Insertion of a Contra-Baire-1 (Baire-.5) Function

Majid Mirmiran

Abstract

Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a Baire- 5 function between two comparable real-valued functions on the topological spaces that F_{σ}-kernel of sets are F_{σ}-sets.

1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [17]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [17].

Recall that a real-valued function f defined on a topological space X is called A-continuous [20] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4], [10]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.
J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1], [3], [7], [8], [9], [11], [12], [19].

Results of Katětov [13], [14] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient condition for the insertion of a Baire-. 5 function between two comparable real-valued functions on the topological spaces that F_{σ}-kernel of sets are F_{σ}-sets.

[^0]A real-valued function f defined on a topological space X is called contra-Baire-. 5 (Baire-.5) if the preimage of every open subset of \mathbb{R} is a G_{δ}-set in $X[21]$.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. $g<f$) in case $g(x) \leq f(x)$ (resp. $g(x)<f(x))$ for all x in X.

The following definitions are modifications of conditions considered in [15].
A property P defined relative to a real-valued function on a topological space is a B-.5-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire- .5 function also has property P. If P_{1} and P_{2} are B-.5-properties, the following terminology is used:
(i) A space X has the weak B-.5-insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g \leq f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g \leq h \leq f$.
(ii) A space X has the B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$ if and only if for any functions g and f on X such that $g<f, g$ has property P_{1} and f has property P_{2}, then there exists a Baire-. 5 function h such that $g<h<f$.

In this paper, for a topological space that F_{σ}-kernel of sets are F_{σ}-sets, is given a sufficient condition for the weak B-. 5 -insertion property. Also for a space with the weak B-. 5 -insertion property, we give a necessary and sufficient condition for the space to have the $B-.5$-insertion property. Several insertion theorems are obtained as corollaries of these results.

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-. 5 function, the necessary definitions and terminology are stated.

Definition 1. Let A be a subset of a topological space (X, τ). We define the subsets A^{Λ} and A^{V} as follows:

$$
A^{\Lambda}=\bigcap\{O: O \supseteq A, O \in(X, \tau)\}
$$

and

$$
A^{V}=\bigcup\left\{F: F \subseteq A, F^{c} \in(X, \tau)\right\}
$$

In [6], [16], [18], A^{Λ} is called the kernel of A.
Definition 2. We define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$ as follows:

$$
G_{\delta}(A)=\bigcup\left\{O: O \subseteq A, O \text { is } G_{\delta} \text {-set }\right\}
$$

and

$$
F_{\sigma}(A)=\bigcap\left\{F: F \supseteq A, F \text { is } F_{\sigma} \text {-set }\right\} .
$$

$F_{\sigma}(A)$ is called the F_{σ}-kernel of A.
The following first two definitions are modifications of conditions considered in [13], [14].

Definition 3. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 4. A binary relation ρ in the power set $P(X)$ of a topological space X is called a strong binary relation in $P(X)$ in case ρ satisfies each of the following conditions:

1. If $A_{i} \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and for any $j \in\{1, \ldots, n\}$, then there exists a set C in $P(X)$ such that $A_{i} \rho C$ and $C \rho B_{j}$ for any $i \in\{1, \ldots, m\}$ and any $j \in\{1, \ldots, n\}$.
2. If $A \subseteq B$, then $A \bar{\rho} B$.
3. If $A \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 5. If f is a real-valued function defined on a space X and if

$$
\{x \in X: f(x)<\ell\} \subseteq A(f, \ell) \subseteq\{x \in X: f(x) \leq \ell\}
$$

for a real number ℓ, then $A(f, \ell)$ is a lower indefinite cut set in the domain of f at the level ℓ.

We now give the following main results:
Theorem 1. Let g and f be real-valued functions on the topological space X, that F_{σ}-kernel of sets in X are F_{σ}-sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$, then there exists a Baire-. 5 function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets $A(f, t)$ and $A(g, t)$ in the domain of f and g at the level t for each rational number t such that if $t_{1}<t_{2}$ then $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by $F(t)=A(f, t)$ and $G(t)=A(g, t)$. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \bar{\rho} F\left(t_{2}\right), G\left(t_{1}\right) \bar{\rho} G\left(t_{2}\right)$, and $F\left(t_{1}\right) \rho G\left(t_{2}\right)$. By Lemmas 1 and 2 of [14] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_{1} and t_{2} are any rational numbers with $t_{1}<t_{2}$, then $F\left(t_{1}\right) \rho H\left(t_{2}\right), H\left(t_{1}\right) \rho H\left(t_{2}\right)$ and $H\left(t_{1}\right) \rho G\left(t_{2}\right)$.

For any x in X, let

$$
h(x)=\inf \{t \in \mathbb{Q}: x \in H(t)\}
$$

We first verify that $g \leq h \leq f$: If x is in $H(t)$ then x is in $G\left(t^{\prime}\right)$ for any $t^{\prime}>t$; since x in $G\left(t^{\prime}\right)=A\left(g, t^{\prime}\right)$ implies that $g(x) \leq t^{\prime}$, it follows that $g(x) \leq t$. Hence
$g \leq h$. If x is not in $H(t)$, then x is not in $F\left(t^{\prime}\right)$ for any $t^{\prime}<t$; since x is not in $F\left(t^{\prime}\right)=A\left(f, t^{\prime}\right)$ implies that $f(x)>t^{\prime}$, it follows that $f(x) \geq t$. Hence $h \leq f$.

Also, for any rational numbers t_{1} and t_{2} with $t_{1}<t_{2}$, we have

$$
h^{-1}\left(t_{1}, t_{2}\right)=G_{\delta}\left(H\left(t_{2}\right)\right) \backslash F_{\sigma}\left(H\left(t_{1}\right)\right) .
$$

Hence $h^{-1}\left(t_{1}, t_{2}\right)$ is a G_{δ}-set in X, i.e., h is a Baire-. 5 function on X.
The above proof used the technique of Theorem 1 of [13].
Theorem 2. Let P_{1} and P_{2} be B-.5-property and X be a space that satisfies the weak B-.5-insertion property for $\left(P_{1}, P_{2}\right)$. Also assume that g and f are functions on X such that $g<f, g$ has property P_{1} and f has property P_{2}. The space X has the B-.5-insertion property for (P_{1}, P_{2}) if and only if there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a decreasing sequence $\left\{D_{n}\right\}$ of subsets of X with empty intersection and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by Baire-. 5 functions.

Proof. Assume that X has the weak B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$. Let g and f be functions such that $g<f, g$ has property P_{1} and f has property P_{2}. By hypothesis there exist lower cut sets $A\left(f-g, 3^{-n+1}\right)$ and there exists a sequence $\left(D_{n}\right)$ such that $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$ and such that for each $n, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separated by Baire- .5 functions. Let k_{n} be a Baire- .5 function such that $k_{n}=0$ on $A\left(f-g, 3^{-n+1}\right)$ and $k_{n}=1$ on $X \backslash D_{n}$. Let a function k on X be defined by

$$
k(x)=1 / 2 \sum_{n=1}^{\infty} 3^{-n} k_{n}(x) .
$$

By the Cauchy condition and the B-. 5 -properties, the function k is a Baire-. 5 function. Since $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$ and since $k_{n}=1$ on $X \backslash D_{n}$, it follows that $0<k$. Also $2 k<f-g$: In order to see this, observe first that if x is in $A\left(f-g, 3^{-n+1}\right)$, then $k(x) \leq 1 / 4\left(3^{-n}\right)$. If x is any point in X, then $x \notin A(f-g, 1)$ or for some n,

$$
x \in A\left(f-g, 3^{-n+1}\right)-A\left(f-g, 3^{-n}\right) ;
$$

in the former case $2 k(x)<1$, and in the latter $2 k(x) \leq 1 / 2\left(3^{-n}\right)<f(x)-g(x)$. Thus if $f_{1}=f-k$ and if $g_{1}=g+k$, then $g<g_{1}<f_{1}<f$. Since P_{1} and P_{2} are $B-.5$-properties, then g_{1} has property P_{1} and f_{1} has property P_{2}. Since X has the weak B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a Baire-. 5 function such that $g_{1} \leq h \leq f_{1}$. Thus $g<h<f$, it follows that X satisfies the B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$. (The technique of this proof is by Katětov [13].)

Conversely, let g and f be functions on X such that g has property P_{1}, f has property P_{2} and $g<f$. By hypothesis, there exists a Baire- 5 function such that $g<h<f$. We follow an idea contained in Lane [15]. Since the constant function 0 has property P_{1}, since $f-h$ has property P_{2}, and since X has the B-. 5 -insertion property for $\left(P_{1}, P_{2}\right)$, then there exists a Baire-. 5 function k such that $0<k<f-h$. Let $A\left(f-g, 3^{-n+1}\right)$ be any lower cut set for $f-g$ and let

$$
D_{n}=\left\{x \in X: k(x)<3^{-n+2}\right\} .
$$

Since $k>0$ it follows that $\bigcap_{n=1}^{\infty} D_{n}=\emptyset$. Since

$$
A\left(f-g, 3^{-n+1}\right) \subseteq\left\{x \in X:(f-g)(x) \leq 3^{-n+1}\right\} \subseteq\left\{x \in X: k(x) \leq 3^{-n+1}\right\}
$$

and since

$$
\left\{x \in X: k(x) \leq 3^{-n+1}\right\}
$$

and

$$
\left\{x \in X: k(x) \geq 3^{-n+2}\right\}=X \backslash D_{n}
$$

are completely separated by Baire-. 5 function $\sup \left\{3^{-n+1}, \inf \left\{k, 3^{-n+2}\right\}\right\}$, it follows that for each $n, A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ are completely separated by Baire-. 5 functions.

3 Applications

Definition 6. A real-valued function f defined on a space X is called contra-upper semi-Baire-. 5 (resp. contra-lower semi-Baire-.5) if $f^{-1}(-\infty, t)$ (resp. $f^{-1}(t,+\infty)$) is a G_{δ}-set for any real number t.

The abbreviations usc, lsc, cusB-. 5 and clsB- .5 are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1. [13], [14]. A space X has the weak c-insertion property for (usc, lsc) if and only if X is normal.

Before stating the consequences of Theorem 1, and Theorem 2 we suppose that X is a topological space that F_{σ}-kernel of sets are F_{σ}-sets.

Corollary 1. For each pair of disjoint F_{σ}-sets F_{1}, F_{2}, there are two G_{δ}-sets G_{1} and G_{2} such that $F_{1} \subseteq G_{1}, F_{2} \subseteq G_{2}$ and $G_{1} \cap G_{2}=\emptyset$ if and only if X has the weak B-.5-insertion property for (cusB-.5, clsB-.5).

Proof. Let g and f be real-valued functions defined on the X, such that f is lsc B_{1}, g is usc B_{1}, and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G_{\delta}(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(f, t_{1}\right) \subseteq\left\{x \in X: f(x) \leq t_{1}\right\} \subseteq\left\{x \in X: g(x)<t_{2}\right\} \subseteq A\left(g, t_{2}\right) ;
$$

since $\left\{x \in X: f(x) \leq t_{1}\right\}$ is a F_{σ}-set and since $\left\{x \in X: g(x)<t_{2}\right\}$ is a G_{δ}-set, it follows that

$$
F_{\sigma}\left(A\left(f, t_{1}\right)\right) \subseteq G_{\delta}\left(A\left(g, t_{2}\right)\right)
$$

Hence $t_{1}<t_{2}$ implies that $A\left(f, t_{1}\right) \rho A\left(g, t_{2}\right)$. The proof follows from Theorem 1.
On the other hand, let F_{1} and F_{2} are disjoint F_{σ}-sets. Set $f=\chi_{F_{1}^{c}}$ and $g=\chi_{F_{2}}$, then f is clsB-.5, g is cusB-.5, and $g \leq f$. Thus there exists Baire-. 5 function h such that $g \leq h \leq f$. Set

$$
G_{1}=\left\{x \in X: h(x)<\frac{1}{2}\right\}
$$

and

$$
G_{2}=\left\{x \in X: h(x)>\frac{1}{2}\right\}
$$

then G_{1} and G_{2} are disjoint G_{δ}-sets such that $F_{1} \subseteq G_{1}$ and $F_{2} \subseteq G_{2}$.
Remark 2. [22] A space X has the weak c-insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 2. For every G of G_{δ}-set, $F_{\sigma}(G)$ is a G_{δ}-set if and only if X has the weak B-.5-insertion property for (clsB-.5, cusB-.5).

Before giving the proof of this corollary, the necessary lemma is stated.
Lemma 1. The following conditions on the space X are equivalent:
(i) For every G of G_{δ}-set we have $F_{\sigma}(G)$ is a G_{δ}-set.
(ii) For each pair of disjoint G_{δ}-sets as G_{1} and G_{2} we have $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=\emptyset$.

The proof of Lemma 1 is a direct consequence of the definition F_{σ}-kernel of sets.

We now give the proof of Corollary 2.
Proof of Corollary 2. Let g and f be real-valued functions defined on the X, such that f is clsB-. $5, g$ is cusB-. 5 , and $f \leq g$. If a binary relation ρ is defined by $A \rho B$ in case

$$
F_{\sigma}(A) \subseteq G \subseteq F_{\sigma}(G) \subseteq G_{\delta}(B)
$$

for some G_{δ}-set g in X, then by hypothesis and Lemma 1ρ is a strong binary relation in the power set of X. If t_{1} and t_{2} are any elements of \mathbb{Q} with $t_{1}<t_{2}$, then

$$
A\left(g, t_{1}\right)=\left\{x \in X: g(x)<t_{1}\right\} \subseteq\left\{x \in X: f(x) \leq t_{2}\right\}=A\left(f, t_{2}\right) ;
$$

since $\left\{x \in X: g(x)<t_{1}\right\}$ is a G_{δ}-set and since $\left\{x \in X: f(x) \leq t_{2}\right\}$ is a F_{σ}-set, by hypothesis it follows that $A\left(g, t_{1}\right) \rho A\left(f, t_{2}\right)$. The proof follows from Theorem 1.

On the other hand, Let G_{1} and G_{2} are disjoint G_{δ}-sets. Set $f=\chi_{G_{2}}$ and $g=\chi_{G_{1}^{c}}$, then f is clsB-. $5, g$ is cusB-. 5 , and $f \leq g$.

Thus there exists Baire-. 5 function h such that $f \leq h \leq g$. Set

$$
F_{1}=\left\{x \in X: h(x) \leq \frac{1}{3}\right\}
$$

and

$$
F_{2}=\left\{x \in X: h(x) \geq \frac{2}{3}\right\}
$$

then F_{1} and F_{2} are disjoint F_{σ}-sets such that $G_{1} \subseteq F_{1}$ and $G_{2} \subseteq F_{2}$. Hence

$$
F_{\sigma}\left(F_{1}\right) \cap F_{\sigma}\left(F_{2}\right)=\emptyset .
$$

Before stating the consequences of Theorem 2, we state and prove the necessary lemmas.

Lemma 2. The following conditions on the space X are equivalent:
(i) Every two disjoint F_{σ}-sets of X can be separated by G_{δ}-sets of X.
(ii) If F is a F_{σ}-set of X which is contained in a G_{δ}-set G, then there exists a G_{δ}-set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_{σ}-set and G_{δ}-set of X, respectively. Hence, G^{c} is a F_{σ}-set and $F \cap G^{c}=\emptyset$.

By (i) there exists two disjoint G_{δ}-sets G_{1}, G_{2} such that $F \subseteq G_{1}$ and $G^{c} \subseteq G_{2}$. But

$$
G^{c} \subseteq G_{2} \Rightarrow G_{2}^{c} \subseteq G,
$$

and

$$
G_{1} \cap G_{2}=\emptyset \Rightarrow G_{1} \subseteq G_{2}^{c}
$$

hence

$$
F \subseteq G_{1} \subseteq G_{2}^{c} \subseteq G
$$

and since G_{2}^{c} is a F_{σ}-set containing G_{1} we conclude that $F_{\sigma}\left(G_{1}\right) \subseteq G_{2}^{c}$, i.e.,

$$
F \subseteq G_{1} \subseteq F_{\sigma}\left(G_{1}\right) \subseteq G
$$

By setting $H=G_{1}$, condition (ii) holds.
(ii) \Rightarrow (i) Suppose that F_{1}, F_{2} are two disjoint F_{σ}-sets of X.

This implies that $F_{1} \subseteq F_{2}^{c}$ and F_{2}^{c} is a G_{δ}-set. Hence by (ii) there exists a G_{δ}-set H such that $F_{1} \subseteq H \subseteq F_{\sigma}(H) \subseteq F_{2}^{c}$.
But

$$
H \subseteq F_{\sigma}(H) \Rightarrow H \cap\left(F_{\sigma}(H)\right)^{c}=\emptyset
$$

and

$$
F_{\sigma}(H) \subseteq F_{2}^{c} \Rightarrow F_{2} \subseteq\left(F_{\sigma}(H)\right)^{c}
$$

Furthermore, $\left(F_{\sigma}(H)\right)^{c}$ is a G_{δ}-set of X. Hence $F_{1} \subseteq H, F_{2} \subseteq\left(F_{\sigma}(H)\right)^{c}$ and $H \cap\left(F_{\sigma}(H)\right)^{c}=\emptyset$. This means that condition (i) holds.

Lemma 3. Suppose that X is the topological space such that we can separate every two disjoint F_{σ}-sets by G_{δ}-sets. If F_{1} and F_{2} are two disjoint F_{σ}-sets of X, then there exists a Baire-. 5 function $h: X \rightarrow[0,1]$ such that

$$
h\left(F_{1}\right)=\{0\} \quad \text { and } \quad h\left(F_{2}\right)=\{1\} .
$$

Proof. Suppose F_{1} and F_{2} are two disjoint F_{σ}-sets of X. Since $F_{1} \cap F_{2}=\emptyset$, hence $F_{1} \subseteq F_{2}^{c}$. In particular, since F_{2}^{c} is a G_{δ}-set of X containing F_{1}, by Lemma 2, there exists a G_{δ}-set $H_{1 / 2}$ such that,

$$
F_{1} \subseteq H_{1 / 2} \subseteq F_{\sigma}\left(H_{1 / 2}\right) \subseteq F_{2}^{c}
$$

Note that $H_{1 / 2}$ is a G_{δ}-set and contains F_{1}, and F_{2}^{c} is a G_{δ}-set and contains $F_{\sigma}\left(H_{1 / 2}\right)$. Hence, by Lemma 2, there exists G_{δ}-sets $H_{1 / 4}$ and $H_{3 / 4}$ such that,

$$
F_{1} \subseteq H_{1 / 4} \subseteq F_{\sigma}\left(H_{1 / 4}\right) \subseteq H_{1 / 2} \subseteq F_{\sigma}\left(H_{1 / 2}\right) \subseteq H_{3 / 4} \subseteq F_{\sigma}\left(H_{3 / 4}\right) \subseteq F_{2}^{c}
$$

By continuing this method for every $t \in D$, where $D \subseteq[0,1]$ is the set of rational numbers that their denominators are exponents of 2 , we obtain G_{δ}-sets H_{t} with the property that if $t_{1}, t_{2} \in D$ and $t_{1}<t_{2}$, then $H_{t_{1}} \subseteq H_{t_{2}}$. We define the function h on X by

$$
h(x)=\inf \left\{t: x \in H_{t}\right\}
$$

for $x \notin F_{2}$ and $h(x)=1$ for $x \in F_{2}$.
Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into [0,1$]$. Also, we note that for any $t \in D, F_{1} \subseteq H_{t}$; hence $h\left(F_{1}\right)=\{0\}$. Furthermore, by definition, $h\left(F_{2}\right)=\{1\}$. It remains only to prove that h is a Baire- 5 function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X: h(x)<\alpha\}=\emptyset$ and if $0<\alpha$ then

$$
\{x \in X: h(x)<\alpha\}=\bigcup\left\{H_{t}: t<\alpha\right\}
$$

hence, they are G_{δ}-sets of X. Similarly, if $\alpha<0$ then

$$
\{x \in X: h(x)>\alpha\}=X
$$

and if $0 \leq \alpha$ then

$$
\{x \in X: h(x)>\alpha\}=\bigcup\left\{\left(F_{\sigma}\left(H_{t}\right)\right)^{c}: t>\alpha\right\}
$$

hence, every of them is a G_{δ}-set. Consequently h is a Baire- .5 function.
Lemma 4. Suppose that X is the topological space such that every two disjoint F_{σ}-sets can be separated by G_{δ}-sets. The following conditions are equivalent:
(i) Every countable convering of G_{δ}-sets of X has a refinement consisting of G_{δ}-sets such that, for every $x \in X$, there exists a G_{δ}-set containing x such that it intersects only finitely many members of the refinement.
(ii) Corresponding to every decreasing sequence $\left\{F_{n}\right\}$ of F_{σ}-sets with empty intersection there exists a decreasing sequence $\left\{G_{n}\right\}$ of G_{δ}-sets such that, $\bigcap_{n=1}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}, F_{n} \subseteq G_{n}$.

Proof. (i) \Rightarrow (ii). suppose that $\left\{F_{n}\right\}$ be a decreasing sequence of F_{σ}-sets with empty intersection. Then $\left\{F_{n}^{c}: n \in \mathbb{N}\right\}$ is a countable covering of G_{δ}-sets. By hypothesis (i) and Lemma 2, this covering has a refinement $\left\{V_{n}: n \in \mathbb{N}\right\}$ such that every V_{n} is a G_{δ}-set and $F_{\sigma}\left(V_{n}\right) \subseteq F_{n}^{c}$. By setting $F_{n}=\left(F_{\sigma}\left(V_{n}\right)\right)^{c}$, we obtain a decreasing sequence of G_{δ}-sets with the required properties.
(ii) \Rightarrow (i). Now if $\left\{H_{n}: n \in \mathbb{N}\right\}$ is a countable covering of G_{δ}-sets, we set for $n \in \mathbb{N}, F_{n}=\left(\bigcup_{i=1}^{n} H_{i}\right)^{c}$. Then $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. By (ii) there exists a decreasing sequence $\left\{G_{n}\right\}$ consisting of G_{δ}-sets such that, $\bigcap_{n=1}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}, F_{n} \subseteq G_{n}$. Now we define the subsets W_{n} of X in the following manner:
W_{1} is a G_{δ}-set of X such that $G_{1}^{c} \subseteq W_{1}$ and $F_{\sigma}\left(W_{1}\right) \cap F_{1}=\emptyset$.
W_{2} is a G_{δ}-set of X such that $F_{\sigma}\left(W_{1}\right) \cup G_{2}^{c} \subseteq W_{2}$ and $F_{\sigma}\left(W_{2}\right) \cap F_{2}=\emptyset$, and so on. (By Lemma 2, W_{n} exists).

Then since $\left\{G_{n}^{c}: n \in \mathbb{N}\right\}$ is a covering for X, hence $\left\{W_{n}: n \in \mathbb{N}\right\}$ is a covering for X consisting of G_{δ}-sets. Moreover, we have
(i) $F_{\sigma}\left(W_{n}\right) \subseteq W_{n+1}$
(ii) $G_{n}^{c} \subseteq W_{n}$
(iii) $W_{n} \subseteq \bigcup_{i=1}^{n} H_{i}$.

Now suppose that $S_{1}=W_{1}$ and for $n \geq 2$, we set $S_{n}=W_{n+1} \backslash F_{\sigma}\left(W_{n-1}\right)$.
Then since $F_{\sigma}\left(W_{n-1}\right) \subseteq W_{n}$ and $S_{n} \supseteq W_{n+1} \backslash W_{n}$, it follows that $\left\{S_{n}: n \in \mathbb{N}\right\}$ consists of G_{δ}-sets and covers X. Furthermore, $S_{i} \cap S_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

$$
\begin{array}{llll}
S_{1} \cap H_{1}, & S_{1} \cap H_{2} & & \\
S_{2} \cap H_{1}, & S_{2} \cap H_{2}, & S_{2} \cap H_{3} & \\
S_{3} \cap H_{1}, & S_{3} \cap H_{2}, & S_{3} \cap H_{3}, & S_{3} \cap H_{4}
\end{array}
$$

and continue ad infinitum. These sets are G_{δ}-sets, cover X and refine $\left\{H_{n}: n \in \mathbb{N}\right\}$. In addition, $S_{i} \cap H_{j}$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_{n} \cap H_{m}$, then $S_{n} \cap H_{m}$ is a G_{δ}-set containing x that intersects at most finitely many of sets $S_{i} \cap H_{j}$. Consequently,

$$
\left\{S_{i} \cap H_{j}: i \in \mathbb{N}, j=1, \ldots, i+1\right\}
$$

refines $\left\{H_{n}: n \in \mathbb{N}\right\}$ such that its elements are G_{δ}-sets, and for every point in X we can find a G_{δ}-set containing the point that intersects only finitely many elements of that refinement.

Remark 3. [13], [14] A space X has the c-insertion property for (usc, lsc) if and only if X is normal and countably paracompact.

Corollary 3. X has the B-.5-insertion property for (cusB-.5, clsB-.5) if and only if every two disjoint F_{σ}-sets of X can be separated by G_{δ}-sets, and in addition, every countable covering of G_{δ}-sets has a refinement that consists of G_{δ}-sets such that, for every point of X we can find a G_{δ}-set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F_{1} and F_{2} are disjoint F_{σ}-sets. Since $F_{1} \cap F_{2}=\emptyset$, it follows that $F_{2} \subseteq F_{1}^{c}$. We set $f(x)=2$ for $x \in F_{1}^{c}, f(x)=\frac{1}{2}$ for $x \notin F_{1}^{c}$, and $g=\chi_{F_{2}}$.

Since F_{2} is a F_{σ}-set, and F_{1}^{c} is a G_{δ}-set, therefore g is cusB-. $5, f$ is clsB-. 5 and furthermore $g<f$. Hence by hypothesis there exists a Baire-. 5 function h such that, $g<h<f$. Now by setting

$$
G_{1}=\{x \in X: h(x)<1\}
$$

and

$$
G_{2}=\{x \in X: h(x)>1\} .
$$

We can say that G_{1} and G_{2} are disjoint G_{δ}-sets that contain F_{1} and F_{2}, respectively. Now suppose that $\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets with empty intersection. Set $F_{0}=X$ and define for every $x \in F_{n} \backslash F_{n+1}$,

$$
f(x)=\frac{1}{n+1} .
$$

Since

$$
\bigcap_{n=0}^{\infty} F_{n}=\emptyset
$$

and for every $x \in X$, there exists $n \in \mathbb{N}$, such that, $x \in F_{n} \backslash F_{n+1}, f$ is well defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then

$$
\{x \in X: f(x)>r\}=X
$$

is a G_{δ}-set and if $r>0$ then by Archimedean property of \mathbb{R}, we can find $i \in \mathbb{N}$ such that

$$
\frac{1}{i+1} \leq r
$$

Now suppose that k is the least natural number such that $\frac{1}{k+1} \leq r$. Hence $\frac{1}{k}>r$ and consequently,

$$
\{x \in X: f(x)>r\}=X \backslash F_{k}
$$

is a G_{δ}-set. Therefore, f is clsB-.5. By setting $g=0$, we have g is cusB-. 5 and $g<f$. Hence by hypothesis there exists a Baire-. 5 function h on X such that, $g<h<f$.

By setting

$$
G_{n}=\left\{x \in X: h(x)<\frac{1}{n+1}\right\}
$$

we have G_{n} is a G_{δ}-set. But for every $x \in F_{n}$, we have

$$
f(x) \leq \frac{1}{n+1}
$$

and since $g<h<f$ therefore

$$
0<h(x)<\frac{1}{n+1}
$$

i.e., $x \in G_{n}$ therefore $F_{n} \subseteq G_{n}$ and since $h>0$ it follows that

$$
\bigcap_{n=1}^{\infty} G_{n}=\emptyset
$$

Hence by Lemma 4, the conditions holds.
On the other hand, since every two disjoint F_{σ}-sets can be separated by G_{δ}-sets, therefore by Corollary 1, X has the weak B-. 5 -insertion property for
(cusB-.5, clsB-.5). Now suppose that f and g are real-valued functions on X with $g<f$, such that, g is cusB-. 5 and f is clsB-.5. For every $n \in \mathbb{N}$, set

$$
A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x) \leq 3^{-n+1}\right\}
$$

Since g is cusB-.5, and f is clsB-.5, therefore $f-g$ is clsB-.5. Hence $A\left(f-g, 3^{-n+1}\right)$ is a F_{σ}-set of X. Consequently, $\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of F_{σ}-sets and furthermore since $0<f-g$, it follows that

$$
\bigcap_{n=1}^{\infty} A\left(f-g, 3^{-n+1}\right)=\emptyset .
$$

Now by Lemma 4, there exists a decreasing sequence $\left\{D_{n}\right\}$ of G_{δ}-sets such that

$$
A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}
$$

and

$$
\bigcap_{n=1}^{\infty} D_{n}=\emptyset .
$$

But by Lemma 3, $A\left(f-g, 3^{-n+1}\right)$ and $X \backslash D_{n}$ of F_{σ}-sets can be completely separated by Baire- .5 functions. Hence by Theorem 2, there exists a Baire-. 5 function h defined on X such that, $g<h<f$, i.e., X has the B-. 5 -insertion property for (cusB-.5, clsB-.5).

Remark 4. [15] A space X has the c-insertion property for (lsc, usc) iff X is extremally disconnected and if for any decreasing sequence $\left\{G_{n}\right\}$ of open subsets of X with empty intersection there exists a decreasing sequence $\left\{F_{n}\right\}$ of closed subsets of X with empty intersection such that $G_{n} \subseteq F_{n}$ for each n.

Corollary 4. For every G of G_{δ}-set, $F_{\sigma}(G)$ is a G_{δ}-set and in addition for every decreasing sequence $\left\{G_{n}\right\}$ of G_{δ}-sets with empty intersection, there exists a decreasing sequence $\left\{F_{n}\right\}$ of F_{σ}-sets with empty intersection such that for every $n \in \mathbb{N}$, $G_{n} \subseteq F_{n}$ if and only if X has the B-. 5 -insertion property for (clsB-. 5, cusB-.5).

Proof. Since for every G of G_{δ}-set, $F_{\sigma}(G)$ is a G_{δ}-set, therefore by Corollary 2, X has the weak B-. 5 -insertion property for (clsB-.5, cusB-.5). Now suppose that f and g are real-valued functions defined on X with $g<f, g$ is clsB-. 5 , and f is cusB-.5. Set

$$
A\left(f-g, 3^{-n+1}\right)=\left\{x \in X:(f-g)(x)<3^{-n+1}\right\}
$$

Then since $f-g$ is cusB-. 5 , hence $\left\{A\left(f-g, 3^{-n+1}\right)\right\}$ is a decreasing sequence of G_{δ}-sets with empty intersection. By hypothesis, there exists a decreasing sequence $\left\{D_{n}\right\}$ of F_{σ}-sets with empty intersection such that, for every $n \in \mathbb{N}$, $A\left(f-g, 3^{-n+1}\right) \subseteq D_{n}$. Hence $X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are two disjoint G_{δ}-sets and therefore by Lemma 1 , we have

$$
F_{\sigma}\left(A\left(f-g, 3^{-n+1}\right)\right) \cap F_{\sigma}\left(\left(X \backslash D_{n}\right)\right)=\emptyset
$$

and therefore by Lemma $3, X \backslash D_{n}$ and $A\left(f-g, 3^{-n+1}\right)$ are completely separable by Baire-. 5 functions. Therefore by Theorem 2, there exists a Baire-. 5 function h on X such that, $g<h<f$, i.e., X has the B-. 5 -insertion property for (clsB-. 5 , cusB-. 5).

On the other hand, suppose that G_{1} and G_{2} be two disjoint G_{δ}-sets. Since $G_{1} \cap G_{2}=\emptyset$. We have $G_{2} \subseteq G_{1}^{c}$. We set $f(x)=2$ for $x \in G_{1}^{c}, f(x)=\frac{1}{2}$ for $x \notin G_{1}^{c}$ and $g=\chi_{G_{2}}$.

Then since G_{2} is a G_{δ}-set and G_{1}^{c} is a F_{σ}-set, we conclude that g is clsB-. 5 and f is cusB-. 5 and furthermore $g<f$. By hypothesis, there exists a Baire-. 5 function h on X such that, $g<h<f$. Now we set

$$
F_{1}=\left\{x \in X: h(x) \leq \frac{3}{4}\right\}
$$

and

$$
F_{2}=\{x \in X: h(x) \geq 1\} .
$$

Then F_{1} and F_{2} are two disjoint F_{σ}-sets contain G_{1} and G_{2}, respectively. Hence $F_{\sigma}\left(G_{1}\right) \subseteq F_{1}$ and $F_{\sigma}\left(G_{2}\right) \subseteq F_{2}$ and consequently $F_{\sigma}\left(G_{1}\right) \cap F_{\sigma}\left(G_{2}\right)=\emptyset$. By Lemma 1 , for every G of G_{δ}-set, the set $F_{\sigma}(G)$ is a G_{δ}-set.

Now suppose that $\left\{G_{n}\right\}$ is a decreasing sequence of $G_{\boldsymbol{\delta}}$-sets with empty intersection.

We set $G_{0}=X$ and $f(x)=\frac{1}{n+1}$ for $x \in G_{n} \backslash G_{n+1}$. Since $\bigcap_{n=0}^{\infty} G_{n}=\emptyset$ and for every $n \in \mathbb{N}$ there exists $x \in G_{n} \backslash G_{n+1}, f$ is well-defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then

$$
\{x \in X: f(x)<r\}=\emptyset
$$

is a G_{δ}-set and if $r>0$ then by Archimedean property of \mathbb{R}, there exists $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leq r$. Suppose that k is the least natural number with this property. Hence $\frac{1}{k}>r$. Now if $\frac{1}{k+1}<r$ then

$$
\{x \in X: f(x)<r\}=G_{k}
$$

is a G_{δ}-set and if $\frac{1}{k+1}=r$ then

$$
\{x \in X: f(x)<r\}=G_{k+1}
$$

is a G_{δ}-set. Hence f is a cusB-. 5 on X. By setting $g=0$, we have conclude that g is clsB- .5 on X and in addition $g<f$. By hypothesis there exists a Baire-. 5 function h on X such that, $g<h<f$.

Set

$$
F_{n}=\left\{x \in X: h(x) \leq \frac{1}{n+1}\right\}
$$

This set is a F_{σ}-set. But for every $x \in G_{n}$, we have $f(x) \leq \frac{1}{n+1}$ and since $g<h<f$ thus $h(x)<\frac{1}{n+1}$, this means that $x \in F_{n}$ and consequently $G_{n} \subseteq F_{n}$.

By definition of $F_{n},\left\{F_{n}\right\}$ is a decreasing sequence of F_{σ}-sets and since $h>0$, $\bigcap_{n=1}^{\infty} F_{n}=\emptyset$. Thus the conditions holds.

References

[1] A. Al-Omari, M.S. Md Noorani: Some properties of contra-b-continuous and almost contra-b-continuous functions. European J. Pure. Appl. Math. 2 (2) (2009) 213-230.
[2] F. Brooks: Indefinite cut sets for real functions. Amer. Math. Monthly 78 (1971) 1007-1010.
[3] M. Caldas, S. Jafari: Some properties of contra- β-continuous functions. Mem. Fac. Sci. Kochi. Univ. 22 (2001) 19-28.
[4] J. Dontchev: The characterization of some peculiar topological space via α - and β-sets. Acta Math. Hungar. 69 (1-2) (1995) 67-71.
[5] J. Dontchev: Contra-continuous functions and strongly S-closed space. Internat. J. Math. Math. Sci. 19 (2) (1996) 303-310.
[6] J. Dontchev, H. Maki: On sg-closed sets and semi- λ-closed sets. Questions Answers Gen. Topology 15 (2) (1997) 259-266.
[7] E. Ekici: On contra-continuity. Annales Univ. Sci. Bodapest 47 (2004) 127-137.
[8] E. Ekici: New forms of contra-continuity. Carpathian J. Math. 24 (1) (2008) 37-45.
[9] A.I. El-Magbrabi: Some properties of contra-continuous mappings. Int. J. General Topol. 3 (1-2) (2010) 55-64.
[10] M. Ganster, I. Reilly: A decomposition of continuity. Acta Math. Hungar. 56 (3-4) (1990) 299-301.
[11] S. Jafari, T. Noiri: Contra-continuous function between topological spaces. Iranian Int. J. Sci. 2 (2001) 153-167.
[12] S. Jafari, T. Noiri: On contra-precontinuous functions. Bull. Malaysian Math. Sc. Soc. 25 (2002) 115-128.
[13] M. Katětov: On real-valued functions in topological spaces. Fund. Math. 38 (1951) 85-91.
[14] M. Katětov: Correction to "On real-valued functions in topological spaces". Fund. Math. 40 (1953) 203-205.
[15] E. Lane: Insertion of a continuous function. Pacific J. Math. 66 (1976) 181-190.
[16] S.N. Maheshwari, R. Prasad: On $R_{O s}$-spaces. Portugal. Math. 34 (1975) 213-217.
[17] H. Maki: Generalized Λ-sets and the associated closure operator. The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986) 139-146.
[18] M. Mrsevic: On pairwise R and pairwise R_{1} bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie 30 (1986) 141-145.
[19] A.A. Nasef: Some properties of contra-continuous functions. Chaos Solitons Fractals 24 (2005) 471-477.
[20] M. Przemski: A decomposition of continuity and α-continuity. Acta Math. Hungar. 61 (1-2) (1993) 93-98.
[21] H. Rosen: Darboux Baire-. 5 functions. Proc. Amer. math. Soc. 110 (1) (1990) 285-286.
[22] M.H. Stone: Boundedness properties in function-lattices. Canad. J. Math 1 (1949) 176-189.

Received: 15 May 2018
Accepted for publication: 7 July 2019
Communicated by: Karl Dilcher

[^0]: 2010 MSC: 26A15, 54C30.
 Key words: Insertion, strong binary relation, Baire-. 5 function, kernel of sets, lower cut set. This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

    ```
    Affiliation:
    Majid Mirmiran - Department of Mathematics, University of Isfahan, Isfahan
        81746-73441, Iran
        E-mail: mirmir@sci.ui.ac.ir
    ```

