

Communications in Mathematics 27 (2019) 89–101 DOI: 10.2478/cm-2019-0009 ©2019 Majid Mirmiran This is an open access article licensed under the CC BY-NC-ND 3.0

Insertion of a Contra-Baire-1 (Baire-.5) Function

Majid Mirmiran

Abstract. Necessary and sufficient conditions in terms of lower cut sets are given for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_{σ} -kernel of sets are F_{σ} -sets.

1 Introduction

A generalized class of closed sets was considered by Maki in 1986 [17]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ -sets [17].

Recall that a real-valued function f defined on a topological space X is called A-continuous [20] if the preimage of every open subset of \mathbb{R} belongs to A, where Ais a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [4], [10]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [5] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1], [3], [7], [8], [9], [11], [12], [19].

Results of Katětov [13], [14] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient condition for the insertion of a Baire-.5 function between two comparable real-valued functions on the topological spaces that F_{σ} -kernel of sets are F_{σ} -sets.

²⁰¹⁰ MSC: 26A15, 54C30.

Key words: Insertion, strong binary relation, Baire-.5 function, kernel of sets, lower cut set.

This work was supported by University of Isfahan and Centre of Excellence for Mathematics (University of Isfahan).

Affiliation:

Majid Mirmiran – Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran

E-mail: mirmir@sci.ui.ac.ir

A real-valued function f defined on a topological space X is called *contra-Baire-.5* (Baire-.5) if the preimage of every open subset of \mathbb{R} is a G_{δ} -set in X [21].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. g < f) in case $g(x) \leq f(x)$ (resp. g(x) < f(x)) for all x in X.

The following definitions are modifications of conditions considered in [15].

A property P defined relative to a real-valued function on a topological space is a *B*-.5-property provided that any constant function has property P and provided that the sum of a function with property P and any Baire-.5 function also has property P. If P_1 and P_2 are *B*-.5-properties, the following terminology is used:

- (i) A space X has the weak B-.5-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f$, g has property P_1 and f has property P_2 , then there exists a Baire-.5 function h such that $g \leq h \leq f$.
- (ii) A space X has the B-.5-insertion property for (P_1, P_2) if and only if for any functions g and f on X such that g < f, g has property P_1 and f has property P_2 , then there exists a Baire-.5 function h such that g < h < f.

In this paper, for a topological space that F_{σ} -kernel of sets are F_{σ} -sets, is given a sufficient condition for the weak *B*-.5-insertion property. Also for a space with the weak *B*-.5-insertion property, we give a necessary and sufficient condition for the space to have the *B*-.5-insertion property. Several insertion theorems are obtained as corollaries of these results.

2 The Main Result

Before giving a sufficient condition for insertability of a Baire-.5 function, the necessary definitions and terminology are stated.

Definition 1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows:

$$A^{\Lambda} = \bigcap \{ O : O \supseteq A, O \in (X, \tau) \}$$

and

$$A^{V} = \bigcup \{ F : F \subseteq A, F^{c} \in (X, \tau) \}$$

In [6], [16], [18], A^{Λ} is called the kernel of A.

Definition 2. We define the subsets $G_{\delta}(A)$ and $F_{\sigma}(A)$ as follows:

$$G_{\delta}(A) = \bigcup \{ O : O \subseteq A, O \text{ is } G_{\delta} \text{-set} \}$$

and

$$F_{\sigma}(A) = \bigcap \{F : F \supseteq A, F \text{ is } F_{\sigma}\text{-set}\}$$

 $F_{\sigma}(A)$ is called the F_{σ} -kernel of A.

The following first two definitions are modifications of conditions considered in [13], [14].

Definition 3. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 4. A binary relation ρ in the power set P(X) of a topological space X is called a strong binary relation in P(X) in case ρ satisfies each of the following conditions:

- 1. If $A_i \rho B_j$ for any $i \in \{1, \ldots, m\}$ and for any $j \in \{1, \ldots, n\}$, then there exists a set C in P(X) such that $A_i \rho C$ and $C \rho B_j$ for any $i \in \{1, \ldots, m\}$ and any $j \in \{1, \ldots, n\}$.
- 2. If $A \subseteq B$, then $A \bar{\rho} B$.
- 3. If $A \ \rho B$, then $F_{\sigma}(A) \subseteq B$ and $A \subseteq G_{\delta}(B)$.

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 5. If f is a real-valued function defined on a space X and if

$$\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$$

for a real number ℓ , then $A(f, \ell)$ is a lower indefinite cut set in the domain of f at the level ℓ .

We now give the following main results:

Theorem 1. Let g and f be real-valued functions on the topological space X, that F_{σ} -kernel of sets in X are F_{σ} -sets, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$, then there exists a Baire-.5 function h defined on X such that $g \leq h \leq f$.

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such that if $t_1 < t_2$ then $A(f,t_1) \rho A(g,t_2)$.

Define functions F and G mapping the rational numbers \mathbb{Q} into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [14] it follows that there exists a function H mapping \mathbb{Q} into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let

$$h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}$$

We first verify that $g \le h \le f$: If x is in H(t) then x is in G(t') for any t' > t; since x in G(t') = A(g, t') implies that $g(x) \le t'$, it follows that $g(x) \le t$. Hence $g \leq h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \geq t$. Hence $h \leq f$. Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have

for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have

$$h^{-1}(t_1, t_2) = G_{\delta}(H(t_2)) \setminus F_{\sigma}(H(t_1))$$

Hence $h^{-1}(t_1, t_2)$ is a G_{δ} -set in X, i.e., h is a Baire-.5 function on X.

The above proof used the technique of Theorem 1 of [13].

Theorem 2. Let P_1 and P_2 be B-.5-property and X be a space that satisfies the weak B-.5-insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that g < f, g has property P_1 and f has property P_2 . The space X has the B-.5-insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each $n, X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by Baire-.5 functions.

Proof. Assume that X has the weak B-.5-insertion property for (P_1, P_2) . Let g and f be functions such that g < f, g has property P_1 and f has property P_2 . By hypothesis there exist lower cut sets $A(f - g, 3^{-n+1})$ and there exists a sequence (D_n) such that $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and such that for each $n, X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are completely separated by Baire-.5 functions. Let k_n be a Baire-.5 function such that $k_n = 0$ on $A(f - g, 3^{-n+1})$ and $k_n = 1$ on $X \setminus D_n$. Let a function k on X be defined by

$$k(x) = 1/2 \sum_{n=1}^{\infty} 3^{-n} k_n(x).$$

By the Cauchy condition and the *B*-.5-properties, the function k is a Baire-.5 function. Since $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and since $k_n = 1$ on $X \setminus D_n$, it follows that 0 < k. Also 2k < f - g: In order to see this, observe first that if x is in $A(f - g, 3^{-n+1})$, then $k(x) \leq 1/4(3^{-n})$. If x is any point in X, then $x \notin A(f - g, 1)$ or for some n,

$$x \in A(f-g, 3^{-n+1}) - A(f-g, 3^{-n});$$

in the former case 2k(x) < 1, and in the latter $2k(x) \le 1/2(3^{-n}) < f(x) - g(x)$. Thus if $f_1 = f - k$ and if $g_1 = g + k$, then $g < g_1 < f_1 < f$. Since P_1 and P_2 are B-.5-properties, then g_1 has property P_1 and f_1 has property P_2 . Since X has the weak B-.5-insertion property for (P_1, P_2) , then there exists a Baire-.5 function such that $g_1 \le h \le f_1$. Thus g < h < f, it follows that X satisfies the B-.5-insertion property for (P_1, P_2) . (The technique of this proof is by Katětov [13].)

Conversely, let g and f be functions on X such that g has property P_1 , f has property P_2 and g < f. By hypothesis, there exists a Baire-.5 function such that g < h < f. We follow an idea contained in Lane [15]. Since the constant function 0 has property P_1 , since f - h has property P_2 , and since X has the B-.5-insertion property for (P_1, P_2) , then there exists a Baire-.5 function k such that 0 < k < f - h. Let $A(f - g, 3^{-n+1})$ be any lower cut set for f - g and let

$$D_n = \{ x \in X : k(x) < 3^{-n+2} \}.$$

Since k > 0 it follows that $\bigcap_{n=1}^{\infty} D_n = \emptyset$. Since

$$A(f - g, 3^{-n+1}) \subseteq \{x \in X : (f - g)(x) \le 3^{-n+1}\} \subseteq \{x \in X : k(x) \le 3^{-n+1}\}$$

and since

$$\{x \in X : k(x) \le 3^{-n+1}\}\$$

and

$$\{x \in X : k(x) \ge 3^{-n+2}\} = X \setminus D_n$$

are completely separated by Baire-.5 function $\sup\{3^{-n+1}, \inf\{k, 3^{-n+2}\}\}$, it follows that for each $n, A(f - g, 3^{-n+1})$ and $X \setminus D_n$ are completely separated by Baire-.5 functions.

3 Applications

Definition 6. A real-valued function f defined on a space X is called *contra-upper semi-Baire-.5* (resp. contra-lower semi-Baire-.5) if $f^{-1}(-\infty, t)$ (resp. $f^{-1}(t, +\infty)$) is a G_{δ} -set for any real number t.

The abbreviations usc, lsc, cusB-.5 and clsB-.5 are used for upper semicontinuous, lower semicontinuous, contra-upper semi-Baire-.5, and contra-lower semi-Baire-.5, respectively.

Remark 1. [13], [14]. A space X has the weak c-insertion property for (usc, lsc) if and only if X is normal.

Before stating the consequences of Theorem 1, and Theorem 2 we suppose that X is a topological space that F_{σ} -kernel of sets are F_{σ} -sets.

Corollary 1. For each pair of disjoint F_{σ} -sets F_1, F_2 , there are two G_{δ} -sets G_1 and G_2 such that $F_1 \subseteq G_1, F_2 \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$ if and only if X has the weak *B*-.5-insertion property for (cusB-.5, clsB-.5).

Proof. Let g and f be real-valued functions defined on the X, such that f is $\lg B_1$, g is $\lg B_1$, and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $F_{\sigma}(A) \subseteq G_{\delta}(B)$, then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a F_{σ} -set and since $\{x \in X : g(x) < t_2\}$ is a G_{δ} -set, it follows that

$$F_{\sigma}(A(f,t_1)) \subseteq G_{\delta}(A(g,t_2))$$

Hence $t_1 < t_2$ implies that $A(f, t_1) \rho A(g, t_2)$. The proof follows from Theorem 1.

On the other hand, let F_1 and F_2 are disjoint F_{σ} -sets. Set $f = \chi_{F_1^c}$ and $g = \chi_{F_2}$, then f is clsB-.5, g is cusB-.5, and $g \leq f$. Thus there exists Baire-.5 function h such that $g \leq h \leq f$. Set

$$G_1 = \left\{ x \in X : h(x) < \frac{1}{2} \right\}$$

and

$$G_2 = \left\{ x \in X : h(x) > \frac{1}{2} \right\},\$$

then G_1 and G_2 are disjoint G_{δ} -sets such that $F_1 \subseteq G_1$ and $F_2 \subseteq G_2$.

Remark 2. [22] A space X has the weak c-insertion property for (lsc, usc) if and only if X is extremally disconnected.

Corollary 2. For every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set if and only if X has the weak B-.5-insertion property for (clsB-.5, cusB-.5).

Before giving the proof of this corollary, the necessary lemma is stated.

Lemma 1. The following conditions on the space X are equivalent:

- (i) For every G of G_{δ} -set we have $F_{\sigma}(G)$ is a G_{δ} -set.
- (ii) For each pair of disjoint G_{δ} -sets as G_1 and G_2 we have $F_{\sigma}(G_1) \cap F_{\sigma}(G_2) = \emptyset$.

The proof of Lemma 1 is a direct consequence of the definition F_{σ} -kernel of sets.

We now give the proof of Corollary 2.

Proof of Corollary 2. Let g and f be real-valued functions defined on the X, such that f is clsB-.5, g is cusB-.5, and $f \leq g$. If a binary relation ρ is defined by $A \rho B$ in case

$$F_{\sigma}(A) \subseteq G \subseteq F_{\sigma}(G) \subseteq G_{\delta}(B)$$

for some G_{δ} -set g in X, then by hypothesis and Lemma 1 ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(g, t_1) = \{ x \in X : g(x) < t_1 \} \subseteq \{ x \in X : f(x) \le t_2 \} = A(f, t_2);$$

since $\{x \in X : g(x) < t_1\}$ is a G_{δ} -set and since $\{x \in X : f(x) \le t_2\}$ is a F_{σ} -set, by hypothesis it follows that $A(g, t_1) \rho A(f, t_2)$. The proof follows from Theorem 1.

On the other hand, Let G_1 and G_2 are disjoint G_{δ} -sets. Set $f = \chi_{G_2}$ and $g = \chi_{G_1^c}$, then f is clsB-.5, g is cusB-.5, and $f \leq g$.

Thus there exists Baire-.5 function h such that $f \leq h \leq g$. Set

$$F_1 = \left\{ x \in X : h(x) \le \frac{1}{3} \right\}$$

and

$$F_2 = \left\{ x \in X : h(x) \ge \frac{2}{3} \right\}$$

then F_1 and F_2 are disjoint F_{σ} -sets such that $G_1 \subseteq F_1$ and $G_2 \subseteq F_2$. Hence

$$F_{\sigma}(F_1) \cap F_{\sigma}(F_2) = \emptyset.$$

Before stating the consequences of Theorem 2, we state and prove the necessary lemmas.

Lemma 2. The following conditions on the space X are equivalent:

- (i) Every two disjoint F_{σ} -sets of X can be separated by G_{δ} -sets of X.
- (ii) If F is a F_{σ} -set of X which is contained in a G_{δ} -set G, then there exists a G_{δ} -set H such that $F \subseteq H \subseteq F_{\sigma}(H) \subseteq G$.

Proof. (i) \Rightarrow (ii) Suppose that $F \subseteq G$, where F and G are F_{σ} -set and G_{δ} -set of X, respectively. Hence, G^c is a F_{σ} -set and $F \cap G^c = \emptyset$.

By (i) there exists two disjoint G_{δ} -sets G_1, G_2 such that $F \subseteq G_1$ and $G^c \subseteq G_2$. But

$$G^c \subseteq G_2 \Rightarrow G_2^c \subseteq G,$$

and

$$G_1 \cap G_2 = \emptyset \Rightarrow G_1 \subseteq G_2^c$$

hence

$$F \subseteq G_1 \subseteq G_2^c \subseteq G$$

and since G_2^c is a F_{σ} -set containing G_1 we conclude that $F_{\sigma}(G_1) \subseteq G_2^c$, i.e.,

$$F \subseteq G_1 \subseteq F_{\sigma}(G_1) \subseteq G.$$

By setting $H = G_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that F_1, F_2 are two disjoint F_{σ} -sets of X. This implies that $F_1 \subseteq F_2^c$ and F_2^c is a G_{δ} -set. Hence by (ii) there exists a G_{δ} -set H such that $F_1 \subseteq H \subseteq F_{\sigma}(H) \subseteq F_2^c$. But

$$H \subseteq F_{\sigma}(H) \Rightarrow H \cap (F_{\sigma}(H))^c = \emptyset$$

and

$$F_{\sigma}(H) \subseteq F_2^c \Rightarrow F_2 \subseteq (F_{\sigma}(H))^c.$$

Furthermore, $(F_{\sigma}(H))^c$ is a G_{δ} -set of X. Hence $F_1 \subseteq H$, $F_2 \subseteq (F_{\sigma}(H))^c$ and $H \cap (F_{\sigma}(H))^c = \emptyset$. This means that condition (i) holds.

Lemma 3. Suppose that X is the topological space such that we can separate every two disjoint F_{σ} -sets by G_{δ} -sets. If F_1 and F_2 are two disjoint F_{σ} -sets of X, then there exists a Baire-.5 function $h: X \to [0, 1]$ such that

$$h(F_1) = \{0\}$$
 and $h(F_2) = \{1\}$.

Proof. Suppose F_1 and F_2 are two disjoint F_{σ} -sets of X. Since $F_1 \cap F_2 = \emptyset$, hence $F_1 \subseteq F_2^c$. In particular, since F_2^c is a G_{δ} -set of X containing F_1 , by Lemma 2, there exists a G_{δ} -set $H_{1/2}$ such that,

$$F_1 \subseteq H_{1/2} \subseteq F_{\sigma}(H_{1/2}) \subseteq F_2^c.$$

Note that $H_{1/2}$ is a G_{δ} -set and contains F_1 , and F_2^c is a G_{δ} -set and contains $F_{\sigma}(H_{1/2})$. Hence, by Lemma 2, there exists G_{δ} -sets $H_{1/4}$ and $H_{3/4}$ such that,

$$F_1 \subseteq H_{1/4} \subseteq F_{\sigma}(H_{1/4}) \subseteq H_{1/2} \subseteq F_{\sigma}(H_{1/2}) \subseteq H_{3/4} \subseteq F_{\sigma}(H_{3/4}) \subseteq F_2^c$$

By continuing this method for every $t \in D$, where $D \subseteq [0, 1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain G_{δ} -sets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by

$$h(x) = \inf\{t : x \in H_t\}$$

for $x \notin F_2$ and h(x) = 1 for $x \in F_2$.

Note that for every $x \in X, 0 \leq h(x) \leq 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D, F_1 \subseteq H_t$; hence $h(F_1) = \{0\}$. Furthermore, by definition, $h(F_2) = \{1\}$. It remains only to prove that h is a Baire-.5 function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \leq 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then

$$\{x \in X : h(x) < \alpha\} = \bigcup\{H_t : t < \alpha\},\$$

hence, they are G_{δ} -sets of X. Similarly, if $\alpha < 0$ then

$$\{x \in X : h(x) > \alpha\} = X$$

and if $0 \leq \alpha$ then

$$\{x \in X : h(x) > \alpha\} = \bigcup\{(F_{\sigma}(H_t))^c : t > \alpha\}$$

hence, every of them is a G_{δ} -set. Consequently h is a Baire-.5 function.

Lemma 4. Suppose that X is the topological space such that every two disjoint F_{σ} -sets can be separated by G_{δ} -sets. The following conditions are equivalent:

- (i) Every countable convering of G_{δ} -sets of X has a refinement consisting of G_{δ} -sets such that, for every $x \in X$, there exists a G_{δ} -set containing x such that it intersects only finitely many members of the refinement.
- (ii) Corresponding to every decreasing sequence $\{F_n\}$ of F_{σ} -sets with empty intersection there exists a decreasing sequence $\{G_n\}$ of G_{δ} -sets such that, $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}, F_n \subseteq G_n$.

Proof. (i) \Rightarrow (ii). suppose that $\{F_n\}$ be a decreasing sequence of F_{σ} -sets with empty intersection. Then $\{F_n^c : n \in \mathbb{N}\}$ is a countable covering of G_{δ} -sets. By hypothesis (i) and Lemma 2, this covering has a refinement $\{V_n : n \in \mathbb{N}\}$ such that every V_n is a G_{δ} -set and $F_{\sigma}(V_n) \subseteq F_n^c$. By setting $F_n = (F_{\sigma}(V_n))^c$, we obtain a decreasing sequence of G_{δ} -sets with the required properties.

(ii) \Rightarrow (i). Now if $\{H_n : n \in \mathbb{N}\}$ is a countable covering of G_{δ} -sets, we set for $n \in \mathbb{N}$, $F_n = (\bigcup_{i=1}^n H_i)^c$. Then $\{F_n\}$ is a decreasing sequence of F_{σ} -sets with empty intersection. By (ii) there exists a decreasing sequence $\{G_n\}$ consisting of G_{δ} -sets such that, $\bigcap_{n=1}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}$, $F_n \subseteq G_n$. Now we define the subsets W_n of X in the following manner: W_1 is a G_{δ} -set of X such that $G_1^c \subseteq W_1$ and $F_{\sigma}(W_1) \cap F_1 = \emptyset$.

 W_2 is a G_{δ} -set of X such that $F_{\sigma}(W_1) \cup G_2^c \subseteq W_2$ and $F_{\sigma}(W_2) \cap F_2 = \emptyset$, and so on. (By Lemma 2, W_n exists).

Then since $\{G_n^c : n \in \mathbb{N}\}\$ is a covering for X, hence $\{W_n : n \in \mathbb{N}\}\$ is a covering for X consisting of G_{δ} -sets. Moreover, we have

- (i) $F_{\sigma}(W_n) \subseteq W_{n+1}$
- (ii) $G_n^c \subseteq W_n$
- (iii) $W_n \subseteq \bigcup_{i=1}^n H_i$.

Now suppose that $S_1 = W_1$ and for $n \ge 2$, we set $S_n = W_{n+1} \setminus F_{\sigma}(W_{n-1})$.

Then since $F_{\sigma}(W_{n-1}) \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of G_{δ} -sets and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

$S_1 \cap H_1,$	$S_1 \cap H_2$		
$S_2 \cap H_1,$	$S_2 \cap H_2,$	$S_2 \cap H_3$	
$S_3 \cap H_1,$	$S_3 \cap H_2,$	$S_3 \cap H_3,$	$S_3 \cap H_4$

and continue ad infinitum. These sets are G_{δ} -sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a G_{δ} -set containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently,

$$\{S_i \cap H_j : i \in \mathbb{N}, j = 1, \dots, i+1\}$$

refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are G_{δ} -sets, and for every point in X we can find a G_{δ} -set containing the point that intersects only finitely many elements of that refinement.

Remark 3. [13], [14] A space X has the c-insertion property for (usc, lsc) if and only if X is normal and countably paracompact.

Corollary 3. X has the B-.5-insertion property for (cusB-.5, clsB-.5) if and only if every two disjoint F_{σ} -sets of X can be separated by G_{δ} -sets, and in addition, every countable covering of G_{δ} -sets has a refinement that consists of G_{δ} -sets such that, for every point of X we can find a G_{δ} -set containing that point such that, it intersects only a finite number of refining members.

Proof. Suppose that F_1 and F_2 are disjoint F_{σ} -sets. Since $F_1 \cap F_2 = \emptyset$, it follows that $F_2 \subseteq F_1^c$. We set f(x) = 2 for $x \in F_1^c$, $f(x) = \frac{1}{2}$ for $x \notin F_1^c$, and $g = \chi_{F_2}$.

Since F_2 is a F_{σ} -set, and F_1^c is a G_{δ} -set, therefore g is cusB-.5, f is clsB-.5 and furthermore g < f. Hence by hypothesis there exists a Baire-.5 function h such that, g < h < f. Now by setting

$$G_1 = \{ x \in X : h(x) < 1 \}$$

and

$$G_2 = \{ x \in X : h(x) > 1 \}.$$

We can say that G_1 and G_2 are disjoint G_{δ} -sets that contain F_1 and F_2 , respectively. Now suppose that $\{F_n\}$ is a decreasing sequence of F_{σ} -sets with empty intersection. Set $F_0 = X$ and define for every $x \in F_n \setminus F_{n+1}$,

$$f(x) = \frac{1}{n+1}.$$

Since

$$\bigcap_{n=0}^{\infty} F_n = \emptyset$$

and for every $x \in X$, there exists $n \in \mathbb{N}$, such that, $x \in F_n \setminus F_{n+1}$, f is well defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then

$$\{x \in X : f(x) > r\} = X$$

is a G_{δ} -set and if r > 0 then by Archimedean property of \mathbb{R} , we can find $i \in \mathbb{N}$ such that

$$\frac{1}{i+1} \le r \,.$$

Now suppose that k is the least natural number such that $\frac{1}{k+1} \leq r$. Hence $\frac{1}{k} > r$ and consequently,

$$\{x \in X : f(x) > r\} = X \setminus F_k$$

is a G_{δ} -set. Therefore, f is clsB-.5. By setting g = 0, we have g is cusB-.5 and g < f. Hence by hypothesis there exists a Baire-.5 function h on X such that, g < h < f.

By setting

$$G_n = \left\{ x \in X : h(x) < \frac{1}{n+1} \right\},$$

we have G_n is a G_{δ} -set. But for every $x \in F_n$, we have

$$f(x) \le \frac{1}{n+1}$$

and since g < h < f therefore

$$0 < h(x) < \frac{1}{n+1}$$
,

i.e., $x \in G_n$ therefore $F_n \subseteq G_n$ and since h > 0 it follows that

$$\bigcap_{n=1}^{\infty} G_n = \emptyset$$

Hence by Lemma 4, the conditions holds.

On the other hand, since every two disjoint F_{σ} -sets can be separated by G_{δ} -sets, therefore by Corollary 1, X has the weak B-.5-insertion property for

(cusB-.5, clsB-.5). Now suppose that f and g are real-valued functions on X with g < f, such that, g is cusB-.5 and f is clsB-.5. For every $n \in \mathbb{N}$, set

$$A(f-g,3^{-n+1}) = \{x \in X : (f-g)(x) \le 3^{-n+1}\}$$

Since g is cusB-.5, and f is clsB-.5, therefore f-g is clsB-.5. Hence $A(f-g, 3^{-n+1})$ is a F_{σ} -set of X. Consequently, $\{A(f-g, 3^{-n+1})\}$ is a decreasing sequence of F_{σ} -sets and furthermore since 0 < f - g, it follows that

$$\bigcap_{n=1}^{\infty} A(f - g, 3^{-n+1}) = \emptyset$$

Now by Lemma 4, there exists a decreasing sequence $\{D_n\}$ of G_{δ} -sets such that

$$A(f-g,3^{-n+1}) \subseteq D_n$$

and

$$\bigcap_{n=1}^{\infty} D_n = \emptyset.$$

But by Lemma 3, $A(f-g, 3^{-n+1})$ and $X \setminus D_n$ of F_{σ} -sets can be completely separated by Baire-.5 functions. Hence by Theorem 2, there exists a Baire-.5 function hdefined on X such that, g < h < f, i.e., X has the B-.5-insertion property for (cusB-.5, clsB-.5).

Remark 4. [15] A space X has the c-insertion property for (lsc, usc) iff X is extremally disconnected and if for any decreasing sequence $\{G_n\}$ of open subsets of X with empty intersection there exists a decreasing sequence $\{F_n\}$ of closed subsets of X with empty intersection such that $G_n \subseteq F_n$ for each n.

Corollary 4. For every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set and in addition for every decreasing sequence $\{G_n\}$ of G_{δ} -sets with empty intersection, there exists a decreasing sequence $\{F_n\}$ of F_{σ} -sets with empty intersection such that for every $n \in \mathbb{N}$, $G_n \subseteq F_n$ if and only if X has the B-.5-insertion property for (clsB-.5, cusB-.5).

Proof. Since for every G of G_{δ} -set, $F_{\sigma}(G)$ is a G_{δ} -set, therefore by Corollary 2, X has the weak B-.5-insertion property for (clsB-.5, cusB-.5). Now suppose that f and g are real-valued functions defined on X with g < f, g is clsB-.5, and f is cusB-.5. Set

$$A(f - g, 3^{-n+1}) = \{x \in X : (f - g)(x) < 3^{-n+1}\}.$$

Then since f - g is cusB-.5, hence $\{A(f - g, 3^{-n+1})\}$ is a decreasing sequence of G_{δ} -sets with empty intersection. By hypothesis, there exists a decreasing sequence $\{D_n\}$ of F_{σ} -sets with empty intersection such that, for every $n \in \mathbb{N}$, $A(f - g, 3^{-n+1}) \subseteq D_n$. Hence $X \setminus D_n$ and $A(f - g, 3^{-n+1})$ are two disjoint G_{δ} -sets and therefore by Lemma 1, we have

$$F_{\sigma}(A(f-g,3^{-n+1})) \cap F_{\sigma}((X \setminus D_n)) = \emptyset$$

and therefore by Lemma 3, $X \setminus D_n$ and $A(f-g, 3^{-n+1})$ are completely separable by Baire-.5 functions. Therefore by Theorem 2, there exists a Baire-.5 function h on X such that, g < h < f, i.e., X has the B-.5-insertion property for (clsB-.5, cusB-.5).

On the other hand, suppose that G_1 and G_2 be two disjoint G_{δ} -sets. Since $G_1 \cap G_2 = \emptyset$. We have $G_2 \subseteq G_1^c$. We set f(x) = 2 for $x \in G_1^c$, $f(x) = \frac{1}{2}$ for $x \notin G_1^c$ and $g = \chi_{G_2}$.

Then since G_2 is a G_{δ} -set and G_1^c is a F_{σ} -set, we conclude that g is clsB-.5 and f is cusB-.5 and furthermore g < f. By hypothesis, there exists a Baire-.5 function h on X such that, g < h < f. Now we set

$$F_1 = \left\{ x \in X : h(x) \le \frac{3}{4} \right\}$$

and

$$F_2 = \{ x \in X : h(x) \ge 1 \}.$$

Then F_1 and F_2 are two disjoint F_{σ} -sets contain G_1 and G_2 , respectively. Hence $F_{\sigma}(G_1) \subseteq F_1$ and $F_{\sigma}(G_2) \subseteq F_2$ and consequently $F_{\sigma}(G_1) \cap F_{\sigma}(G_2) = \emptyset$. By Lemma 1, for every G of G_{δ} -set, the set $F_{\sigma}(G)$ is a G_{δ} -set.

Now suppose that $\{G_n\}$ is a decreasing sequence of G_{δ} -sets with empty intersection.

We set $G_0 = X$ and $f(x) = \frac{1}{n+1}$ for $x \in G_n \setminus G_{n+1}$. Since $\bigcap_{n=0}^{\infty} G_n = \emptyset$ and for every $n \in \mathbb{N}$ there exists $x \in G_n \setminus G_{n+1}$, f is well-defined. Furthermore, for every $r \in \mathbb{R}$, if $r \leq 0$ then

$$\{x \in X : f(x) < r\} = \emptyset$$

is a G_{δ} -set and if r > 0 then by Archimedean property of \mathbb{R} , there exists $i \in \mathbb{N}$ such that $\frac{1}{i+1} \leq r$. Suppose that k is the least natural number with this property. Hence $\frac{1}{k} > r$. Now if $\frac{1}{k+1} < r$ then

$$\{x \in X : f(x) < r\} = G_k$$

is a G_{δ} -set and if $\frac{1}{k+1} = r$ then

$$\{x \in X : f(x) < r\} = G_{k+1}$$

is a G_{δ} -set. Hence f is a cusB-.5 on X. By setting g = 0, we have conclude that g is clsB-.5 on X and in addition g < f. By hypothesis there exists a Baire-.5 function h on X such that, g < h < f.

Set

$$F_n = \left\{ x \in X : h(x) \le \frac{1}{n+1} \right\}.$$

This set is a F_{σ} -set. But for every $x \in G_n$, we have $f(x) \leq \frac{1}{n+1}$ and since g < h < f thus $h(x) < \frac{1}{n+1}$, this means that $x \in F_n$ and consequently $G_n \subseteq F_n$.

By definition of F_n , $\{F_n\}$ is a decreasing sequence of F_{σ} -sets and since h > 0, $\bigcap_{n=1}^{\infty} F_n = \emptyset$. Thus the conditions holds.

References

- A. Al-Omari, M.S. Md Noorani: Some properties of contra-b-continuous and almost contra-b-continuous functions. European J. Pure. Appl. Math. 2 (2) (2009) 213–230.
- [2] F. Brooks: Indefinite cut sets for real functions. Amer. Math. Monthly 78 (1971) 1007–1010.
- [3] M. Caldas, S. Jafari: Some properties of contra-β-continuous functions. Mem. Fac. Sci. Kochi. Univ. 22 (2001) 19–28.
- [4] J. Dontchev: The characterization of some peculiar topological space via α- and β-sets. Acta Math. Hungar. 69 (1-2) (1995) 67-71.
- [5] J. Dontchev: Contra-continuous functions and strongly S-closed space. Internat. J. Math. Math. Sci. 19 (2) (1996) 303–310.
- [6] J. Dontchev, H. Maki: On sg-closed sets and semi-λ-closed sets. Questions Answers Gen. Topology 15 (2) (1997) 259–266.
- [7] E. Ekici: On contra-continuity. Annales Univ. Sci. Bodapest 47 (2004) 127–137.
- [8] E. Ekici: New forms of contra-continuity. Carpathian J. Math. 24 (1) (2008) 37–45.
- [9] A.I. El-Magbrabi: Some properties of contra-continuous mappings. Int. J. General Topol. 3 (1-2) (2010) 55-64.
- [10] M. Ganster, I. Reilly: A decomposition of continuity. Acta Math. Hungar. 56 (3–4) (1990) 299–301.
- [11] S. Jafari, T. Noiri: Contra-continuous function between topological spaces. Iranian Int. J. Sci. 2 (2001) 153–167.
- [12] S. Jafari, T. Noiri: On contra-precontinuous functions. Bull. Malaysian Math. Sc. Soc. 25 (2002) 115–128.
- [13] M. Katětov: On real-valued functions in topological spaces. Fund. Math. 38 (1951) 85–91.
- [14] M. Katětov: Correction to "On real-valued functions in topological spaces". Fund. Math. 40 (1953) 203–205.
- [15] E. Lane: Insertion of a continuous function. Pacific J. Math. 66 (1976) 181–190.
- [16] S.N. Maheshwari, R. Prasad: On R_{Os}-spaces. Portugal. Math. 34 (1975) 213–217.
- [17] H. Maki: Generalized Λ-sets and the associated closure operator. The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement (1986) 139–146.
- [18] M. Mrsevic: On pairwise R and pairwise R₁ bitopological spaces. Bull. Math. Soc. Sci. Math. R. S. Roumanie 30 (1986) 141–145.
- [19] A.A. Nasef: Some properties of contra-continuous functions. Chaos Solitons Fractals 24 (2005) 471–477.
- [20] M. Przemski: A decomposition of continuity and α-continuity. Acta Math. Hungar. 61 (1-2) (1993) 93–98.
- [21] H. Rosen: Darboux Baire-.5 functions. Proc. Amer. math. Soc. 110 (1) (1990) 285–286.
- [22] M.H. Stone: Boundedness properties in function-lattices. Canad. J. Math 1 (1949) 176–189.

Received: 15 May 2018 Accepted for publication: 7 July 2019 Communicated by: Karl Dilcher