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On compatible linear connections of two-dimensional
generalized Berwald manifolds: a classical approach

Csaba Vincze, Tahere Reza Khoshdani, Sareh Mehdi Zadeh Gilani, Mark Oléh

In memoriam to V. Wagner on the 75th anniversary of publishing his pioneering
work about generalized Berwald manifolds.

Abstract. In the paper we characterize the two-dimensional generalized
Berwald manifolds in terms of the classical setting of Finsler surfaces (Ber-
wald frame, main scalar etc.). As an application we prove that if a Lands-
berg surface is a generalized Berwald manifold then it must be a Berwald
manifold. Especially, we reproduce Wagner’s original result in honor of
the 75th anniversary of publishing his pioneering work about generalized
Berwald manifolds.

Introduction

The concept of generalized Berwald manifolds goes back to V. Wagner [17]. They
are Finsler manifolds admitting linear connections such that the parallel transports
preserve the Finslerian length of tangent vectors (compatibility condition). To ex-
press the compatible linear connection in terms of the canonical data of the Finsler
manifold is the problem of the intrinsic characterization we are going to solve
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in case of two-dimensional generalized Berwald manifolds. The result is formu-
lated in terms of linear inhomogeneous differential equations for the main scalar
along the indicatrix curve (Subsection 2.1). As an application we prove that if
a Landsberg surface is a generalized Berwald manifold then it must be a Ber-
wald manifold (Subsection 2.2). Especially, we reproduce Wagner’s original result
in terms of the conventional setting of Finsler surfaces (Subsection 2.3) in honor of
the 75th anniversary of publishing his pioneering work about generalized Berwald
manifolds. Since Wagner’s theorem (Subsection 2.3) does not contain information
about the expression of the compatible linear connection we clarify these conse-
quences in Section 3.

1 Notations and terminology

Let M be a connected differentiable manifold with local coordinates u!, ..., u™.
The induced coordinate system of the tangent manifold 7'M consists of the func-
tions z',..., 2" and y',...,y". For any v € T,M, z'(v) = u' o w(v) = u’(p) and
y'(v) = v(u'), where m: TM — M is the canonical projection, i = 1,...,n.

1.1 Finsler metrics

A Finsler metric is a continuous function F': TM — R satisfying the following
conditions:

(F1) F is smooth on the complement of the zero section (regularity),

(F2) F(tv) =tF(v) for all ¢t > 0 (positive homogeneity),

(F3) the Hessian g;; = %, where F = %F 2 is positive definite at all nonzero

elements v € T, M (strong convexity).

The so-called Riemann-Finsler metric g is constituted by the components g;;.
It is defined on the complement of the zero section. The Riemann-Finsler metric
makes each tangent space (except at the origin) a Riemannian manifold with stan-
dard canonical objects such as the volume form du = y/det g;; dy' A...Ady", the
Liouville vector field C := y'd/0y* + ... + y"0/dy" together with its normalized
dual form l; = OF /0y’ with respect to the Riemann-Finsler metric and the induced
volume form

= +/det g;; Z(—l)i_lyfdyl A ANdyTEAdYTE A dy”
i=1

on the indicatrix hypersurface 0K, := F~1(1) N T,M (p € M). In what follows
we summarize some basic notations. As a general reference of Finsler geometry
see [2] and [6]: g% = (g;;)~" denotes the inverse of the coefficient matrix of the
Riemann-Finsler metric, the (lowered) first Cartan tensor is given by

1
Ciji = §3gi,j/5yk



On compatible linear connections of two-dimensional generalized Berwald manifolds 53

and Cﬁj = ¢'*C;ji. The first Cartan tensor is totally symmetric and y*C;j; = 0.
Its semibasic trace is given by the quantities C; = ¢/¥Ciji (3,75, k = 1,...,n).
Differentiating det g;; as a composite function we have that

8detgrs 0D M 09,k

oyt Omyy, Ayt
= (=1)"** det(M without its 5 row and k" column) %gj;c
Y
= (det gra)g?* 295 | wwhere M = g,
= (det grs)g oy where M := g;;.
Therefore
d1n vdet grs 1 ik agjk gk
— = ¢ == =¢?"Ciik =C; . 1
ayl 29 ayl g gk ( )
The geodesic spray coefficients and the horizontal sections are
1 9*FE OF ) 9 oG!
Glzflm(ki_i) d xt=2 ¢ L whereGl= 2
29 ¥ oymoxk  dxm an b Oxt toyt’ where b oy’

The second Cartan tensor (Landsberg tensor) and the mixed curvature are given
by

I k k 1 9G]
Pij = 59 (Xi"gjm — Gijgkm - Gin9ik), Where Gij = By
oGy,
and P = —Gjj;, where G{;; = 5.
Lemma 1. [7], section 6.2.
F m
Pilj = _glmgkl ijk (2)

1.2 Generalized Berwald manifolds

Definition 1. A linear connection V on the base manifold M is called compati-
ble to the Finslerian metric if the parallel transports with respect to V preserve
the Finslerian length of tangent vectors. Finsler manifolds admitting compatible
linear connections are called generalized Berwald manifolds.

Proposition 1. A linear connection V on the base manifold M is compatible to the
Finslerian metric function if and only if the induced horizontal distribution is con-
servative, i.e. the derivatives of the fundamental function I’ vanish along the hor-
izontal directions with respect to V.

Proof. Suppose that the parallel transports with respect to V (a linear connection
on the base manifold) preserve the Finslerian length of tangent vectors and let X
be a parallel vector field along the curve c: [0,1] — M:

(@F o X) =c and (yFoX) =X = —¢'XITh o 3)
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because of the differential equation for parallel vector fields. If F' is the Finslerian
fundamental function then

OF OF
(FoX)' = ("o X) gro X+ (o X) groX )
and, by formula (3),
i OF ; OF
pexr = (2 en).x 0

This means that the parallel transports with respect to V preserve the Finslerian
length of tangent vectors (compatibility condition) if and only if

oF
ozt Y

, F
]Ff‘joﬂ'izo (i:17...,n)7 (6)

where the vector fields of type

0 ok
5 VT O Ty )
span the associated horizontal distribution belonging to V. (]

Theorem 1. [10] If a linear connection on the base manifold is compatible with the
Finslerian metric function then it must be metrical with respect to the averaged
Riemannian metric

p(v, W) == /8 g(v,w) pu = viwj/ gij b (v,weT,M, pelU). (8)
Kp

Ky

Remark 1. The technic of averaging is an alternative way to solve the problem of
the characterization of compatible linear connections. By the fundamental result
of the theory [10] such a linear connection must be metrical with respect to the
averaged Riemannian metric given by integration of the Riemann-Finsler metric
on the indicatrix hypersurfaces (see Theorem 1). Therefore the linear connection
is uniquely determined by its torsion tensor. The torsion tensor has a special
decomposition in 2D because of

0 0
T(X,Y) = (X'Y? = X2V (Tl r + Thos ) = p(X)Y = p(1)X,  (9)
where p; = T% and py = =T}, = TJ;. In higher dimensional spaces such a linear

connection is called semi-symmetric. Using some previous results [11], [12], [13]
and [14], the torsion tensor of a semi-symmetric compatible linear connection can
be expressed in terms of metrics and differential forms given by averaging indepen-
dently of the dimension of the space. The basic idea is the comparison of V with
the Lévi-Civita connection of the averaged metric (cf. subsection 2.1.)

Especially, the compatible linear connection must be of zero curvature in 2D
unless the manifold is Riemannian, see [15] and [16]. Therefore we can conclude
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some topological obstructions as well due to the divergence representation of the
Gauss curvature [16]: any compact generalized Berwald surface without boundary
must have zero Euler characteristic. Therefore the Euclidean sphere does not carry
such a geometric structure. Using the theory of closed Wagner manifolds, this
means that the local conformal flatness of the Riemannian surfaces is taking to fail
in the differential geometry of non-Riemannian Finsler surfaces [16].

1.3 Finsler surfaces

In case of Finsler surfaces it is typical to introduce the vector field
L OF 0 _OF 9
Tooyloyr oy oyl

It is tangential to the indicatrix curve because of VI = 0. Since three vertical
vector fields must be linearly dependent in 2D,

g(%?%) g(%gla%) g(%,(}') gi1 gi12 %
0 = det 9(672’671) Q(W’@?) Q(W,C) =det | g12 922 297
9(C.o2)  9(Cs)  9(C.0) S5 bp 2E
OF OF OF \?2 OF \2
= F*det gij + 2912 9L Dy? ( yl) 922 (8y2) gn
= F?(det gij — g(V, V).
This means that 0 # det g;; = g(V, V) and, consequently,
1 1
Vo i= ———==V, Cp = =C,
9(V.V) F
; if 0 9] 1 Yy’
h._ yiyh — i _ = — g7 xh
Vo i =Vo X, Vb(@aji Glf)yl)’ S0 FS FXZ

form a local frame on the complement of the zero section in 7=!(U). Such a
collection of vector fields is called a Berwald frame.

Definition 2. The main scalar of a Finsler surface is defined as A := VOj VeViCin,
where Vo = V/4/g(V, V) is the unit tangential vector field to the indicatrix curve.

The vanishing of the main scalar implies that the surface is Riemannian and vice
versa. The zero homogeneous version I := F\ is also frequently used in the lit-
erature [3], [4], [5] and [6]. Consider the vector field C;0/dy*. Since it is also
tangential to the indicatrix it follows that

0 0
K _ ol
Cijaiyk = Cijg(%a @)%a

where Vo = V/4/g(V,V) is the unit tangential vector field to the indicatrix curve.
Therefore

ij = Cf'jgthomVok = Vomcijmvok = Cijr = Vomcz'jmvokgkr-
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Contracting by ¢’" 4
Ci = Vvoj%mcwm (10)

By formulas (1) and (10) we have that

A= VIVEViCjim = Vi€ = Vo (In /det g,.5). (11)

In what follows we summarize some of the general formulas to express the surviving
components of the Landsberg tensor, the mixed curvature tensor and the pairwise
Lie-brackets of a Berwald frame (Cartan’s permutation formulas) [8]:

it g 0
yLVoJ VokPijk = yZVo]VokGijkg(Vm W) =0, (12)
Y
9
Oy
because of the homogeneity properties; see [8, Corollary 1.8] and [8, Formula (24a)].
E. Cartan’s permutation formulas are

VEVEVE P = =S, ViV Vi Gling (Voo 5.7 ) = Vi (V) + Va(S)

1

1
Vo, Vi) = —fso AV = SMVo,  [So, Vo] = 7

%h’ [V[)ha SO] = -V, (13)
where x is the only surviving coefficient of the curvature of the horizontal distribu-
tion [8, Theorem 1.10]. Let the indicatrix curve in T, M be parameterized as the
integral curve of Vj:

Voocp(8) =c(0) = Aocp(d) = (Iny/detgrs o cp)/(é’).

It is called the central affine arcwise parametrization of the indicatrix curve. The
parameter 0 is “the central affine length of the arc of the indicatrix” and the main
scalar can be interpreted as its “central affine curvature”; for the citations see [17].

2 Two-dimensional generalized Berwald manifolds

Let V be a linear connection on the base manifold M and suppose that the par-
allel transports preserve the Finslerian length of tangent vectors (compatibility
condition). By Proposition 1,

1
—y"T. om— =0 (i=1,2), Wmmal§:§F2

is the Finslerian energy.

2.1 The comparison of V with the canonical horizontal distribution of the
Finsler manifold

Using the canonical horizontal sections we can write that

9E _ 0B _

—GlEE .
oyt Loyt

Y T o
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Since the vertical vector fields are the linear combinations of V and C, it follows
that

0 0
YT omg = Cigy = [V +9.0 (i=1,2)

the coefficients fi, fo are positively homogeneous of degree one, g; and g, are
positively homogeneous of degree zero. Taking into account that VE = 0 and
CFE = 2F, we have that g; = go = 0 and, consequently,

mFl o ﬂ_i Gl 8 fz
o'

0 0
m k k .
= re. ow—ay =G =— g + iV (i=1,2). (14)

To provide the linearity of the right hand side we should take the Lie brackets with
the vertical coordinate vector fields two times:

o 0 0 o 0 0 0 0
= ml 2| = = L~ : —
0 |:|:y im © Wayl, 8yj:| s 8yk:| |:|:Gz 82/1, 3yj] ay :l |:|:fz ) :| ) 3y’“]

0 0 o) ok, 0] 0fif, 0], &f
Guka L HV ayj:| ’8yk] Ay’ {V’ 6y’“} Oy* [V’ ayf} " o

= ijks

where

91 @F o  F 0
{ ’8?#} T Oyioy? Oyt Oyioy oy’
HV 3} 3} ___o®r o OF 0
T oyl | Oyk Oyidykoy? Oyt Oyioykoy! oy’

Since yI W1, = y* Wi 1 = 0 it is enough to investigate the quantity W; = VIVEW,.
By some direct computations

Voo = V() = 7 (F) = 50(v 53)

because of VF = (0. On the other hand

; PF 1 0*F 1 oOF OF
Jirk _ Lok _ Lok _or
v Ooyioykoy? F (FﬁykayQ) FV V(g]~C2 )

= %(QVijCjI& - Vkv(%) 275;)
= %(QVijcij - %VkV(FSTF)%>
= %(QVijCjIQ ; (V. V) gé)
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and, consequently,

v (0 ) ol ) )

”ka l F T oy2 ) Oyt " oyt ay2
f’L g aF 8 7 k ) 6F 8
((2vvcjk2—— aeks 2)8 (2vvcjk1 9V V)5 1>8y2)
+Vjvka(:jéf;kv' (15)

The vanishing of W; is equivalent to
gWi, Vo) =0 and g¢g(W;,Co)=0 (i=1,2),

where Vy = V/4/g(V,V) and Cy = C/F are the normalized vector fields of the
vertical Berwald frame.

2.1.1 The vanishing of the orthogonal term to the indicatrix
It follows that

F ,
= g(W;,C) = W;E = FVJV’fG”,Cg - =2V (f)g(V. V) = 2£;VIVIVIC.
Therefore o,
— =i+ (Vofy) (i=1,2), 16
A fi+ Vofi) ( ) (16)

where Vo = V/1/g(V,V) is the unit tangential vector field to the indicatrix curve,
A is the main scalar and

oF ©)

7FVJ‘/O Gzﬂc ay V]‘/O ijk-
Using that det g;; = g(V, V), formula (11) says that
i =Vo(fiv/g(V,V)) (i=1,2). (17)

Let the indicatrix curve ¢, in T, M be parameterized as the integral curve of Vj.
Evaluating along ¢, we have

a;ocp(l) = (fiocp/g(V,V)oc,)(0) (i=1,2) (18)
for any p € U. Therefore
Biocp(t) = fiocy,(t)V/g(V,V)ocy(t) — fiocy(0)y/g(V,V)ocy(0), (19)

where 3;: 71(U) — R (i = 1, 2) are the 1-homogeneous extensions of the functions
defined by

Bi o ¢p(t) :/0 a;ocy(0)dd (i=1,2) (20)

along the central affine arcwise parametrization of the indicatrix curve. We can
write that
1

V9V, V) ocp(t)

for some constants k;(p) (¢ = 1,2) depending only on the position.

fioep(t) = (Biocp(t) + ki(p)) (i=1,2) (21)
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2.1.2 The vanishing of the tangential term to the indicatrix
It follows that

_ V]Vk?Gleg( 9 ) 2fi

)~ (VG (v ) - ViV (v )

+%9(V,V)(8F (v 0 )—O—F (vi))ﬂf vi Oh oy

a2\ ayt) T 9yt I\ 52 dyioyE?
0 ; D% f; fz
= VIVAGL (Vi g ) + VIV 5 5o (V) = 250" (VY)

(Vv ) - Vv (v 882))
where
Vjvkcmg(v, 3iy1> - Vﬂ'v’fcjklg(u 8%2) -0
because the vector field
is parallel to C, i.e. g(V, Z) = 0. Therefore

> fi
OyJ Oyk

fi
F2

0 .
0= VIVEG (Vg ) + VIV g(V.V) = L2V, v)

and, consequently,

j 0 ow Pfi e fi oy

Lemma 2. If g is a positively homogeneous function of degree k, then

9g g
VO(VOk)aTJk = —AVo(g) — k‘ﬁ~ (23)
Especially, ey, P
] _ 3
0 8 Ja k VO(Vsz)‘F/\VO(fz) F2~ (24)

Proof. Let ¢, be the parametrization of the indicatrix curve in 7}, M as the integral
curve of Vg, i.e. Vyoc, = c . Differentiating equation

1= ge,(Voocp, Voo cp) = gij © cplcy)'(c)' (25)

we have that 0 = 2g;; 0 ¢, (c})”(c])" + 2Cijk 0 cp(ch) (¢]) () and, consequently,

(VEJ 0 Cp, C ) gcp( cy ) = —Cijk o cp( i)/(ci)/( ﬁ)'
= —(VOV]V Cijk) 0 Cp = —AoCp. (26)
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Differentiating equation
0=ge,(Cocp,Vooc) =gioce)c) (27)
we have that
0= 2Ciji 0 cp(ch)(c)) (k) + gij 0 cp(ch) () + gij o cp(cp)'(c))”. (28)

Taking into account that Cyjx, o ¢,(ch)(ch) (cf) = Ciji 0 cp(y’ 0 cp) () (ck) =0,

gij © cp(c) () = ge, (¢ ;) =1 and gy 0¢5(c)'(6})" = ge, (C 0 ¢, "),

it follows that .

- 9
Foc,

where C := C/F is the normalized Liouville vector field. From (26) and (29)

9e, (Co 0 ¢p, ") = (29)

1
o' =—(A\Vo)ocp — Too Cooc (30)
P

This means that

dg dg dg
(V()(Vok)aTllJ oc, = (Vo Cp)/aiyk ocp = (Cl;)”afyk Cp
(30) k 1 k dg
= _(()\Vo)ocp—l—FTcpCO ocp)a—ykocp
=—(AVog) o cp — m(CQ) ° Cps

where Cg = kg because of the homogeneity. Note that the terms Vo (VF)dg/0y*,
A\Vog and g/F? are of the same degree of homogeneity, i.e. they are homogeneous
of degree k — 2. Therefore the equality along the indicatrix curve implies (23).
Especially,

Ofi

k iow O fi
+Vb(vb)8yk =V 3y18yk

i
F2

. 82f-
k i

— AWo(fi) —
as was to be proved. O
Using Lemma 2 we can write formula (22) into the form
0= wi+ (Vo(Vofi))Vg(V, V) + AVo(f)v/g(V. V),
where

w; = VOJVOkGéjkg<VO7 @) (Z = 1,2)

By formula (11)

0=w; + Vo(Vof))Vg(V,V) + Vo(fi)Vo(v/9(V,V)) (i=1,2)
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because of det gi; = g(V, V). Therefore
0=wi +Vo((Vofi)V9(V.V)),
0 =i+ Vo(Vo(fi/a(ViV) — SV (Va(ViV))).
0=w+%0ﬂﬁﬁﬁﬁ®—xmﬁﬁvw
0 =i + Vo (Vo (£i/a(V. V) ) = VoW fi/a(V. V) = AV (fin/g(VoV)) - (i =1,2).
By formula (17)
0=wi + Volay) = VoA fi/g(V, V) = dei (i =1,2). (31)

Evaluating formula (31) along ¢,
w; 0 ¢p(t) + (a0 cp)(t)
= (Biocp(t) +ki(p)) (Ao cp) () + Ao cp(t)aiocp(t)  (i=1,2) (32)

because of (20) and (21). The constants k;(p) and ka(p) of integration can be
expressed by (32) provided that X o ¢, is not a constant function:

71 0 cyls) = Bi 0 cpl(5)A 0 cp(5) + i 0 cys) — i 0 ¢y (0)
X0 cp(s) — Ao ¢y(0) ’

ki(p) =

where

'yiocp(s):/oswiocp(t)dt (i=1,2)

and the parameter s € R is choosen such that Ao c,(s) — Aoc¢,(0) #0. Other-
wise the function Ao c, is constant. Since det g;; attains its extremals along the
indicatrix curve, formula (11) shows that A o ¢, is identically zero and the indica-
trix is a quadratic curve in T, M. The quadratic indicatrix curve of a (connected)
generalized Berwald manifold at a single point implies that the indicatrices are
quadratic curves at any point and we have a Riemannian surface. Indeed, the
parallel transports induced by the compatible linear connection take a quadratic
curve into quadratic curves.!

Theorem 2. The compatible linear connection of a non-Riemannian connected gen-
eralized Berwald surface must be of the local form

of; OF o°F
A Oyl Oy? ! Oyioy?’
of; OF O°F .
2 = G2 d : =1.2
ij OT ij + ay] ay f ay]ay (Za] ) )a

1Non-Riemannian Finsler surfaces with main scalar depending only on the position must be
singular; see Berwald’s original list [3, Formulas 118 I-III], see also [4] and [9].
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where the 1-homogeneous functions f1, fo are given by

fiocy(t) = ! v~ (/Otaiocp(@)dG—&-ki(p)) (i=1,2)

VeV, V)
and the integration constants satisfy equations
wi 0 ¢p(t) + (o 0 ) (t)

= ([ avco0) 0 +k)(ho ) )+ Ao cptlaroc, ) (=12

for any p € = 1(U).

Proof. Equations for the functions f; and fo imply that g(W;, C') = 0 because of
subsection 2.1.1. Equations for the integration constants imply that g(W;, V) =0
because of subsection 2.1.2. Therefore W; = 0 and we have a generalized Berwald
surface. The explicit formulas for the coefficients of the linear connection preserving
the Finslerian length of tangent vectors are

of; ovt
lej om = ng + ayfjvl + fi oy
of; ov? .
F?joﬂ:G§j+aij2+fi ay] (Zvj:172)a
because of formula (14). O

Note that the functions f; and f5 are uniquely determined by their restrictions
to the indicatrix because the 1-homogeneous extension is unique. In case of a Rie-
mannian manifold, f; and f> are of the form k1 (p)F and ko(p)F, where k;(p) and
k2(p) are arbitrary constants (cf. p; and p2 in Remark 1).

Corollary 1. The compatible linear connection of a non-Riemannian generalized
Berwalds surface is uniquely determined.

Proof. Recall that the constants k1 (p) and ko(p) of integration can be expressed
by (32) provided that A o ¢, is not a constant function. O

2.2 An application: Landsberg and generalized Berwald surfaces

Definition 3. A Finsler manifold is called a Landsberg manifold if the Landsberg
tensor of the canonical horizontal distribution vanishes. The Berwald manifolds are
defined by the vanishing of the mixed curvature tensor of the canonical horizontal
distribution.

Formula (2) implies that any Berwald manifold is a Landsberg manifold. The
converse of this statement is the famous Unicorn problem in Finsler geometry [1].

Theorem 3. A connected generalized Berwald surface is a Landsberg surface if and
only if it is a Berwald surface.
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Proof. Suppose that we have a connected two-dimensional generalized Berwald
manifold such that the Landsberg tensor vanishes, i.e. @; =0 (¢ = 1,2). Then (21)

implies that
fivVg(V,V) = ki(p)F.

On the other hand
wi = Vo(N) fiv/g(V,V) =0

due to (31). Contracting by y*, (12) says that
Vo(N)y'ki(p) = 0. (33)

If k3(p) + k3(p) # 0, then y'k1(p) + y?k2(p) = 0 is an equation of a line in 7, M.
Therefore, there are at most two positions along 0K, such that

vk (p) + 02k (p) = 0.

Otherwise V5 (v)A = 0 because of (33). A continuity argument says that Vo(v)A =0
for any v € T, M, i.e. X is constant along c,. Since det g;; attains its extremals
along the indicatrix curve, formula (11) shows that Aoc, = 0. This means that the
indicatrix is a quadratic curve in T, M. The quadratic indicatrix curve of a (con-
nected) generalized Berwald surface at a single point implies that the indicatrices
are quadratic curves at any point due to the compatible linear connection and the
induced linear mapping between the tangent spaces. Therefore we have a Rieman-
nian surface. Otherwise k1(p) = ka(p) =0 for any p € M, ie. f; =0 (i =1,2) and
the compatible linear connection must be the canonical one. Therefore we have a
Berwald manifold of dimension two. O

2.3 Wagner’s equations
To present Wagner’s equations in [17] we need the following simple observation:

Hi=0 (i=1,2) ifandonlyif y'H;=0 and VjH; =0
because of . )
Yy Yy 11,2 2771 F
det =y Vi -y Vg = — #0.
(‘/01 VOZ) Y Vo Y Vo /79(‘/7 V) 7é

Contracting (31) by
0=y Volai) = Vo(Ny' fi/9(V, V),
where y'Vo(ai;) = Vo(yioew) — Vi = S(A) and, consequently,
SO =Vo(Ny'fiv/g(V. V). (34)
Contracting (31) by Vj

0 2 VPN + Vo (SA) + ViVo (o) — VoAVE £i/g(Va V) + AS(A),
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where

. . . 12 .
ViVo(aw) = Vo(Vias) — Vo(Vi)ai 2 —Vo(SA) — Vo (Vi)

Since Vo (Vi) o ¢, = ()" it follows, by formula (30), that

i

Vo(VG) = =2V — 2 (35)
due to the —1-homogeneous extension. Therefore
i _ (12),(35
VaVo(ay) = —=Vo(SA) — Vo(Vy)au —Vo(SA) = AS(N).
Finally we have _
Vo'(N) = Vo(NVG fi/g(V. V). (36)

Equations (34) and (36) are equivalent to (31). Differentiating (34) along the
indicatrix curve

Vo(SA) = [Vo, SIA) + S(Vod) © V& () + S(Vo),

Vo(Vo(Ny' fin/g(V. V)
@ Vo(VoNy' fi/g(V, V) + VoW VG fi/g(V, V) + Vo(N)y'a
Z VN fiVaVV) + VoWV fir/g (V. V)
and, consequently,
VoMV (A) + Vo(A)S(Vod)
= Vo(VoM)VoNy' fi/g(V. V) + VoW Vo (N VG £i/g(V, V)
PR (VAS ) + VeV V),

i.e.

VoS (Vo) = Vo(VoA)S(A). (37)

In a similar way, differentiating (36) along the indicatrix curve

VoV = Vo, VA + V3 (%oA) B2 L550) — AV () — SOV + Vi (oA,

Vo(Vo(WVG fi/g(V, V)
O VNV /g V) + VoWVo(V) fi/a(V V) + V(W) Vo
P v (v WV Fi/g(VV) = oV iV (V. V)
- Vo(A)ﬁfm/W — Vo(WS(\)
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and, consequently,

o) (ESe(N) + Avohm £SOV — v&(m))
VOWW VS i
—Vo(M)Vo(A ﬁ Fiv/ gV, V) = VoM V(M) S(N)

= Vo (Vo) AVo(A g(V, V)

34),(36 1
PR Vo (VoW () = AoV (N) = = Vo(A)So(M)
= VoMV (A)S(N),
ie.
Vo(VG' (Vo) = Vo (Vo) V' (A). (38)
Since S and V' span the horizontal subspaces we can write, by (37) and (38), that
Vo)X (Vod) = Vo( M X! (N) (6= 1,2). (39)
Equations (39) are called Wagner’s equations [17, Formula 18].
Wagner’s notations [17]
the evaluation of the the canonical horizontal
main scalar along the 04 = (Aoc,) sections:
central affine arcwise o Vg = Xg, =12
parametrization: =Vo(N) ocp
A=MXog,

Consider the indicatrix bundle IM := F~!(1). Wagner’s equations imply that

Vo(AN)d(VoA) = Vo(VoA)dA (40)
holds on the manifold IM because Vo(A)Vo(VoA) = Vo(Vor)Vo(A) is automathic;
note that

Vo(F)=XMNF)=0 (i=1,2),

ie. Vo, X' and X form a local frame of the indicatrix bundle. Suppose that
F(v) =1 and Vo(v)A # 0. Equation (40) implies that d(VpA) is the proportional
of d\ around v and, consequently,

dVoM AdA=0 < d((VoA)dA\) =0

This means that there is a (local) solution pye. such that

(VoA)dA = dpuoc- (41)

Taking a coordinate system ¢ = (z!,2% )\) of the indicatrix bundle around wv,
formula (41) says that duiec/02' = Opioe/02? = 0. This means that p,. depends
only on A. If the function f is defined by f(\) := p,.(A), where pioc is the local
solution of (41), then Vj(X\) = f(\) as Wagner’s theorem states; note that f(s) := 0,
where s = A(v) and Vy(v)A = 0.

Theorem 4 (Wagner’s theorem). [17] A necessary and sufficient condition that
Fy (%5 #0) be a generalized Berwald space is that 22 be a function of A.
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3 Some remarks about the converse of Wagner’s theorem
Consider a Finslerian unit vector v € TM such that Vo(v)A # 0 and ¢,(0) = v. If

Vo(A) = f(A) (42)

then Wagner’s equations (37) and (38) are automatically satisfied (it follows with-
out the regularity condition Vp(v)A # 0 as well). Using Cartan’s permutation
formulas (13) together with (37) and (38),

(o) =2, (13)
(0 () = (E3) = g - Woliy) - @

Introducing the function

wp(t) = ci (1)B; 0 cp(t) 2 i (1) /0 i 0 ¢y (6) d6

we also have that

(wp)'(t) = (CZ)’(t)/O a; 0 ¢p(0) dB + (y' ) o (1) 2 (CZ)’(??)/O a; o cp(#) db,

t
wp )= (6)(0) [ aroc6)ds + (Vian) o (0
0
i t
’ i Y
L0 (Vo ep(t)(ch) (1) + 5 0 (1) / ;0 cyl6) d — (S) o ¢, (1)
1
T cp(t)wp(t) — Ao pr;(t) = (5A) o cp(1).
Comparing with (44), the existence and the unicity of the solution of a second
order linear equation initial value problem and formula (30) imply that

SA )

Ty 0 Cp(t) = wp(t) + (y'ki(p)) 0 ¢p(t)

VoA
for any parameter t sufficiently close to 0, where the integration constants are
choosen such that

SA

7o ° cp(0) = ¢} (0)k1(p) + c2(0)k2(p),

h
‘1//00;\ 0 ¢p(0) = (¢) (0)k1(p) + (c}) (0)ka(p).

Recall that the determinant of the coefficient matrix is

1 2y/ 2 1V/(0) = de vty o — F,oc =
¢p(0)(c5)"(0) = ¢, (0)(c;,)"(0) = det (Vol Vo2> »(0) p(0) = 1.
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Therefore (34) and (36) are locally satisfied by the uniquely determined functions
N
VvV, V) e cp(t)

(cf. formula (21)) and equation (32) also holds provided that ¢ is sufficiently close
to 0. Unfortunately, condition 9A/90 # 0 can not be satisfied all along the central
affine arcwise parametrization of the indicatrix curve of a non-singular Finsler
metric because of the smooth periodicity. What about the case of Vj(v)A = 07
If we can not use a continuity argument to conclude (34) and (36) then condition
(42) must be completed by equations S(v)A = 0 (cf. formula (34)) and VZ*(v)A = 0
(cf. formula (36)). Especially, this is the case along quadratic parts of the indicatrix
curve. For explicit constructions of generalized Berwald surfaces, see [16].

fioep(t) = (Biocp(t) +ki(p)) (i=1,2)
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