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Hilbert series of the Grassmannian and k-Narayana
numbers

Lukas Braun

Abstract. We compute the Hilbert series of the complex Grassmannian us-
ing invariant theoretic methods. This is made possible by showing that
the denominator of the q-Hilbert series is a Vandermonde-like determinant.
We show that the h-polynomial of the Grassmannian coincides with the
k-Narayana polynomial. A simplified formula for the h-polynomial of Schu-
bert varieties is given. Finally, we use a generalized hypergeometric Euler
transform to find simplified formulae for the k-Narayana numbers, i.e. the
h-polynomial of the Grassmannian.

Introduction
Consider the Grassmannian X = Gr(k, n) of k-dimensional vector subspaces of
a given n-dimensional complex vector space and its homogeneous coordinate ring
R = ⊕jRj defined by the Plücker embedding. Recall that the associated Hilbert
series is

H(X) =
∑
j≥0

dim(Rj)t
j .

The Hilbert function j 7→ dim(Rj) is, up to finitely many values, a polynomial in j,
the Hilbert polynomial of Gr(k, n). Moreover, the Hilbert series is represented as
a rational function in j with a denominator polynomial of degree k(k(n− k) + 1).
The numerator is then called the h-polynomial of Gr(k, n). Various approaches
leading to explicit formulae for the Hilbert polynomial of Gr(k, n) can be found for
example in [2], [5], [6], [7], [8], [10], [15], [18], [20].

Mukai used an invariant theoretic approach in [15] to compute the Hilbert
polynomial of the Grassmannian in the special case k = 2. The aim of the present
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paper is to generalize this invariant theoretic method to arbitrary k. In fact,
Mukai’s Hilbert polynomial for Gr(2, n) is the special case k = 2, r = n− 1 of the
order polynomial

Nk(r, j) :=

k−1∏
i=0

(
r + i+ j − 1

i+ j

)(
r + i− 1

i

)−1
,

which is a polynomial in j, appearing in Sulanke’s papers [21], [22]. In these
papers, he generalized the (two-dimensional) Narayana numbers to the k-Narayana
numbers

Nk(r, j) :=

j∑
l=0

(−1)j−l
(
kr + 1

j − l

)
Nk(r + 1, l)

for arbitrary dimension k. We call the order polynomial Nk(r, j) the multiset
k-Narayana numbers in the following. For combinatorial interpretations of these
numbers, we refer to Section 1. The generating series

Nk,r :=

(k−1)(r−1)∑
j=0

Nk(r, j)tj , Nk,r :=
∑
j≥0

Nk(r, j)tj ,

of which the first is a polynomial in t, are called the k-Narayana polynomial and the
k-Narayana series respectively. Computing the Hilbert series of the Grassmannian
using the invariant theoretic method involves a Vandermonde-like determinant as
a crucial ingredient, and we arrive at our first main theorem:

Theorem 1. The h-polynomial of the Grassmannian Gr(k, n) is the k-Narayana
polynomial Nk,n−k and its Hilbert series is the k-Narayana series Nk,n−k+1.

Finally, we express the k-Narayana series as a hypergeometric function kFk−1.
This leads to the observation that the simplified formula 1

r

(
r
j

)(
r
j+1

)
for the 2-

Narayana numbers is a direct consequence of Euler’s hypergeometric transforma-
tion

2F1

(
a, b
c

; t

)
= (1− t)c−a−b2F1

(
c− a, c− b

c
; t

)
.

This transformation has been generalized in [14] – see also [12], [13] – to the gener-
alized hypergeometric function kFk−1. Applying this generalized Euler transforma-
tion to the k-Narayana series, we express the k-Narayana polynomial as a hyper-
geometric function, i.e. we find a new (multiplicative) formula for the k-Narayana
numbers:

Theorem 3. For the k-Narayana numbers Nk(r, j), we have the product formula

Nk(r, j) =
1

j + 1

(
(k − 1)(r − 1)

j

)(
(k − 1)(r − 1) + 1

j

) (k−2)(r−2)∏
i=1

ηi + j

ηi
,

where the ηi are the zeros of a certain polynomial of degree (k − 2)(r − 2).
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The paper is divided in three sections. In the first, we study different general-
izations of Narayana numbers, relations among them and express their generating
functions as hypergeometric functions. The second section is devoted to the com-
putation of Hilbert series of the Grassmannian using invariant theoretic methods.
In addition, a simplified formula – compared to that of [16] – for the h-polynomial
of Schubert varieties is derived. The third and last section uses the generalized
hypergeometric Euler transformation of [14] to find a new multiplicative formula
for the k-Narayana numbers.

The author wishes to thank Jürgen Hausen as well as the anonymous referee
for many helpful comments.

1 The k-Narayana numbers
The Narayana numbers

N(r, j) :=
1

r

(
r

j

)(
r

j + 1

)
=

1

j + 1

(
r − 1

j

)(
r

j

)
count the number of Dyck paths in the plane from (0, 0) to (r, r) with exactly j
ascents. They have been generalised in numerous ways. We exhibit some of these
generalizations. The k-Narayana numbers Nk(r, j) count the number of paths along
the lattice Zk from the origin to (r, . . . , r), staying in the region {0 ≤ x1 ≤ . . . ≤ xk}
and having j ascents. An ascent here is a pair of successive steps so that the second
step is an increase in a coordinate with higher index than the first one. They have
been observed by Sulanke in the papers [22] and [21] and are given by the formula

Nk(r, j) :=

j∑
l=0

(−1)j−l
(
kr + 1

j − l

) k−1∏
i=0

(
r + i+ l

r

)(
r + i

r

)−1
.

In his initial paper [17], Narayana introduced the Narayana numbers in another
context than that of the Dyck paths that coincides for k = 2. Consider the following
setting: paths with j steps from the origin to a point (a1, . . . , ak) in Zk with
a1 ≥ . . . ≥ ak ≥ j. The steps comply with the following rules:

1. in each step, each coordinate increases at least by one.

2. if ail is the i-th coordinate after the l-th step, then a1l ≥ . . . ≥ akl ≥ l holds.

The number (a1, . . . , ak)j of such paths according to Theorem 1 of [17] is given
by

(a1, . . . , ak)j :=

∣∣∣∣∣∣∣
(
a1−1
j

)
· · ·

(
ak−1
j+k−1

)
...

. . .
...(

a1−1
j−k+1

)
· · ·

(
ak−1
j

)
∣∣∣∣∣∣∣ = det

((
al − 1

j + l − i

)
1≤i,l≤k

)
.

We see that by setting k = 2, a1 = a2 = r one gets the ordinary Narayana
numbers, while for k = 1, one gets the binomial coefficients. We now consider two
small modifications, namely the numbers
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[a1, . . . , ak]j :=

∣∣∣∣∣∣∣∣
(
a1+j−1

j

)
· · ·

(
ak+j−1
j+k−1

)
...

. . .
...(

a1+j−1
j−k+1

)
· · ·

(
ak+j−1

j

)
∣∣∣∣∣∣∣∣ = det

(al + j − 1

j + l − i

)
1≤i,l≤k

 ,

{a1, . . . , ak}j :=

∣∣∣∣∣∣∣∣
(
ak+j−1

j

)
· · ·

(
a1+j+k−2

j+k−1

)
...

. . .
...(

ak+j−k
j−k+1

)
· · ·

(
a1+j−1

j

)
∣∣∣∣∣∣∣∣ = det

(ak−l+1 + j + l − i− 1

j + l − i

)
1≤i,l≤k



=

∣∣∣∣∣∣∣∣
(
a1+j−1

j

)
· · ·

(
a1+j−1
j+k−1

)
...

. . .
...(

ak+j−k
j−k+1

)
· · ·

(
ak+j−k

j

)
∣∣∣∣∣∣∣∣ = det

(ai + j − i

j + l − i

)
1≤i,l≤k

 .

The numbers [a1, . . . , ak]j turn up in enumerative combinatorics, see for exam-
ple [1], while the numbers {a1, . . . , ak}j give the Hilbert polynomial of Schubert
varieties due to the formula of Hodge and Pedoe, see Theorem III on page 387
of [8] and also [4], [16]. The equality of the two different formulae for {a1, . . . , ak}j
is given by Lemma 7 of [4]. In all cases, setting k = 1 gives the multiset coefficients((

a

b

))
=

(
a+ b− 1

b

)
.

If all ai are equal, which has been considered for the numbers [a1, . . . , ak]j in [1],
[11], [19], then we have the following identity:

Lemma 1. Let r, k − 1 ∈ Z≥0. It holds

{r + k − 1, . . . , r + k − 1︸ ︷︷ ︸
k

}j = [r, . . . , r︸ ︷︷ ︸
k

]j = [j, . . . , j︸ ︷︷ ︸
k

]r.

Proof. The second equality follows directly by transposing the matrix Mk(r) :=(
r+j−1
j+l−i

)
1≤i,l≤k

and applying the binomial identity
(
a
b

)
=
(
a
a−b
)
. We proof the first

one. We see that the last rows of Mk(r) and of M ′k(r+k−1) :=
(
r+k+j−i−1

j+l−i
)
1≤i,l≤k

are the same. Moreover, the lower arguments of the binomial coefficients in the
(i, l)-th entry of Mk(r) and of M ′k(r + k − 1) are the same. The upper arguments
in M ′k(r + k − 1) decrease by one if i increases by one. Now recall the binomial
identity (

a

b

)
−
(
a− 1

b− 1

)
=

(
a− 1

b

)
.

By the elementary row operations of subtracting the second from the first, the
third from the second and so on till we subtract the k-th from the (k − 1)-th row
and applying the above binomial identity, we decrease the upper arguments of the
binomial coefficients in the first k − 1 rows of M ′k(r + k − 1) each by one without
changing the determinant. In particular, now the last two rows of Mk(r) and our
new M ′k(r + k − 1) are the same. We do the same again, now only with the first
k− 1 rows and achieve that the last three rows of the two matrices coincide. After
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doing this k−1 times, we have transferred M ′k(r+k−1) to Mk(r) without changing
the determinant and the assertion is proven. �

Definition 1. Let k, r, j ∈ Z≥1. Then we call the numbers

Nk(r, j) := (r, . . . , r︸ ︷︷ ︸
k

)j , Nk(r, j) := [r, . . . , r︸ ︷︷ ︸
k

]j = [j, . . . , j︸ ︷︷ ︸
k

]r

the simple k-Narayana numbers and the multiset k-Narayana numbers respectively
and furthermore

Nk,r(t) :=

r∑
j=0

Nk(r, j)tj , Nk,r(t) :=

∞∑
j=0

Nk(r, j)tj , Nk,r(t) :=

(r−1)(k−1)∑
j=0

Nk(r, j)tj

the simple k-Narayana polynomial, the k-Narayana series and the k-Narayana poly-
nomial respectively.

Apart from [1], they turn up in [11] and [19]. In [1] as well as in [19], closed
formulae for Nk(r, j) are given, so that we get the following:

Proposition 1. Let k, r, j ∈ Z≥0 or k ≥ 2, r > j ≥ 0 respectively. We have the
identities

Nk(r, j) =

k∏
i=1

((
j + i

r − 1

))((
i

r − 1

))−1
=

k∏
i=1

((
r − 1 + i

j

))((
i

j

))−1
,

Nk(r, j) =

k∏
i=1

(
r − 1 + i

j

)((
i

j

))−1
=

k−1∏
i=0

(
r + i

j

)(
j + i

j

)−1
.

Proof. The first identity is Theorem 3.3 in [1]. The second follows by interchanging
j + 1 and r. The third by setting r′ := r + j − 1 in the second one and the last is
a simple index shift. �

Corollary 1. We have the following relations between k-Narayana numbers and
polynomials:

Nk(r, j) = Nk(r + j − 1, j)

=
∑
l≥0

(
k(r − 1) + j − l

k(r − 1)

)
Nk(r − 1, l),

Nk(r, j) =

j∑
l=0

(−1)j−l
(
kr + 1

j − l

)
Nk(r + l, l)

=

j∑
l=0

(−1)j−l
(
kr + 1

j − l

)
Nk(r + 1, l)

Nk,r(t) =
Nk,r−1(t)

(1− t)k(r−1)+1
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Proof. The second equality is Proposition 4 of [21], the last one is stated on page 4
of [21], the others follow directly from the definitions and Proposition 1. �

Now we express the k-Narayana polynomials and series in terms of hyperge-
ometric functions in order to find simplified formulae using a generalized Euler
transform.

Proposition 2. Let Nk,r(t) be the simple k-Narayana polynomial and Nk,r(t) the
k-Narayana series. Let further pFq

( a1,...,ap
b1,...,bq ; t

)
be the generalized hypergeometric

function. Then we have

Nk,r(t) = kFk−1

(
−r, . . . ,−r − k + 1

2, . . . , k
; (−1)kt

)
,

Nk,r(t) = kFk−1

(
r, . . . , r + k − 1

2, . . . , k
; t

)
.

Proof. We have

Nk,r(t) =
∑
j≥0

k∏
i=1

((
j + i

r − 1

))((
i

r − 1

))−1
tj

=
∑
j≥0

(j + r − 1)! · · · (j + r + k − 2)!

(r − 1)!kj! · · · (j + k − 1)!

(r − 1)!k1! · · · k!

(r − 1)! · · · (r + k − 2)!
tj

=
∑
j≥0

(r)j · · · (r + k − 1)j
(2)j · · · (k)j

tj

j!
= kFk−1

(
r, . . . , r + k − 1

2, . . . , k
; t

)
,

Nk,r(t) =

r∑
j=0

k−1∏
i=0

(
r + i

j

)(
j + i

j

)−1
tj

=

r∑
j=0

r! · · · (r + k − 1)!

j!k(r − j)! · · · (r + k − 1− j)!
j!k1! · · · (k − 1)!

j! · · · (j + k − 1)!
tj

=

r∑
j=0

(−r)j · · · (−r − k + 1)j
(2)j · · · (k)j

(−1)kjtj

j!

= kFk−1

(
−r, . . . ,−r − k + 1

2, . . . , k
; (−1)kt

)
.

�

2 Hilbert series of the Grassmannian
Denote by Gr(k, n) the complex Grassmannian of k-dimensional vector subspaces
in n-dimensional vector space. The Hilbert series of its homogeneous coordinate
ring under the Plücker embedding has been investigated for example in [2], [5], [6],
[7], [8], [15], [18], [20]. Mukai gives a closed formula for the Hilbert polynomial
in terms of binomial coefficients in [15] while [5] gives a closed formula for the
generating rational function, both in the case Gr(2, n). In [6], Hodge conjectured a
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closed formula for the Hilbert polynomial in the general case Gr(k, n), which was
proved by Littlewood in [10]. This formula is the following:

dk,n(j) =
(n+ j)! · · · (n+ j − k)!

j! · · · (k + j)!

1! · · · k!

(n− k)! · · ·n!
.

The homogeneous coordinate ring of Gr(k, n) equals C [V n]
SLk , where the action

of SLk on V n is induced by multiplication from the left on the k-dimensional vector
space V , see for example [9], Theorem 9.3.6. So the Hilbert series of Gr(k, n) and
C [V n]

SLk coincide.
The following theorem gives a formula for the Hilbert series in terms of binomial

coefficients and an expression of the Hilbert series as a rational function.

Theorem 1. The h-polynomial of the complex Grassmannian Gr(k, n) is the
k-Narayana polynomial Nk,n−k and its Hilbert series is the k-Narayana series
Nk,n−k+1. That is to say:

H(Gr(k, n)) = Nk,n−k+1(tk) =
Nk,n−k(t)

(1− tk)k(n−k)+1
.

Lemma 2. For k ≥ 2, the following equality holds in C(z1, . . . , zk):∏
1≤i<j≤k

(
1− zi

zj

)
=

∣∣∣∣(zj−ii

)
1≤i,j≤k

∣∣∣∣
Proof. The Vandermonde matrix (

zj−1i

)
1≤i,j≤k

has the determinant ∣∣∣∣(zj−1i

)
1≤i,j≤k

∣∣∣∣ =
∏

1≤i<j≤k

(zj − zi) .

So we have ∣∣∣∣(zj−ii

)
1≤i,j≤k

∣∣∣∣ =

(
k∏
i=1

z1−ii

)∣∣∣∣(zj−1i

)
1≤i,j≤k

∣∣∣∣
=

(
k∏
i=1

z1−ii

) ∏
1≤i<j≤k

(zj − zi)


=

∏
1≤i<j≤k

(
1− zi

zj

)
. �

Proof of Theorem 1. Let n ≥ k. We begin with what Mukai [15] calls the q-Hilbert
series of the action of SLk on V n induced by multiplication from the left on the
k-dimensional vector space V .
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Let T = SLk ∩Diag(k) ∼= (C∗)
k−1 be the standard maximal torus of SLk and

X(T ) ∼= Zk−1 its character lattice with standard basis e1, . . . , ek−1. Let

λi :=

i∑
j=1

ej ∈ X(T ), i = 1, . . . , k − 1

be the fundamental weights and

α1 := e1 − e2 = −λ2 + 2λ1 ∈ X(T )

αi := ei − ei+1 = −λi+1 + 2λi − λi−1 ∈ X(T ), i = 2, . . . , k − 2

αk−1 := 2ek−1 +

k−2∑
j=1

ej = 2λk−1 − λk−2 ∈ X(T )

the simple roots. Define qi := χλi
for i = 1, . . . , k − 1. So the set of positive roots

is

Φ+ =

{
b∑
i=a

αi

∣∣∣∣∣ 1 ≤ a ≤ b ≤ k − 1

}
=

{
qaqb

qa−1qb+1

∣∣∣∣ 1 ≤ a ≤ b ≤ k − 1, q0 = qk = 1

}
.

On V , the action of T is given by the matrix

Diag
(
q1, q2q

−1
1 , q3q

−1
2 , . . . , qk−1q

−1
k−2, q

−1
k−1
)
.

Now with [3], Remark 4.6.10, the Hilbert series of C[V n]SLk is the coefficient of
q01 · · · q0k−1 when we set q0 = qk = 1 in the q-Hilbert series:

Hq(C[V n]SLk) =

∏
1≤a≤b≤k−1

(
1− qaqb

qa−1qb+1

)
k∏
j=1

(
1− t qj

qj−1

)n

=

∣∣∣∣∣
((

qi
qi−1

)j−i)
1≤i,j≤k

∣∣∣∣∣
k∏
j=1

(
1− t qj

qj−1

)n
=

∣∣∣∣∣∣
((

qi
qi−1

)j−i)
1≤i,j≤k

∣∣∣∣∣∣
∞∑

i1,...,ik=0

k∏
j=1

((
n

ij

))(
t
qj
qj−1

)ij

=
∑
σ∈Sk

sgn(σ)

∞∑
i1,...,ik=0

k∏
j=1

((
n

ij

))
tij
(

qj
qj−1

)σ(j)+ij−j
For the second equality, we used Lemma 2 with zi = qi/qi−1. Now for the coefficient
of q01 · · · q0k−1, for each σ ∈ Sk, all the exponents σ(j) + ij − j must be the same, so
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that we get:

H(C[V n]SLk) =
∑
σ∈Sk

sgn(σ)
∑

i1,...,ik≥0
σ(1)+i1−1

=...=
σ(k)+ik−k

k∏
j=1

((
n

ij

))
tij

=
∑
σ∈Sk

sgn(σ)
∑

i1≥σ(1)−1
,...,

ik≥σ(k)−k
i1=...=ik

k∏
j=1

((
n

ij − σ(j) + j

))
tij−σ(j)+j

=
∑
σ∈Sk

sgn(σ)
∑
l=0

k∏
j=1

((
n

l − σ(j) + j

))
tl−σ(j)+j

=

∞∑
l=0

tkl
∑
σ∈Sk

sgn(σ)

((
n

l − σ(j) + j

))
=

∞∑
l=0

∣∣∣∣∣
((

n

l − i+ j

))
1≤i,j≤k

∣∣∣∣∣ tkl
=

∞∑
l=0

{n, . . . , n}ltkl =

∞∑
l=0

[n− k + 1, . . . , n− k + 1]lt
kl

= Nk,n−k+1(tk) =
Nk,n−k(t)

(1− tk)k(n−k)+1
.

The second and third equalities hold because for each σ, if there is a 1 ≤ j ≤ k
with σ(j) − j > 0, there must be a j′ with σ(j′) − j′ > 0. Furthermore, since
k ≤ n, for all 1 ≤ j ≤ k we have −n < σ(j)− j. Thus the additional as well as the
removed summands all are zero and the second and third equality hold. The last
identity directly follows from Corollary 1. �

Remark 1. Of course the quotient of V n by SLk is also defined for n < k, but
the only invariant functions in these cases are the constant ones, so that
H(C[V n]SLk) = 1 holds here.

The equality of our formula for the Hilbert polynomial and the one of Hodge is
immediate. There is another way to compute it using the Borel-Weil-Bott Theorem,
see Section 5.3 of [2]. For the connection to the approach [20] of Sturmfels, see also
the paper [18].

As we already stated in Section 1, the numbers {a1, . . . , ak}j with 1 ≤ a1 <
. . . < ak ≤ n give the Hilbert polynomials of Schubert varieties

X(a1, . . . , ak) := {W ∈ Gr(k, n)|dim(W∩ < e1, . . . , eai >) ≥ i, i = 1, . . . , k}.

From this, Nanduri in [16] deduced a closed form for the h-polynomial ofX(a1, . . . , ak).
We give a slightly simpler formula in the following, which reduces to the formula
of Sulanke for the k-Narayana numbers when we set a1 = . . . = ak = n.

Proposition 3. The i-th coefficient hi of the h-polynomial of the Schubert variety
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X(a1, . . . , ak) of dimension d is given by

hi =

i∑
l=0

(−1)l{a1, . . . , ak}i−l
(
d

l

)
.

Proof. According to the proof of Proposition 2.9 of [16], the coefficient hi is given
by

hi =

i∑
l=0

(−1)l{a1, . . . , ak}i−l
(
d− 1

l

)
−

i−1∑
l=0

(−1)l{a1, . . . , ak}i−l−1
(
d− 1

l

)
.

We have

hi =

i∑
l=0

(−1)l{a1, . . . , ak}i−l
(
d− 1

l

)
−

i∑
l=1

(−1)l−1{a1, . . . , ak}i−l
(
d− 1

l − 1

)

=

i∑
l=0

(−1)l{a1, . . . , ak}i−l
(
d− 1

l

)
+

i∑
l=0

(−1)l{a1, . . . , ak}i−l
(
d− 1

l − 1

)

=

i∑
l=0

(−1)l{a1, . . . , ak}i−l
(
d

l

)
. �

3 Generalized hypergeometric Euler transform
For integers p, q ≥ 0 and a1, . . . , ap, b1, . . . , bq ∈ C, where no bi is an integer smaller
than one, recall the generalized hypergeometric function

pFq

(
a1, . . . , ap
b1, . . . , bq

; t

)
:=

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

tk

k!
,

where (a)k is the Pochhammer symbol standing for the rising factorial

a(a+ 1) · · · (a+ k − 1)

with (a)0 = 1. Consider the Euler transformation for the ordinary hypergeometric
function 2F1:

2F1

(
a, b
c

; t

)
= (1− t)c−a−b2F1

(
c− a, c− b

c
; t

)
.

This identity in particular shows that the 2-Narayana polynomial is a hypergeo-
metric function, i.e. the identity

j∑
l=0

(−1)j−l
(

2r + 1

j − l

)(
r + l

r

)(
r

r

)−1
=

1

r

(
r

j

)(
r

j + 1

)
.

The hypergeometric Euler transform has been generalized to pFq in different ways,
see [12, Theorem 2.1] and [13, Theorem 3] as well as [14, Theorem 4]. We will
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use Theorem 4 of [14] to express k-Narayana numbers as products for k ≥ 3 as
well. This leads to a representation of the h-polynomials of Grassmannians as
hypergeometric functions for k ≥ 3.

In order to do this, we first state the generalized hypergeometric Euler trans-
form. Denote by

{
x
y

}
the Stirling numbers of the second kind. Consider for

r ∈ Z≥1 numbers m1, . . . ,mr ∈ Z≥1 and set m =
∑
mr. Furthermore let

a, b, c, f1, . . . , fr ∈ C meet the requirements

(c− a−m)m, (c− b−m)m, (1 + a+ b− c)m 6= 0.

Now for j, k = 0, . . . ,m denote by σj the coefficient of xj in the polynomial
(f1 + x)m1 · · · (fr + x)mr and set

Ak :=

m∑
j=k

{
j

k

}
σj ,

Gk(t) := 3F2

(
k −m, k − t, 1− c− t

1 + b+ k − c− t, 1 + a+ k − c− t; 1

)
,

Q(t) :=

m∑
k=0

(−1)kAk(a)k(b)k(t)k(c− a−m− t)m−k(c− b−m− t)m−kGk(−t).

With these definitions, we get the following:

Theorem 2 (Generalized hypergeometric Euler transform, [14], Th. 4). Let
η1, . . . , ηm be the nonvanishing zeros of the polynomial Q(t). Then for |t| < 1, the
following equality holds true:

r+2Fr+1

(
a, b, f1 +m1, . . . , fr +mr

c, f1, . . . , fr
; t

)
= (1− t)c−a−b−mm+2Fm+1

(
c− a−m, c− b−m, η1 + 1, . . . , ηm + 1

c, η1, . . . , ηm
; t

)
.

Now consider the case of the k-Narayana series

Nk,r(t) = kFk−1

(
r, . . . , r + k − 1

2, . . . , k
; t

)
with k ≥ 3. Letting c := 2, a := r + k − 2, b := r + k − 1 and for i = 3, . . . , k
furthermore fi := i,mi := r− 3, so that m =

∑
mi = (k − 2)(r− 3), we have that

none of

(4− r − k − (k − 2)(r − 3))(k−2)(r−3),

(3− r − k − (k − 2)(r − 3))(k−2)(r−3),

(2(r + k)− 4)(k−2)(r−3)

equals zero. We thus get:



38 L. Braun

Theorem 3. The k-Narayana polynomial can be expressed as the hypergeometric
function

Nk,r = m+2Fm+1

(
(k − 1)(1− r), (k − 1)(1− r)− 1, η1 + 1, . . . , ηm + 1

2, η1, . . . , ηm
; t

)
with m = (k− 2)(r− 2). Moreover, for the k-Narayana numbers Nk(r, j), we have
the product formula

Nk(r, j) =
1

j + 1

(
(k − 1)(r − 1)

j

)(
(k − 1)(r − 1) + 1

j

) (k−2)(r−2)∏
i=1

ηi + j

ηi
,

where the ηi are the zeros in t of the polynomial

(k−2)(r−2)∑
l=0

(−1)lAl(−(k + 1)r − 3k − 4− t)(k−2)(r−2)−l(−(k + 1)r − 3k − 3− t)(k−2)(r−2)−l

×(r + k − 1)l(r + k)l(t)l 3F2

(
l − (k − 2)(r − 2), l + t, t− 1

r + k − 1 + l + t, r + k − 2 + l + t
; 1

)
.

Proof. Letting c = 2, a = r + k − 2, b = r + k − 1 and for i = 3, . . . , k furthermore
fi = i,mi = r− 3 as stated above, the requirements of Theorem 2 are fulfilled and
applying it we get

Nk,r(t) = kFk−1

(
r + k − 2, r + k − 1, r, . . . , r + k − 3

2, 3, . . . , k
; t

)

=
m+2Fm+1

(
r+2k−kr−2,r+2k−kr−3,η1+1,...,ηm+1

2,η1,...,ηm
; t
)

(1− t)(r−1)k+1

with m = (k − 2)(r − 3). So with Corollary 1, we have

Nk,r−1 = m+2Fm+1

(
r(1− k) + 2k − 2, r(1− k) + 2k − 3, η1 + 1, . . . , ηm + 1

2, η1, . . . , ηm
; t

)
and thus with m′ = (k − 2)(r − 2)

Nk(r, j) =
((k − 1)(1− r))j((k − 1)(1− r)− 1)j(η1 + 1)j · · · (ηm′ + 1)j

(2)j(η1)j · · · (ηm′)jj!

=
1

j + 1

(
(k − 1)(r − 1)

j

)(
(k − 1)(r − 1) + 1

j

) (k−2)(r−2)∏
i=1

ηi + j

ηi
.

�
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Corollary 2. The h-polynomial of the Grassmannian Gr(k, n) is given by

m+2Fm+1

(
(k − 1)(1− n+ k), (k − 1)(1− n+ k)− 1, η1 + 1, . . . , ηm + 1

2, η1, . . . , ηm
; t

)
with m = (n− k − 2)(k − 2).

Remark 2. Consider the case k > r. Here we have the reduction

Nk,r(t) = kFk−1

(
r, . . . , k, k + 1, . . . , r + k − 1

2, . . . , r − 1, r, . . . , k
; t

)
= r−1Fr−2

(
k + 1, . . . , (k + 1) + (r − 1)− 1

2, . . . , r − 1
; t

)
= Nr−1,k+1(t),

from what follows Nk,r(t) = Nr,k(t). In this case, it makes sense to first use this
reduction and afterwards apply Theorem 3 to get a simpler formula.

Moreover, the polynomial Q(t), of which the zeros have to be computed, looks
complicated. It is nevertheless no problem to compute these zeros with the help of
computer algebra systems, but we propose another method that also provides some
comparison between the computational complexity of the two different formulae:
We know that the zeros ηi exist and that there are (k−2)(r−2) of them. So instead
of computing them from the polynomial Q(t), one can leave them as indetermi-
nates, call the resulting function Nk(r, j)[η1, . . . , η(k−2)(r−2)], compute Nk(r, jl) for
different j1, . . . , j(k−2)(r−2) and solve the system of equations

Nk(r, jl)[η1, . . . , η(k−2)(r−2)] = Nk(r, jl), l = 1, . . . , (k − 2)(r − 2).

This is equivalent to a system of multilinear equations in the ηi, providing the same
set of zeros as Q(t). One should of course choose the values of j for which Nk(r, j)
is easiest to compute with the old formula.

We can now roughly estimate the difference in complexity of the two formulae:
we know that the Nk(r, j) are symmetric, but the binomial coefficients in the new
formula are not, i.e.

Nk(r, j) = Nk(r, (r − 1)(k − 1)− j),

Nk(r, j)[η1, . . . , η(k−2)(r−2)] 6= Nk(r, j)[η1, . . . , η(k−2)(r−2)].

Moreover, computations suggest that there are always exactly 2b(k − 2)(r − 2)/2c
nonvanishing zeroes of Q(t), which means we have to compute b(k − 2)(r − 2)/2c
values of Nk(r, jl) in order to compute the ηi. We implemented the classical formula
as well as the new one using both Q(t) and the systems of equations in Maple,
available as ancillary worksheet file. Examples suggest that computing the ηi using
Q(t) is faster than using the system of equations, but we can not exclude that this
is due to our implementation. Nevertheless, once the ηi are known for fixed k and r,
they can be stored and used to compute the Nk(r, j) more efficiently.
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Example 1. We give some formulae from our computations in Maple for k = 3 and
low values of r in the following.

r Nk(r, j)

4 1
105(j+1)

(
6
j

)(
7
j

) (
3 +
√

114− j
) (
−3 +

√
114 + j

)
5 1

63(j+1)

(
8
j

)(
9
j

) (
4 +
√

79− j
) (
−4 +

√
79 + j

)
6 1

27720(j+1)

(
10
j

)(
11
j

)
(4 + j) (14− j)

(
−5 + 2

√
130 + j

) (
5 + 2

√
130− j

)
7

1
123552000(j+1) (

12
j )(13

j )
(
−60+

√
17450−10

√
682705+10 j

)(
60+
√

17450−10
√
682705−10 j

)
×
(
−60+

√
17450+10

√
682705+10 j

)(
60+
√

17450+10
√
682705−10 j

)
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