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A Deformed Quon Algebra

Hery Randriamaro

Abstract. The quon algebra is an approach to particle statistics in order to
provide a theory in which the Pauli exclusion principle and Bose statistics
are violated by a small amount. The quons are particles whose annihilation
and creation operators obey the quon algebra which interpolates between
fermions and bosons. In this paper we generalize these models by introduc-
ing a deformation of the quon algebra generated by a collection of operators
ai,k, (i, k) ∈ N∗× [m], on an infinite dimensional vector space satisfying the
deformed q-mutator relations aj,la

†
i,k = qa†i,kaj,l+q

βk,lδi,j . We prove the re-
alizability of our model by showing that, for suitable values of q, the vector
space generated by the particle states obtained by applying combinations of
ai,k’s and a†i,k’s to a vacuum state |0〉 is a Hilbert space. The proof partic-
ularly needs the investigation of the new statistic cinv and representations
of the colored permutation group.

1 Introduction
Let R(q) be the fraction field of the real polynomials with variable q. By a deformed
quon algebra A, we mean the free algebra

R(q)
[
ai,k

∣∣ (i, k) ∈ N∗ × [m]
]

subject to the anti-involution † exchanging ai,k with a†i,k, and to the commutation
relation

aj,la
†
i,k = qa†i,kaj,l + qβk,lδi,j ,

where δi,j is the Kronecker delta and

βk,l =

{
0 if l − k ≡ m mod m

1 otherwise
.
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This algebra is a generalization of the quon algebra introduced by Greenberg [2],
subject to the commutation relation aja

†
i = qa†iaj+ δi,j obeyed by the annihilation

and creation operators of the quon particles, and generating a model of infinite
statistics. Moreover, the quon algebra is a generalization of the classical Bose and
Fermi algebras corresponding to the restrictions q = 1 and q = −1 respectively, as
well as of the intermediate case q = 0 suggested by Hegstrom and investigated by
Greenberg [1].

In a Fock-like representation, the generators of A are the linear operators
ai,k, a

†
i,k : V → V on an infinite dimensional real vector space V satisfying the

commutation relations

aj,la
†
i,k − qa

†
i,kaj,l = qβk,lδi,j ,

and the relations
ai,k|0〉 = 0,

where a†i,k is the adjoint of ai,k, and |0〉 is a nonzero distinguished vector of V.

The ai,k’s are the annihilation operators and the a†i,k’s the creation operators.
Let H be the vector subspace of V generated by the particle states obtained by

applying combinations of ai,k’s and a†i,k’s to |0〉, or

H :=
{
a|0〉

∣∣ a ∈ A
}
.

The aim of this article is to prove the realizability of this model through the
following theorem.

Theorem 1. H is a Hilbert space for the bilinear form (·, ·) : H×H→ R(q) defined
by (

a|0〉, b|0〉
)
:= 〈0|a† b|0〉 with 〈0|0〉 = 1,

and for

−1 < q < 1 if m = 1 and
1

1−m
< q < 1 if m > 1.

Theorem 1 is a generalization of the realizability of the quon algebra model in
infinite statistics proved by Zagier [3, Theorem 1].

To prove Theorem 1, we begin by showing in Section 3 that

B :=
{
a†i1,k1 . . . a

†
in,kn
|0〉
∣∣ (iu, ku) ∈ N∗ × [m], n ∈ N

}
is a basis of H, so that we can assume that

H =
{ n∑
i=1

λibi

∣∣∣ n ∈ N∗, λi ∈ R(q), bi ∈ B
}
.

Denote by Um the group of all mth roots of unity, and Sn the permutation
group on [n]. We represent an element π of the colored permutation group of m
colors Um oSn by

π =

(
1 2 . . . n(

σ(1), k1
) (

σ(2), k2
)

. . .
(
σ(n), kn

) ) ,
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where k1, . . . , kn ∈ [m], and σ is a permutation of [n]. But we also adopt the
notation π = (σ, α) meaning that σ ∈ Sn and α : [n]→ [m] such that

∀i ∈ [n], π(i) =
(
σ(i), α(i)

)
.

More generally, let I be a multiset of n elements in N∗, and SI its permutation
set. An element θ of the colored permutation set Um oSI is defined by θ := (ϕ, ε)
meaning that ϕ ∈ SI and ε : [n]→ [m] such that

∀i ∈ [n], θ(i) =
(
ϕ(i), ε(i)

)
.

Denote the infinite matrix associated to the bilinear form in Theorem 1 by

M :=
(
(f, g)

)
f,g∈B.

Let
[
N∗
n

]
be the set of multisets of n elements in N∗. We also prove in Section 3

that

M =
⊕
n∈N

⊕
I∈
[
N∗
n

]MI with MI =
(
〈0| aϑ(n) . . . aϑ(1) a†θ(1) . . . a

†
θ(n) |0〉

)
ϑ,θ∈UmoSI

.

For m = 3 for example, we have

M[2] =



1 q q q q2 q2 q q2 q2 q q2 q2 q2 q3 q3 q2 q3 q3

q 1 q q2 q q2 q2 q q2 q2 q q2 q3 q2 q3 q3 q2 q3

q q 1 q2 q2 q q2 q2 q q2 q2 q q3 q3 q2 q3 q3 q2

q q2 q2 1 q q q q2 q2 q2 q3 q3 q q2 q2 q2 q3 q3

q2 q q2 q 1 q q2 q q2 q3 q2 q3 q2 q q2 q3 q2 q3

q2 q2 q q q 1 q2 q2 q q3 q3 q2 q2 q2 q q3 q3 q2

q q2 q2 q q2 q2 1 q q q2 q3 q3 q2 q3 q3 q q2 q2

q2 q q2 q2 q q2 q 1 q q3 q2 q3 q3 q2 q3 q2 q q2

q2 q2 q q2 q2 q q q 1 q3 q3 q2 q3 q3 q2 q2 q2 q
q q2 q2 q2 q3 q3 q2 q3 q3 1 q q q q2 q2 q q2 q2

q2 q q2 q3 q2 q3 q3 q2 q3 q 1 q q2 q q2 q2 q q2

q2 q2 q q3 q3 q2 q3 q3 q2 q q 1 q2 q2 q q2 q2 q
q2 q3 q3 q q2 q2 q2 q3 q3 q q2 q2 1 q q q q2 q2

q3 q2 q3 q2 q q2 q3 q2 q3 q2 q q2 q 1 q q2 q q2

q3 q3 q2 q2 q2 q q3 q3 q2 q2 q2 q q q 1 q2 q2 q
q2 q3 q3 q2 q3 q3 q q2 q2 q q2 q2 q q2 q2 1 q q
q3 q2 q3 q3 q2 q3 q2 q q2 q2 q q2 q2 q q2 q 1 q
q3 q3 q2 q3 q3 q2 q2 q2 q q2 q2 q q2 q2 q q q 1



.

We need to introduce the statistic cinv : Um oSn → N defined by

cinv(σ, α) := #
{
(i, j) ∈ [n]2

∣∣ i < j, σ(i) > σ(j)
}
+#

{
i ∈ [n]

∣∣α(i) 6= m
}
.

Still in Section 3, we prove that MI is the representation of∑
π∈UmoSn

qcinv ππ (1)
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on the Um o Sn-module R[Um o SI ]. Hence if the regular representation of (1),
which is M[n], is positive definite, then MI is positive definite.

We prove in Section 4 that

detM[n] =
((

1 + (m− 1)q
)
(1− q)m−1

n−1∏
i=1

(1− qi
2+i)

(n−i)
(i2+i)

)mnn!
.

We particularly can infer that M[n] is nonsingular for

−1 < q < 1 if m = 1 and
1

1−m
< q < 1 if m > 1.

Since M[n] is the identity matrix of order mnn! if q = 0, we deduce by continuity
that M[n] is positive definite for the values of q mentioned above. For these suitable
values of q, M is then a symmetric positive definite matrix or, in other terms, the
bilinear form of Theorem 1 is an inner product on H.

But before investigating the deformed quon algebra, it is necessary to recall
some notions in representation theory and do some computations in Section 2.

The author would like to thank Patrick Rabarison for the discussions on quan-
tum statistics.

2 Representation Theory
We recall the useful notions on representation theory of group and do some calcu-
lations for the cyclic groups.

Take a group G and a finite-dimensional vector space V over a field K. Let
g, h ∈ G, a, b ∈ K, and u, v ∈ V . Then V is a G-module if there is a multiplication ·
of elements of V by elements of G such that

• u · g ∈ V .

• (au+ bv) · g = a(u · g) + b(v · g),

• u · (gh) = (u · g) · h,

• u · 1 = u where 1 is the neutral element of G.

Take an element x in the group algebra K[G]. Suppose that {v1, . . . , vn} is
a basis of V , and that vj · x =

∑
i∈[n]

µi,jvi. Then the representation of x on the

G-module V is the matrix

RV (x) := (µi,j)i,j∈[n].

In particular if x =
∑
g∈G

λgg ∈ K[G] with λg ∈ R, then the regular representation

of x is
RK[G](x) :=

(
λh−1g

)
g,h∈G.

Lemma 1. Let G be a finite group, H ≤ G, and x ∈ K[H]. Then,

detRK[G](x) =
(
detRK[H](x)

)|G:H|
.
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Proof. Let H = {h1, . . . , hr}, and {g1, . . . , gk} be a left coset representative set
of H. On the ordered basis (g1h1, . . . , g1hr, g2h1, . . . , g2hr, . . . , gkh1, . . . , gkhr) of
K[G], we have

RK[G](x) = RK[H](x)⊗ I|G:H|,

where I|G:H| is the unit matrix of size |G : H|. �

Now consider the cyclic group Zm of order m generated by γ, and take a vari-
able z. We need the following equalities on the group algebra R(z)[Zm].

Lemma 2. We have

detRR(z)[Zm]

(
1 + z

∑
k∈[m−1]

γk
)
=
(
1 + (m− 1)z

)
(1− z)m−1.

Proof. The regular representation of 1 + z
∑

k∈[m−1]
γk is the m ×m circulant ma-

trix with associated polynomial f(x) = 1 + z
∑

j∈[m−1]
xj . The determinant of this

circulant matrix is
∏
i∈[m]

f(ζi). If i ∈ [m− 1], then

∑
j∈[m−1]

ζij =
1− ζi

1− ζi
∑

j∈[m−1]

ζij =
ζi − 1

1− ζi
= −1.

Thus f(1) = 1 + (m− 1)z, and f(ζi) = 1− z for i ∈ [m− 1]. �

Lemma 3. We have(
1 + z

∑
k∈[m−1]

γk
)−1

=
1(

1 + (m− 1)z
)
(1− z)

(
1 + (m− 2)z − z

∑
k∈[m−1]

γk
)
.

Proof. The form of 1 + z
∑

k∈[m−1]
γk gives us the intuition that its inverse has the

form x+ y
∑

k∈[m−1]
γk. The calculation

(
1 + z

∑
k∈[m−1]

γk
)
·
(
x+ y

∑
k∈[m−1]

γk
)

= x+ (m− 1)zy +
(
zx+

(
1 + (m− 2)z

)
y
) ∑
k∈[m−1]

γk

confirms the intuition since it leads us to solve the equation system{
x+ (m− 1)zy = 1

zx+
(
1 + (m− 2)z

)
y = 0

to get the inverse of 1 + z
∑

k∈[m−1]

γk. We obtain

x =
1 + (m− 2)z(

1 + (m− 1)z
)
(1− z)

and y = − z(
1 + (m− 1)z

)
(1− z)

. �
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Lemma 4. We have

(1− zγ)−1 =
1

1− zm
m−1∑
i=0

ziγi.

Proof. It comes from (1− zγ)(1 + zγ + · · ·+ zm−1γm−1) = 1− zm. �

3 The Bilinear Form (·, ·)
We first show that H is linearly generated by the particle states obtained by ap-
plying combinations of a†i,k’s to |0〉. Then we prove that

M =
⊕
n∈N

⊕
I∈
[
N∗
n

]MI ,

where MI is a representation of
∑

π∈UmoSn

qcinv ππ.

Lemma 5. The vector space generated by our particle states is

H =
{ n∑
i=1

λibi

∣∣∣ n ∈ N∗, λi ∈ R(q), bi ∈ B
}
.

Proof. Let (j, l) ∈ N∗ × [m]. We have,

aj,l a
†
i1,k1

. . . a†ir,kr = qra†i1,k1 . . . a
†
ir,kr

aj,l

+
∑
u∈[r]
iu=j

qu−1qβ−ku,l a†i1,k1 . . . â
†
iu,ku

. . . a†ir,kr ,

where the hat over the uth term of the product indicates that this term is omitted.
So

aj,l a
†
i1,k1

. . . a†ir,kr |0〉 =
∑
u∈[r]
iu=j

qu−1qβ−ku,l a†i1,k1 . . . â
†
iu,ku

. . . a†ir,kr |0〉.

Thus one can recursively remove every annihilation operator aj,l of an element a|0〉
of H. �

Lemma 6. Let
(
(j1, l1), . . . , (js, ls)

)
∈ (N∗ × [m])s and

(
(i1, k1), . . . , (ir, kr)

)
∈

(N∗ × [m])r. If, as multisets, {j1, . . . , js} 6= {i1, . . . , is}, then

〈0|ajs,ls . . . aj1,l1 a
†
i1,k1

. . . a†ir,kr |0〉 = 0.

Proof. Suppose that v is the smallest integer in [s] such that

jv /∈ {i1, . . . , ir} \ {j1, . . . , jv−1}.

Then

ajs,ls . . . aj1,l1a
†
i1,k1

. . . a†ir,kr = Pajv,lv . . . aj1,l1 +Qajv,lv with P,Q ∈ A.
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We deduce that

ajs,ls . . . aj1,l1a
†
i1,k1

. . . a†ir,kr |0〉 = Pajv,lv . . . aj1,l1 |0〉+Qajv,lv |0〉 = 0.

In the same way, suppose that u is the smallest integer in [r] such that iu does
not belong to the multiset {j1, . . . , js} \ {i1, . . . , iu−1}. Then

ajs,ls . . . aj1,l1 a
†
i1,k1

. . . a†ir,kr = a†i1,k1 . . . a
†
iu,ku

P ′ + a†iu,ku Q
′ with P ′, Q′ ∈ A.

And 〈0| ajs,ls . . . aj1,l1 a
†
i1,k1

. . . a†ir,kr = 〈0| a
†
i1,k1

. . . a†iu,ku P
′ + 〈0| a†iu,ku Q

′ = 0. �

We just then need to investigate the product 〈0| ajn,ln . . . aj1,l1 a
†
i1,k1

. . . a†in,kn |0〉,
where (j1, . . . , jn) is a permutation of (i1, . . . , in). Consider a multiset I of n ele-
ments in N∗.

Lemma 7. Let θ, ϑ ∈ Um oSI . Then,

〈0| aϑ(n) . . . aϑ(1) a†θ(1) . . . a
†
θ(n) |0〉 =

∑
π∈UmoSn
ϑ=θπ

qcinv π.

Proof. Let (j1, . . . , jn) be a permutation of (i1, . . . , in). Then,

ajn,ln . . . aj1,l1a
†
i1,k1

. . . a†in,kn |0〉

=
∑

(u1,...,un)∈[n]n
iu1=j1,...,iun=jn

∏
s∈[n]

qus−1−#
{
r∈[s−1]

∣∣ur<us}qβkus ,ls |0〉
=

∑
(u1,...,un)∈[n]n
iu1=j1,...,iun=jn

∏
s∈[n]

q#
{
r∈[s−1]

∣∣ur>us}qβkus ,ls |0〉
=

∑
(u1,...,un)∈[n]n
iu1=j1,...,iun=jn

q#
{
(r,s)∈[n]2

∣∣r<s,ur>us}+∑s∈[n] βkus ,ls |0〉

=
∑
σ∈Sn

∀s∈[n],js=iσ(s)

q
#
{
(r,s)∈[n]2

∣∣r<s,σ(r)>σ(s)}+∑s∈[n] βkσ(s),ls |0〉

=
∑

π=(σ,α)∈UmoSn∀s∈[n],
js=iσ(s),ls≡kσ(s)+α(s) (mod m)

qcinv π|0〉.

We obtain the result by replacing ajn,ln . . . aj1,l1 and a†i1,k1 . . . a
†
in,kn

by aϑ(n) . . . aϑ(1)
and a†θ(1) . . . a

†
θ(n) respectively. �

For example, take m = 4,

ϑ =

(
1 2 3

(2, 4) (5, 1) (2, 4)

)
and θ =

(
1 2 3

(5, 2) (2, 3) (2, 1)

)
.
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Then

〈0|a2,4a5,1a2,4a†5,2a
†
2,3a

†
2,1|0〉

= q
cinv

(
1 2 3

(2,1) (1,3) (3,3)

)
+ q

cinv
(

1 2 3
(3,3) (1,3) (2,1)

)
= q4 + q5

Define the multiplication of an element θ = (ϕ, ε) of Um o SI by an element
π = (σ, α) of Um oSn by

θ·π = (ψ, η) ∈ Um oSI with ∀i ∈ [n], ψ(i) = ϕσ(i), η(i) ≡ εσ(i)+α(i) mod m.

Consider the vector space of linear combinations of colored permutations

R(q)[Um oSI ] :=
{ ∑
θ∈UmoSI

zθθ
∣∣∣ zθ ∈ R(q)

}
.

One can easily check that, relatively to the multiplication ·, R(q)[Um oSI ] is a Um o
Sn-module.

Proposition 1. We have

MI = RR(q)[UmoSI ]

( ∑
π∈UmoSn

qcinv π
)
.

Proof. Using Lemma 7, we obtain for θ ∈ Um oSI

θ ·
∑

π∈UmoSn

qcinv π =
∑

ϑ∈UmoSI

( ∑
π∈UmoSn
ϑ=θπ

qcinv π
)
ϑ

=
∑

ϑ∈UmoSI

〈0| aϑ(n) . . . aϑ(1) a†θ(1) . . . a
†
θ(n) |0〉ϑ . �

4 The Determinant of M[n]

We compute the determinant and the inverse of the regular representation of∑
π∈UmoSn

qcinv ππ .

Consider the subgroup Cn of Um oSn defined by

Cn :=
{
π = (σ, α) ∈ Um oSn

∣∣ ∀i ∈ [n], σ(i) = i
}
.

For i ∈ [n], let ξi be the colored permutation(
1 2 . . . i . . . n

(1,m) (2,m) . . . (i, 1) . . . (n,m)

)
in Cn. We need the following lemma.
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Lemma 8. We have

detRR(q)[UmoSn]

( ∑
ξ∈Cn

qcinv ξξ
)
=
((

1 + (m− 1)q
)(
1− q

)m−1)mnn!
.

Proof. Remark that ∑
ξ∈Cn

qcinv ξξ =
∏
i∈[n]

(
1 + q

∑
k∈[m−1]

ξki
)
.

Then, using Lemma 1 and Lemma 2, we obtain

detRR(q)[UmoSn]
(
1 + q

∑
k∈[m]

ξki
)
=
((

1 + (m− 1)q
)(
1− q

)m−1)mn−1n!

. �

Now we can compute the determinant of
∑

π∈UmoSn
qcinv ππ.

Theorem 2. We have

detRR(q)[UmoSn]

( ∑
π∈UmoSn

qcinv ππ
)

=
((

1 + (m− 1)q
)
(1− q)m−1

n−1∏
i=1

(1− qi
2+i)

(n−i)
(i2+i)

)mnn!
.

Proof. Every π ∈ Um oSn has a decomposition π = σξ such that

σ ∈ Sn, ξ ∈ Cn, and cinv π = cinv σ + cinv ξ.

Then, ∑
π∈UmoSn

qcinv ππ =
( ∑
σ∈Sn

qcinv σσ
)( ∑

ξ∈Cn

qcinv ξξ
)
.

It is known that [3, Theorem 2]

detRR(q)[Sn]

( ∑
σ∈Sn

qcinv σσ
)
=

n−1∏
i=1

(1− qi
2+i)

(n−i)n!

(i2+i) .

We finally obtain the result by using Lemma 1 and Lemma 8. �

For k ∈ [n], denote by tk,n the permutation (n n − 1 . . . k) in cycle notation.
Let

γn =

→∏
k∈[n−1]

1− qn−ktk,n and εn =

←∏
k∈[n]

∑n−k
i=0 q

(n−k+2)i tik,n
1− q(n−k+1)(n−k+2)

.

Furthermore, let

ρk =
1 + (m− 2)q − q

∑
i∈[m−1] ξ

i
k(

1 + (m− 1)q
)
(1− q)

.

We finish with the inverse of
∑

π∈UmoSn
qcinv ππ.
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Proposition 2. We have( ∑
π∈UmoSn

qcinv ππ
)−1

=
∏
i∈[n]

ρi ·
←∏

i∈[n−1]

γi+1εi .

Proof. We obtain ( ∑
ξ∈Cn

qcinv ξξ
)−1

=
∏
i∈[n]

ρi

by means of Lemma 3. Then [3, Proposition 2] and Lemma 4 permit us to write( ∑
σ∈Sn

qcinv σσ
)−1

=

←∏
i∈[n−1]

γi+1εi . �
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