X)\}g(Y, PZ) - \{Y\gamma - \gamma\tau(Y)\}g(X, PZ) + \gamma\{B(X, PZ)\eta(Y) - B(Y, PZ)\eta(X)\} = f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ).$$

Replacing Y by ξ to this and using (6) and the fact that $\theta(\xi) = 0$, we get

$$\gamma B(X,Y) = \left\{ \xi \gamma - \gamma \tau(\xi) \right\} g(X,Y) - f_2 \theta(X) \theta(Y).$$
(30)

Taking Y = U to this equation and using (20), (22) and (29), we have

$$\gamma^2 u(X) = \left\{ \xi \gamma - \gamma \tau(\xi) \right\} v(X) - f_2 \theta(X) \theta(U).$$

Replacing X by V to this and using the fact that $f_2\theta(V) = 0$, we obtain

$$\xi\gamma - \gamma\tau(\xi) = 0, \qquad \gamma^2 u(X) = -f_2 \theta(X) \theta(U).$$
 (31)

Assume that $f_2 \neq 0$. Taking $X = \zeta$ to $(31)_2$, we have

$$\gamma^2 \theta(V) = -f_2 \theta(U).$$

Taking the product with f_2 to this and using $f_2\theta(V) = 0$, we get $f_2\theta(U) = 0$. Using this, from (31)₂, we see that $\gamma = 0$. Taking $X = Y = \zeta$ to (30), we have $f_2 = 0$. It is a contradiction. Thus $f_2 = 0$. We obtain $\gamma = 0$ by (31)₂.

- (1) As $\gamma = 0$, S(TM) is totally geodesic. Therefore, S(TM) is a parallel distribution by (4) and the fact that C = 0.
- (2) As $f_1 = f_2 = 0$, \overline{M} is flat. As $f_1 = f_2 = A_N = 0$, from (27), we see that R = 0. Thus M is also flat.
- (3) As R = 0, from (15), M is Ricci flat and $d\tau = 0$ by Theorem 2.1. Thus the transversal connection of M is flat.
- (4) From (5) and (10), we see that TM^{\perp} is an auto-parallel distribution. As S(TM) is a parallel distribution and $TM = TM^{\perp} \oplus S(TM)$, by the decomposition theorem [7], M is locally a product manifold $C_{\xi} \times M^*$, where C_{ξ} is a null geodesic tangent to TM^{\perp} and M^* is a leaf of S(TM). As R = 0 and C = 0, from (13) we see that $R^* = 0$. Thus M^* is semi-Euclidean.

Denote by $\mathcal{G} = J(TM^{\perp}) \oplus_{\text{orth}} D_o$. Then \mathcal{G} is a complementary vector subbundle to $J(\operatorname{tr}(TM))$ in S(TM) and we have the decomposition:

$$S(TM) = J(\operatorname{tr}(TM)) \oplus \mathcal{G}.$$

Theorem 4. Let M be a lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that ζ is tangent to M. If S(TM) is totally umbilical, then M is locally a product manifold $C_{\xi} \times C_U \times M^{\sharp}$, where C_{ξ} and C_U are null geodesics tangent to TM^{\perp} and $J(\operatorname{tr}(TM))$ respectively and M^{\sharp} is a semi-Euclidean leaf of \mathcal{G} .

Proof. By Theorem 4.1, we show that $d\tau = 0$ and $A_N = C = 0$. As $d\tau = 0$, we can take $\tau = 0$ by Remark 2.2, without loss generality. As C = 0, from (22) we see that B(X, U) = 0. Also, since $A_N = 0$, from (23) we have

$$\nabla_X U = 0. \tag{32}$$

Thus J(tr(TM)) is a parallel distribution on M. From (5) and (10), TM^{\perp} is also a parallel distribution on M. Using (32), we derive

$$g(\nabla_X Y, U) = 0, \quad g(\nabla_X V, U) = 0, \quad \forall X \in \Gamma(\mathcal{G}), \forall Y \in \Gamma(D_o).$$

Thus \mathcal{G} is also a parallel distribution. By the decomposition theorem [7], M is locally a product manifold $\mathcal{C}_{\xi} \times \mathcal{C}_U \times M^{\sharp}$, where \mathcal{C}_{ξ} and \mathcal{C}_U are null geodesics tangent to TM^{\perp} and $J(\operatorname{tr}(TM))$ respectively and M^{\sharp} is a leaf of \mathcal{G} . Let π_2 be the projection morphism of S(TM) on \mathcal{G} . Then $\pi_2 \circ R^*$ is the curvature tensor of \mathcal{G} . As R = 0 and C = 0, we have $R^* = 0$. Therefore, $\pi_2 \circ R^* = 0$ and M^{\sharp} is a semi-Euclidean space.

5 Screen conformal lightlike hypersurfaces

Definition 2. A lightlike hypersurface M is called screen conformal [1], [4] if there exists a non-vanishing smooth function φ such that $A_N = \varphi A_{\varepsilon}^*$, i.e.,

$$C(X, PY) = \varphi B(X, Y).$$

If φ is a non-zero constant, then we say that M is screen homothetic.

Remark 2. If M is screen conformal, then, using (1) and the fact $f_1 = 0$,

$$\bar{g}(R(\xi, X)Y, N) = f_2\theta(X)\theta(Y)$$

and

$$\overline{\operatorname{Ric}}(X,Y) = f_2\{g(X,Y) + n\theta(X)\theta(Y)\}$$

Thus the form (16) of the Ricci type tensor $R^{(0,2)}$ is reduced to

$$R^{(0,2)}(X,Y) = f_2 \{ g(X,Y) + (n-1)\theta(X)\theta(Y) \} + B(X,Y) \operatorname{tr} A_N - \varphi g(A_{\varepsilon}^*X, A_{\varepsilon}^*Y).$$
(33)

Thus $R^{(0,2)}$ is symmetric. Thus $d\tau = 0$ and the transversal connection is flat by Theorem 2.1. As $d\tau = 0$, we can take $\tau = 0$ by Remark 2.2.

Proposition 1. Let M be a lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. If M is screen conformal, then the curvature function f_2 is satisfied $f_2\theta(U) = 0$.

Proof. Applying ∇_X to $C(Y, PZ) = \varphi B(Y, PZ)$, we have

$$(\nabla_X C)(Y, PZ) = (X\varphi)B(Y, PZ) + \varphi(\nabla_X B)(Y, PZ).$$

Substituting this equation into (26) and using (25), we obtain

$$(X\varphi)B(Y,PZ) - (Y\varphi)B(X,PZ) = f_2\{\theta(Y)\eta(X) - \theta(X)\eta(Y)\}\theta(PZ).$$
(34)

Taking $Y = \xi$ to (34) and using (6) and the fact that $\theta(\xi) = 0$, we get

$$(\xi\varphi)B(X,Y) = f_2\theta(X)\theta(Y). \tag{35}$$

Replacing Y by V to (35) and using the fact that $f_2\theta(V) = 0$, we have

$$(\xi\varphi)B(X,V) = 0.$$

Taking Y = U to (35) and using the fact $B(X,U) = C(X,V) = \varphi B(X,V)$, we obtain $f_2\theta(X)\theta(U) = 0$. Replacing X by ζ , we have $f_2\theta(U) = 0$.

Corollary 1. Let M be a lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. If M is screen homothetic, then $f_1 = f_2 = 0$, i.e., \overline{M} is flat.

Proof. As M is screen homothetic, we get $\xi \varphi = 0$. Taking $X = Y = \zeta$ to (35) such that $\xi \varphi = 0$, we obtain $f_2 = 0$. As $f_1 = f_2 = 0$, \overline{M} is flat.

As $\{U, V\}$ is a null basis of $J(TM^{\perp}) \oplus J(\operatorname{tr}(TM))$, let

$$\mu = U - \varphi V, \qquad \nu = U + \varphi V,$$

then $\{\mu, \nu\}$ is an orthogonal basis of $J(TM^{\perp}) \oplus J(tr(TM))$ and satisfies

$$B(X,\mu) = 0, \qquad A_{\xi}^*\mu = 0, \tag{36}$$

due to (22). Thus μ is an eigenvector field of A_{ξ}^* on S(TM) corresponding to the eigenvalue 0. As $f_2\theta(V) = 0$ and $f_2\theta(U) = 0$, we also have

$$f_2\theta(\mu) = 0, \qquad f_2\theta(\nu) = 0.$$
 (37)

Let $\mathcal{H}' = \text{Span}\{\mu\}$. Then $\mathcal{H} = D_o \oplus_{\text{orth}} \text{Span}\{\nu\}$ is a complementary vector subbundle to \mathcal{H}' in S(TM) and we have the following decomposition

$$S(TM) = \mathcal{H}' \oplus_{\text{orth}} \mathcal{H}.$$
(38)

Theorem 5. Let M be a screen homothetic lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that ζ is tangent to M. Then M is locally a product manifold $C_{\xi} \times C_{\mu} \times M^{\natural}$, where C_{ξ} and C_{μ} are null and non-null geodesics tangent to TM^{\perp} and \mathcal{H}' , respectively and M^{\natural} is a leaf of a non-degenerate distribution \mathcal{H} . *Proof.* In general, from (23), (24) and the fact that F is linear, we have

$$\nabla_X \mu = -(X\varphi)V.$$

Therefore, if M is screen homothetic, then we have

$$\nabla_X \mu = 0. \tag{39}$$

This implies that \mathcal{H}' is a parallel distribution on M. From (5) and (10), TM^{\perp} is also a parallel distribution on M. Using (39), we derive

$$g(\nabla_X Y, \mu) = g(\nabla_X Y, \mu) = -g(Y, \nabla_X \mu) = 0,$$

$$g(\nabla_X \nu, \mu) = -g(\nu, \nabla_X \mu) = X\varphi = 0,$$

for $X \in \Gamma(\mathcal{H})$ and $Y \in \Gamma(D_o)$. Thus \mathcal{H} is also a parallel distribution. By the decomposition theorem of de Rham [7], M is locally a product manifold $\mathcal{C}_{\xi} \times \mathcal{C}_{\mu} \times M^{\natural}$, where \mathcal{C}_{ξ} and \mathcal{C}_{μ} are null and non-null geodesics tangent to TM^{\perp} and \mathcal{H}' respectively and M^{\natural} is a leaf of \mathcal{H} .

Theorem 6. Let M be an Einstein lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of a quasi-constant curvature such that ζ is tangent to M. If M is screen conformal, then the function κ , given by (17), satisfies $\kappa = f_2$. If M is screen homothetic, then it is Ricci flat, i.e., $\kappa = 0$.

Proof. Since M is Einstein manifold, (33) is reduced to

$$g(A_{\xi}^*X, A_{\xi}^*Y) - \ell g(A_{\xi}^*X, Y) - \varphi^{-1} \{ (\kappa - f_2)g(X, Y) - f_2(n-1)\theta(X)\theta(Y) \} = 0,$$
(40)

where $\ell = \operatorname{tr} A_{\xi}^*$ is the trace of A_{ξ}^* . Put $X = Y = \mu$ in (40) and using (36)₂ and (37)₁, we have $\kappa = f_2$. If M is screen homothetic, then M is Ricci flat as $f_2 = 0$ by Corollary 5.3.

Theorem 7. Let M be a screen homothetic Einstein lightlike hypersurface of an indefinite Kaehler manifold \overline{M} of quasi-constant curvature such that q = 2 and ζ is tangent to M. Then M is locally a product manifold

$$M = \mathcal{C}_{\xi} \times \mathcal{C}_{\mu} \times M^{\natural} \quad \text{or} \quad M = \mathcal{C}_{\xi} \times \mathcal{C}_{\mu} \times \mathcal{C}_{\ell} \times M^{\sharp},$$

where C_{ξ} , C_{μ} and C_{ℓ} are null geodesic, timelike geodesic and spacelike geodesic respectively, and M^{\sharp} and M^{\sharp} are Euclidean spaces.

Proof. In this proof, we set $\mu = \frac{1}{\sqrt{2\epsilon\varphi}} \{U - \varphi V\}$ where $\epsilon = \operatorname{sgn} \varphi$. Then μ is a unit timelike eigenvector of A_{ξ}^* corresponding to the eigenvalue 0 by (36) and \mathcal{H} is a parallel Riemannian distribution by Theorem 5.4 due to q = 2. Since $g(A_{\xi}^*X, N) = 0$ and $g(A_{\xi}^*X, \mu) = 0$, A_{ξ}^* is \mathcal{H} -valued real self-adjoint operator. Thus A_{ξ}^* have (n-1) real orthonormal eigenvectors in \mathcal{H} and is diagonalizable. Consider a frame field of eigenvectors $\{\mu, e_1, \ldots, e_{n-1}\}$ of A_{ξ}^* on S(TM) such that $\{e_1, \ldots, e_{n-1}\}$ is an orthonormal frame field of \mathcal{H} . Then $A_{\xi}^*e_i = \lambda_i e_i$ $(1 \le i \le n-1)$. Put $X = Y = e_i$ in (40) such that $\kappa = f_2 = 0$, we show that each eigenvalue λ_i of A_{ε}^* is a solution of

$$x(x-\ell) = 0. \tag{41}$$

The equation (41) has at most two distinct real solutions 0 and ℓ on \mathcal{U} . Assume that there exists $p \in \{1, \ldots, n-1\}$ such that $\lambda_1 = \cdots = \lambda_p = 0$ and $\lambda_{p+1} = \cdots = \lambda_{n-1} = \ell$, by renumbering if necessary. Then we have

$$\ell = \operatorname{tr} A_{\xi}^* = (n - p - 1)\ell.$$

If $\ell = 0$, then $A_{\xi}^* = 0$ and also $A_N = 0$. Thus M and S(TM) are totally geodesic. From (11) and (13), we have $R^*(X,Y)Z = \overline{R}(X,Y)Z = 0$ for all $X, Y, Z \in \Gamma(S(TM))$. Thus M is locally a product manifold $\mathcal{C}_{\xi} \times \mathcal{C}_{\mu} \times M^{\natural}$, where \mathcal{C}_{ξ} and \mathcal{C}_{μ} are null and timelike geodesic tangent to TM^{\perp} and \mathcal{H}' respectively and M^{\natural} is a leaf of \mathcal{H} , where the leaf $M^*(=\mathcal{C}_{\mu} \times M^{\natural})$ of S(TM) is a Minkowski space. Since $\nabla_X \mu = 0$ and

$$g(\nabla_X^* Y, \mu) = -g(Y, \nabla_X^* \mu) = -g(Y, \nabla_X \mu) = 0,$$

for all $X, Y, Z \in \Gamma(S(TM))$, we have $\nabla_X^* Y \in \Gamma(\mathcal{H})$ and $R^*(X, Y)Z \in \Gamma(\mathcal{H})$. This imply $\nabla_X^* Y = Q(\nabla_X^* Y)$, i.e., M^{\natural} is totally geodesic and $Q(R^*(X, Y)Z) = R^*(X, Y)Z = 0$, where Q is a projection morphism of S(TM) on \mathcal{H} with respect to (38). Thus M^{\natural} is a Euclidean space.

If $\ell \neq 0$, then p = n - 2. Consider the following two distributions on \mathcal{H} ;

$$\Gamma(E_0) = \{ X \in \Gamma(\mathcal{H}) | A_{\xi}^* X = 0 \},$$

$$\Gamma(E_{\ell}) = \{ X \in \Gamma(\mathcal{H}) | A_{\xi}^* X = \ell X \}.$$

Then we know that the distributions E_0 and E_ℓ are mutually orthogonal nondegenerate subbundle of \mathcal{H} , of rank (n-2) and 1 respectively, satisfy $\mathcal{H} = E_0 \oplus_{\text{orth}} E_\ell$. From (40), we get $A_{\mathcal{E}}^*(A_{\mathcal{E}}^* - \ell Q) = 0$. Using this equation, we have

Im
$$A_{\mathcal{E}}^* \subset \Gamma(E_{\ell})$$
 and Im $(A_{\mathcal{E}}^* - \ell Q) \subset \Gamma(E_0)$.

For any $X, Y \in \Gamma(E_0)$ and $Z \in \Gamma(\mathcal{H})$, we get

$$(\nabla_X B)(Y,Z) = -g(A_{\mathcal{E}}^* \nabla_X Y,Z).$$

Using this and the fact that

$$(\nabla_X B)(Y, Z) = (\nabla_Y B)(X, Z),$$

we have $g(A_{\xi}^*[X,Y],Z) = 0$. If we take $Z \in \Gamma(E_{\ell})$, since $\operatorname{Im} A_{\xi}^* \subset \Gamma(E_{\ell})$ and E_{ℓ} is non-degenerate, we have $A_{\xi}^*[X,Y] = 0$. Thus $[X,Y] \in \Gamma(E_0)$ and E_0 is integrable. From (11) and (13), we have

$$R^*(X,Y)Z = \bar{R}(X,Y)Z = 0$$

for all $X, Y, Z \in \Gamma(E_0)$.

Since $g(\nabla_X^* Y, \mu) = 0$ and $g(\nabla_X^* Y, e_{n-1}) = -g(Y, \nabla_X e_{n-1}) = 0$ for all $X, Y \in \Gamma(E_0)$ because $\nabla_X W \in \Gamma(E_\ell)$ for $X \in \Gamma(E_0)$ and $W \in \Gamma(E_\ell)$. In fact, from (26) such that $\tau = 0$, we get

$$g\Big(\big\{(A_{\xi}^* - \ell Q)\nabla_X W - A_{\xi}^* \nabla_W X\big\}, Z\Big) = 0,$$

for all $X \in \Gamma(E_0), W \in \Gamma(E_\ell)$ and $Z \in \Gamma(\mathcal{H})$. Using the fact that \mathcal{H} is nondegenerate distribution, we have

$$(A_{\xi}^* - \ell Q)\nabla_X W = A_{\xi}^* \nabla_W X.$$

Since the left term of this equation is in $\Gamma(E_0)$ and the right term is in $\Gamma(E_\ell)$ and $E_0 \cap E_\ell = \{0\}$, we have

$$(A_{\xi}^* - \ell Q)\nabla_X W = 0$$
 and $A_{\xi}^* \nabla_W X = 0.$

These imply that $\nabla_X W \in \Gamma(E_\ell)$. Thus $\nabla_X^* Y = \pi_3 \nabla_X^* Y$ for all $X, Y \in \Gamma(E_0)$, where π_3 is the projection morphism of S(TM) on E_0 and $\pi_3 \nabla^*$ is the induced connection on E_0 . These imply that the leaf M^{\sharp} of E_0 is totally geodesic. Thus E_0 is a parallel distribution and M is locally a product manifold $\mathcal{C}_{\xi} \times M^* (= \mathcal{C}_{\mu} \times \mathcal{C}_{\ell} \times M^{\sharp})$, where \mathcal{C}_{ℓ} is a spacelike curve and M^{\sharp} is an (n-2)-dimensional Riemannian manifold satisfies $A_{\xi}^* = 0$. As

$$g(R^*(X,Y)Z,\mu) = 0$$
 and $g(R^*(X,Y)Z,e_{n-1}) = 0$

for all $X, Y, Z \in \Gamma(E_0)$, we have

$$R^*(X,Y)Z = \pi_3 R^*(X,Y)Z \in \Gamma(E_0)$$

and the curvature tensor $\pi_3 R^*$ of E_0 is flat. Thus M^{\sharp} is a Euclidean space.

References

- C. Atindogbe, K.L. Duggal: Conformal screen on lightlike hypersurfaces. International J. of Pure and Applied Math. 11 (4) (2004) 421–442.
- [2] B.Y. Chen, K. Yano: Hypersurfaces of a conformally flat space. Tensor (NS) 26 (1972) 318–322.
- [3] K.L. Duggal, A. Bejancu: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Acad. Publishers, Dordrecht (1996).
- [4] K.L. Duggal, D.H. Jin: A classification of Einstein lightlike hypersurfaces of a Lorentzian space form. J. Geom. Phys. 60 (2010) 1881–1889.
- [5] D.H. Jin: Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. of Pure and Applied Math. 41 (4) (2010) 569–581.
- [6] D.H. Jin: Lightlike real hypersurfaces with totally umbilical screen distributions. Commun. Korean Math. Soc. 25 (3) (2010) 443–450.
- [7] G. de Rham: Sur la réductibilité d'un espace de Riemannian. Comm. Math. Helv. 26 (1952) 328–344.

Received: 26 July, 2017 Accepted for publication: 22 March, 2019 Communicated by: Haizhong Li