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New class of boundary value problem for nonlinear
fractional differential equations involving
Erdélyi-Kober derivative

Yacine Arioua, Maria Titraoui

Abstract. In this paper, we introduce a new class of boundary value
problem for nonlinear fractional differential equations involving the Erdélyi-
-Kober differential operator on an infinite interval. Existence and unique-
ness results for a positive solution of the given problem are obtained by
using the Banach contraction principle, the Leray-Schauder nonlinear al-
ternative, and Guo-Krasnosel’skii fixed point theorem in a special Banach
space. To that end, some examples are presented to illustrate the usefulness
of our main results.

1 Introduction

Fractional-order differential equations have been used in the study of models of
many phenomena in various fields of science and engineering, such as viscoelasticity,
fluid mechanics, electrochemistry, control, porous media, mathematical biology,
and electromagnetic bioengineering. More details are available, for instance, in the
books Samko et al. 1993 [22], Podlubny 1999 [20], Kilbas et al. 2006 [9], Sabatier
et al. 2007 [21], Das 2008 [7], Diethelm 2010 [8], and Mathai and Haubold 2018
[17].

The classical fractional calculus is based on several definitions for the operators
of integration and differentiation of arbitrary order [10]. Among the various def-
initions of fractional differentiation, the Riemann-Liouville and Caputo fractional
derivatives are widely used in the literature. The most useful classical fractional
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integrals, however, seem to be the Erdélyi-Kober operators. These were introduced
by Sneddon (see, for example, [24], [25], [26]), who studied their basic properties
and emphasized their useful applications to generalized axially symmetric potential
theory and other physical problems, such as in electrostatics and elasticity.

The theory of boundary value problems on infinite intervals arises quite natu-
rally and has many applications [4]; it is important and several authors have done
much work on this topic [2], [3], [12], [13], [14], [19], [23], [27], [28], [29], [30],
[31]. For instance, the author in [18] considered the following nonlinear fractional
differential problem on the half-line R, = (0, +00),

{D“u(t) +f(tut) =0, u>0, (1)

lim; o u(t) =0,

where 1 < a < 2 and f is a measurable function in R, x Ry that satisfies an ap-
propriate condition. Then, he established the existence of infinitely many solutions
of (1). More recently, Dhifli and Maagli [16] explored the following boundary value
problem:

Du(t) + f(t,u(t), D> tu(t)) =0, ¢>0,
lim¢_,ou(t) =0,

where 1 < o <2 and f is a Borel measurable function in Ry x Ry x Ry.

In [32], Zhao and Ge were the first to prove the existence of unbounded solu-
tions for the following nonlinear fractional boundary value problem on an infinite
interval:

Dou(t) + f(t,u(t)) =0, t>0,
u(0) =0,
limy s oo D2 Lu(t) = au(€),

by using the Leray-Schauder nonlinear alternative. Here, 1 < a < 2 and D¢
denotes the Riemann-Liouville fractional derivative.

In [23], the authors studied explicit solutions of fractional integral and differ-
ential equations involving Erdélyi-Kober operators:

= PDGu(t) — Aut) = f(t) =
u(t) — MPLHOu(t) = f(t)

0, t>0,
0,

t>0,

by using the transmutation method, where a, A € R, 3,6 > 0, f is a given func-
tion, and Ig’5,Dg’5 denote the Erdélyi-Kober fractional integral and derivative,
respectively.

The aim of this study is to investigate the existence and uniqueness of a positive
solution to boundary value problem of a nonlinear fractional differential equation
involving Erdélyi-Kober differential operators on an infinite interval:

DYu(t) + f(t,u(t)) =0, >0, (2)
with the boundary conditions

lim PG+ T0F7:270, (1) = 0, lim ¢P(FNZO+H72=0, (1) = 0, (3)

t—0 t— o0
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where Dg"s denotes the Erdélyi-Kober fractional derivative operator of order § and

Z9+7:2-9 i the Erdélyi-Kober fractional integral of order 2 — §, with 1 < § < 2,
—2<vy<—=1,5>0,and f is a given function satisfying certain conditions.

We obtain several existence and uniqueness results for the nonlinear fractional
boundary value problem (2)—(3). The methods used in this work are the Leray-
-Schauder nonlinear alternative, Guo-Krasnosel’skii fixed point theorem, and Ba-
nach contraction principle, in a special Banach space.

Throughout this paper, we will refer to the following hypotheses:

(H1) f:(0,00) x R — (0, 00) is continuous.
(H2) For all (¢,u) € (0,00) x R,
Ft,u) = PO+ r (¢ (1 4 ¢7P0F)y)

such that
[E(t,u)| < o(t)w(ful),
with w € C((0,00), (0,00)) nondecreasing and ¢ € L*(0, o).

(H3) f:(0,00) x (0,00) — (0, 00) is continuous, such that
T (8 u) = a(t)g(tu),

where a € L*(Ry,Ry), g € C(RE,R;) and 0 < f; a(t)dt < oo, with 7 > 0,
A> 1.

(H4) There exists a positive function ¢(t) with

“+o0
q* :/ (1 4+t P g(t) dt < oo,
0

such that

POV f(tu) — (o) S q(t) u—o], ¢ € (0,00), uv R

The remainder of this paper is organized as follows. In Section 2, we recall some
necessary preliminary facts. In Section 3, we prove our main results, after we have
established sufficient conditions for the existence and uniqueness results for the
solution to the problem (2)—(3). In Section 4, an example is given to demonstrate
the application of our main results. Finally, we present our conclusions and discuss
future research in Section 5.

2 Preliminaries

In this section, we present the necessary definitions and lemmas from fractional
calculus theory that will be used to derive our main results.

Definition 1 ([15]). The space of functions C?, o € R, n € N, consists of all
functions f(t), t > 0, that can be represented in the form f(¢) = t? f1(t) with p > «

and f1 € C"([0,00)).
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Definition 2 (Erdélyi-Kober fractional integrals [15]). The right and left-hand
Erdélyi-Kober fractional integrals of the orders § and «, respectively, of the function
u € Cy are defined by

t
(Z3u)(t) = F(B(S)t_ﬁ(”’M) / (7 — 7)1 y(s)ds,  6,8>0,7€R,
0
(4)

and

(JE’QU)(t) = F(ﬁa)tﬁT /too(s*g — ) lgmAlrra——1y(5) ds, a,8>0,7€R,
(5)

where I' is the Euler gamma function.

Similarly, we define generalized fractional derivatives that correspond to the
generalized fractional integrals (4) and (5).

Definition 3 (Erdélyi-Kober fractional derivatives [15]). Let n —1 <6 <n,n €
Nand m -1 < a <m, m € N. The right-hand Erdélyi-Kober fractional derivative
of the order ¢ of the function v € C is defined by

@y a0 =[] (v+i+ 5t5) @ 0. (6)

j=1

The left-hand Erdélyi-Kober fractional derivative of the order « of the function
u € C7' is defined by

m—1

Prewm =11 (r+5 - 5 G) (G50, ")

j=0

where

n

H(v+j+%t%)(ﬁ+5” %)—( +1+%t%) : (v+ +Bt%)(ﬁ+5” “u).

Jj=1

Lemma 1 ([15]). Let 6,8 > 0, v € R and u € C,. The Erdélyi-Kober fractional
integrals defined by (4) have the following properties:

(T3 2 u)(t) = (T3 u) (1),
(ZF° Ty u)(t) = (T3 ) (), (8)
(Zy ‘SI“ Tu)(t) = (Z5 Ty u)(t). 9)
Remark 1. Let §, 3 > 0 and v € R. Then we have
F(y+d+5+1)

DO = : P, p+B(y+1)>0.
A Ly+5+1)
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In particular, 4
Dg’ét_ﬁ(“’_l) =0, foreachi=1,2,...,n.
In fact, from Definition 3, for 6,8 > 0, v € R, and p + B(y + 1) > 0, we obtain

n

1 d _
Dy =] (7 +j+ —t—)Ig”’” S¢p.

e g dt
also from Definition 2, we find
t
Ig+57n—6tp _ F( ﬁ 5) t—ﬁ(’y-}-n)/ (tB _ s,ﬁ)n—é—lsp-i-ﬂ('y-l-é—i-l)—l ds.
L 0
$B
If we put x = R then we get
1 ! p
Ig”’"*‘st” = =9 tp/ (1 — )"0 1Yo+ 5 g,
n-— 0

By the definition of the beta function, we obtain

Ig+6’n76tp _

F(y+d+5+1)

Now, if we choose h =
Fn+vy+5+1)

, then it holds that

n

1.d
Dyt = [ (v +7+ gt )ht”

i 3'at
:(7+1+%€D(7+2+%5%)”(w+n+%ﬁ%yﬂ
=(7+1+%%D“.@+n—1+%%9<7+n+%y#
:(7+1+%ﬁ%)”(7+n—1+%t%)mﬂ, lu:<7+n+%)h
= (7+1+%)(7+2+%)...('y+n—1+%)<7+n+%)htp.

Thus,
Dy — (7—&—14—%)(74—24—%)...(*y+n+%)F(’y+5+%—i—l)tp) a

P(n+v+5+1)

furthermore, I'(n 4~ + % +1) = (n—l—'y—i—%) (et %)I‘(l +y+ %), it follows
that
P(y+d+5+1)

F(1+~+5)

DY = ., p+B(1+~)>0.
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In particular, if we put i = —(y + %), then from (11), we obtain that

Bt . . . Lo —i+1)
)0 i
Dg t B(W+):(1—Z)(2—Z)(n—l—l)(n—l)mtp
Therefore, for i = 1,2,...,n, we can conclude that
DYt PO =0, V5,8>0, yER.

Lemma 2. Given u € C, n € N, §,5 > 0 and v € R, such that « > —5(y + 1),

the fractional deferential equation Dg’5u(t) = 0 has the following solutions:
u(t) = Ct~POTY L Cpt=PO+2) o =Pl (12)
where C; e R andi=1,2,...,n.

In fact, from Remark 1, we have Dg’ét*ﬁ(v’i) = 0, for each i = 1,2,...,n.

Then, the fractional differential equation Dg"su(t) = 0 admits a solution as follows:
u(t) — Clt—ﬁ(’Y-H) + CQt—ﬁ’(’Y+2) Lt Cnt—ﬂ(“/+n) ,
where C; e Randi=1,2,...,n.

Lemma 3 ([15]). Letn—1<d <n,neN, a > —3(y+1), and u € C?. Then,
the following relationship between the Erdélyi-Kober fractional derivative and the
Erdélyi-Kober fractional integral of order § is given by

n—1
(Z3°DY u)(t) = u(t) = Y ept PATITR)
k=0
where
n—1
B F(TL — k) . B(1+y+k) . 1.d y+5,n—0
v rn b I D g

Definition 4. Let F be a real Banach space; a nonempty closed convex set P C F
is called a cone of F if it satisfies the following conditions:

(i) w € P, A >0 implies \u € P,
(ii) w € P, —u € P implies u = 0.

Definition 5 (Equicontinuous). Let E be a Banach space; a subset P in C(F) is
called equicontinuous if

Ve >0, 30 >0, Vuv € E, VA€ P: |lu—v| <d§=|Au) — Av)| <e.

Theorem 1 (Ascoli-Arzela). Let E be a compact space. If P is an equicontinuous
bounded subset of C(F) then P is relatively compact.
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Definition 6 (Completely continuous). Let E be a Banach space. We say that
A: E — F is completely continuous if for any bounded subset P of E, the set
A(P) is relatively compact.

The following fixed-point theorems are fundamental in the proofs of our main
results.

Theorem 2 (Leray-Schauder Nonlinear Alternative theorem [11]). Let FE be a
Banach space, and () a bounded open subset of E' with 0 € 2. Then every com-
pletely continuous map A: 2 — E has at least one of the following two properties:

(i) A has a fixed point in .
(ii) There is an x € 02 and A € (0,1) with x = AAx.

Theorem 3 (Guo-Krasnosel’skii fixed point theorem [1]). Let E be a Banach
space and let P C E be a cone. Assume that ), ()5 are open subsets of E with
0O, Q) CcQandlet A: PN (ﬁz \ Q1) — P be a completely continuous operator
such that:

() || Az|| < ||z, x € PN Oy and ||Ax| > ||z]|, = € PN OQy, or
(i) || Az|| > ||z]|, z € PN O and ||Az|| < ||z||, z € PN Iy
holds. Then A has at least one positive solution in P N (Q3 \ Q1).

Theorem 4 (Banach'’s fixed point theorem [1]). Let E be a Banach space, D be
closed subset of E and A: D — D be a strict contraction, i.e.,

[ Au — Av|| < k|ju — v|| for some k € (0,1) and all u,v € D.

Then A has a unique fixed point.

3 Main results

In this section, we prove a preparatory lemma for the boundary value problem of
nonlinear fractional differential equations with an Erdélyi-Kober derivative.

Lemma 4. Let y € C2 with [;°s?0+™~1y(s)ds < oo, m = 1,2. Then the
fractional differential equation

DYu(t) +y(t) =0, t>0,1<5<2 -2<y<-1, >0, (13)

with the conditions

lim PN T2y (1) = 0, (14)
Jim ¢PHITTE 0 () ~ 0, (15)

has a unique solution given by
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where
B [4=BOv+1) _ 4=B4) (48 _ ¢B)6—1
t t t S , 0<s<t<oo,
G(t,s) =4 TW [ ( 7 (17)
%t’ﬁh“), 0<t<s< o0,

is called the Green function of the boundary value problem (13)-(15).

Proof. Let 1 < § <2 with —2 < < —1 and 8 > 0. It is easy to prove that the
operator Ig  has the linearity property for all 6 > 0. Now, by applying Ig"s to
equation (13) we obtain

3Dy ult) + I} y(t) = 0. (18)
By using Lemma 3, for 1 < § < 2, we can easily find that
D) u(t) = u(t) — cot 71+ 4 et AEH,
for some constants cp,c; € R. Thus, (18) gives
u(t) — cot PN — et =PRI L Ty (1) = 0,
which means that
u(t) = cot PN 4 gAY Ig’éy(t). (19)
The boundary condition (14) implies that
co lim PN To+7:2=04=B(1+7) 4 o) tlg% tBC2HY) T+7,2=64—B(2+7)

-0
_ lim tﬁ(2+v)15+%2—5[gv‘5y(t) =0,

t—0
consequently, from (8), (9) and (10) we obtain
o B(24) T4 2— b~ . '),
lim 3@+ o+7:2=8;=B(1+7) — [jm P2+ 0 =80+7) —
t—0 t—0 I'(2 ’

i (B AN TO+7.2-8 B+ _ [y 152+ F(lfa)l)tmzﬂ) _T@-1),

t—0 t—0

t
lim P+ 2008 (1) — Jim é) /0 (7 — &)1y (s) ds

t—0

¢
= lim itﬂ/ $POHD=1y () ds
0
ﬁ t
— lim —/ PO~y (5)ds =0,
0

and therefore ¢; = 0.
In view of the boundary condition (15), we conclude that

o lim tPAFNTI+12=04=B0+7) _ iy t3(1+7)1'6+%2*51';’6y(t) =0,
t—o0 t—o0
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consequently, from (8), (9), (10), we find that

im (BN TI+1.2-64-B047) _ fiy 1840 L) (14 _ T(0)

t—o00 t—00 F(Q) F(Q) ’

¢
lim tﬁ(H“’)IHV’Q*‘SIg";y(t) = lim it*ﬁ/ (% — s7)sPO =1y (5) ds
0

t—o0

and therefore, ¢y = % J;7 P01y (s) ds.

Hence, the unique solution of the problem (13)—(15) is given by

u(t) = ¢80+ /OO SFOHD=1y(5) s
0

I'(6)
t
— F(B(S) fﬁ(w&)/o (% — 70 1POHD =1y (6) ds
t

_ ré) 0 [15004) _ 4=A049 49 _ 5)5-1] P01y 5) s

n F(ﬁé) /t §=B4) D=1y (3 g

+o0
= G(t,s)sPO0 D 1y(s)ds.
0
The proof is complete. d

Now, we present some properties of Green’s function that form the basis of our
main work.

Lemma5. For 1 < § < 2, -2 < v < —1 and 8 > 0, the function G(t,s) in
Lemma 4 satisfies the following conditions:

G(t,s)

. m>0,vt,5€(0,00),
G(t
(t,5) < s , Vt, s € (0, 00),

T 1 BAty) — ING))

3. Fora110<§§t§Tanst> %, where A > 1, 7 > 0, we have
Glts) _ _ BE-Dr?0+)

1+ =80+ = T(B)NA— (1 + r—PI+D) r((s)p(T)'



122 Yacine Arioua, Maria Titraoui

. G(t,s)
Proof. 1. For t < s. It is easy to check that m > 0.
For s <t, it holds that
G(t,s) _ B |:t—[3('y+1) _ BN (4B Sﬁ)aq]
1+ ¢80+ ) (1+ t—5(1+7))

Bt=BO+1) s\ 8181
= r(a)(1t+fﬁ<1+v>) ll_ {1_ () } ]

Bt—Alr+1) /1 5o
= 1
@1y 0 Y f

—B(v+1) P
> pt (1)°2 |1 - (1 3 i)
(6 — 1)(1 4 t=AA+) e
gt—ﬁ(vﬂ) 8
“TE DLt Pay i (20)
2. For each t, s € (0, 00),
G(t,s) < it—ﬁ('yﬂ) implies that G(t,s) < B

I'(9)

3. Let0<§§t§7’,where)\>1,7>0. For ¢t < s, we obtain

1+ ¢80+ — T'(d) ’

G(t,s) - ﬁt—ﬁ(lﬂ)
14 ¢t=B0+y) T(0)(1 + t=B1+M)
Br—PA+7)

2 T(HABA+N (1 4 7=B0+7))
(6 — 1)Br—B0+)

2 T(HNA=(1 4 7B+
_ B
For s < t, from (20), we obtain
G(t,s) - BB+ sB

1+¢8049) = T —1)(1 + ¢t B0+ 1B~
We notice that there are two cases to consider.

First case: suppose that 0 < s < 1, if we choose s € [%, ﬂ then

G(t,s) . 5775(%1) B8
1+ t=B0+y) = )\—ﬁ(1+’Y)F((5 -1+ 7——6(1+’y)) \28+8
Br—FOr+1)
2 )\,6(1—7)1“(5 —1)(1+ 7=B1+7)
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Second case: suppose that § < s < t then it follows that

123

g

G(t,s) Br—AL+1) 8
14 ¢+ = \=BANIT(§ — 1)(1 + 7-FA+M) N8B

r—B0O+1)

TANAIT(S — 1) (1 + 7AAE))
Br—AO+1)

>

= NBA=0T(6 — 1)(1 + 7—P0+)

_ B

T 5)p( )
We now turn to the question of existence for the boundary value problem (2)—
(3). Let
([0, o)) = u is a continuous function on (0, 4+00) such that
0= limg o u(t) and limy_, 4 o0 u(t) exist

It is easy to see that C(]0, o0]) is a Banach space with the norm
[[ull, = sup [u(?)]
>0

for instance see [6], [30].

b

In this work, we use the space Cy to study the problem (2)—(3), which is

denoted by

: u(t)

hmt_>0 Tt B and

li u(t) .
My oo Tr7=paTH exist

Cx ((0,00),R) = {u € C((0,00),R)

Cw is a Banach space with the norm

u(t)

14 ¢=80+7)

., = sup‘
t>0

In fact, it is easy to see that Cy, ((O, 00), R) is a normed linear space.
Let {x,,} be a Cauchy sequence in C; then

T,
{ym ’ym = 1+tﬁ(1+7)} C O([0,00])

b

is also a Cauchy sequence. Therefore there exists yo C C([0, 0c]) such that

lim {|ym — yoll, = 0.

m——+oo

Let zo(t) = (1+ t‘ﬂ(l"’"f))yo(t). Then zg € Cs((0,00),R) and

Zm(t) — xo(t) ’

N

1+ t=B0+)

= lim ||ym — yoll, =0.

m——+oo
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Hence, C'» is Banach space.
Define an integral operator A: Co, — Co by

Au(t) = /OOO G(t, s)sﬁ(1+v)—1f(s, u(s))ds, te(0,00), (21)

where G(t, s) is defined by (17).
Clearly, from Lemma 4, the fixed points of the operator A coincide with the
solutions of the problem (2)—(3).
To obtain the complete continuity of A, the following Lemma is still needed.
u(t)

v={uecw\||uoo<z,z>o}, = {0 e}

If V1 is equicontinous on any compact intervals of (0,00) and equiconvergent at
infinity, then V is relatively compact on Cy.

Lemma 6 ([32]). Let

Remark 2 ([32]). V4 is called equiconvergent at infinity if and only if for all € > 0,
there exists v(g) > 0 such that for all u € Vi, t1,t2 > v, it holds that

ut)  u(tz)
1+t1—5(1+w) 1 +t2—6(1+’v)

<E.

Lemma 7. If (H1)-(H2) hold, then A: Cs, — C is completely continuous.

Proof. First, for all u € C,,, we have

_ | Au(t)]
lAu®)lloe = sup == =505

7B ()
0

- igg 1 4+ ¢+ B1+y)
B[ _
< W/@ ‘sﬁ(VH) 1f(s,u(s))‘ ds

together with conditions (H1) and (H2), it then follows that

/oo ‘sﬁmﬂ)_lf(s,u(s))’ e — /Oo Sﬂ(7+1)_1f(8, (1+ s—B(1+w))u(S))‘ Ny
0 0

1+ 875(1+’Y)

Y u(s)
,/0 ’F<s’1+sﬁ(1+7)>‘ds

o [ (),

0 1 + S_ﬁ(1+7)

<wlllul) [ Ge)ds < .
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Hence, A: C — C4 is well-defined.
Let Q ={u € Cx | ||u|, <k, k> 0} be a bounded subset of C.
In the following, we divide the proof into several steps.

Step 1: A is continuous. Let (u,)neny € Coo be a convergent sequence to u in Cy
such that ||ul| < k; from Lemma 5, we obtain that

| Au, — Aull_ = sup ’Au"(t)_“‘l“(t)‘
t

14+ ¢80+

< == sup
(5) te(0,00)

- /OO sﬂ('*"’l)_lf(s, u(s)) ds|.
0

/O0 sﬁ("+1)_1f(s, un(s)) ds
0

By the condition (H2), we obtain

‘Sﬂ(wl)*lf(s,u(s))‘ —

Sﬂ(7+1)71f s (1 + 876(14’7))”(5)
’ 1+ s—B(1+)
u(s)

- ‘F<5’ 1+ S—B(H—v)) ’

|u(s)]
< o0 5 st
< Y(s)w(lull)
< w(k)¥(s) € L}(0, 00)

Together with the continuity of the function s®C*1)=1f(s u(s)), the Lebesgue
dominated convergence theorem [5, Theorem 12.12, page 199] yields

u—)/ SB(7+1)_1f(s,u(s))ds
0

is continuous, and it follows that

/ 35(”/+1)_1f(87un(8)) ds — / 5*3(”’+1)_1f(s,u(s)) ds as n — co.
0 0

Therefore,

| Auy, — Aul| , — 0, as n — oco.
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Step 2: A(Q) is relatively compact. First, we show that A(Q) is uniformly
bounded. Let u € £2; by the condition (H2), we obtain

|Au(t)| _ *  Gs) B(y+1)—1
T+t 80m ~ |y T+ tA0m 7 T (s u(s) ds
B

< ©) /000 ’85(7+1)71f(5,u(5))‘ ds

pw(k) [
F((S)/O P(s)ds < 0.

<

Consequently,

[|Au|| o, < BI(:J(ESI;) /000 P(s)ds < oo, for all u € €, (22)

and hence A(Q) is uniformly bounded.

) Au . . .
Next, letting V' = {W ‘ u € Q}, we show that V is equicontinuous

on any compact interval of R, .

For all u € Q, t1,t2 € [a,b], 0 < a < b < 0o and ¢; < tg, we can find

Au(tg) Au(tl)

1 _’_tz_ﬁ(l"l"‘/) 1+t1_ﬁ(1+7)

< /“‘ G2, s) G(t1,s)
0

I )

‘86(7+1)_1f(s, u(s)) ‘ ds

< /oo‘ G(tQ,S) _ G(t1,8) n G(tl,s)
“Jo 1+ t2—5(1+7) 1+ t;ﬂ(l-w) 1+ t2—ﬁ(1+7)
G(tl, 8)

A L P AR Y (s) ’ d
s s,u(s s
1+t1_5(1+7) ‘ ( )

t27 S) _ G(tl, 5) G(t17 S) (t;ﬂ(1+7) _ t;6(1+7))

<
—/0 ‘ 1445005 (1+ 6 P0F0) (14 ¢, 2057)

X ‘sﬁ(wl)*lf(s, u(s)) ‘ ds

< /Oo |G (ta, s) — G(t1,
~—Jo 1+ t2—5(1+’y)
N /oo G(ths)(t;ﬂ(“”) _ t1—5(1+’7)

o (1 —i—t;ﬁ(pﬂ))(l +t;5(1+7)

s)| ‘Sﬁ(7+1)71f(s,u(s))‘ ds

)) ‘sﬁﬁﬂ)*lf(s, u(s)) ‘ ds.
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It remains to show that the right-hand side of the above inequality tends to
zero. It is easy to see that

< |G(ta,5) = G, 9)| | prr1)—1
/0 11,70 | (s ul)] ds

t1 _
[
0 1+1, !

t
2 |G(ta, s) — G(t1,9)| | g(v41)-1
+/t = t2_’8(1+7) ’s f(s,u(s))‘ ds

1

|Glta, 5) = Glt1, )| | sre1)-1
+/t 1+ 6,705 : (sl ds

Bw(k) [ 1 20+ 80+
TTE) Jo 140 '

—B(s _ —B(s _
— 57O = T PO () - ) () ds

2

MO AN 520+ 80+
re) Ji 1+t2—5(1+’>’) 2 L

— 470 = ) (s ds

ﬁw(k) 00 t;ﬁ(lJr“/) _ t;ﬁ(lJFV)
I'(9) /t 141,70+

— 0 uniformly as t; — to for all u € Q.

¥(s)ds,

2

Analogously, we can obtain

sPr+h-1 ‘f(s,u(s)ﬂ ds — 0,

* Gty s) (t2—5(1+’7) _ t1—5(1+’Y))
/0 (1+t55(1+v))(1+t;5(1+7))

uniformly as t; — t5 for all u € Q. Hence, V is locally equicontinuous on (0, c0).
Finally, we show that V is equiconvergent at co. We know that

Au(t) = F/(Bé)t_ﬁ(l‘*"” /OOO 55(’Y+1)—1f(3’ u(s)) ds

B ¢
_ F((S)tﬁ(wé)/o (tF — Sﬂ)éflsﬁ(“wl)*lf(s,u(s)) ds, (23)

observing that for any u € Q, the condition (H2) gives

/Ooo ‘sﬁ(vﬂ)flf(s,u(s))’ ds <w(|lully) -/0001/)(3) ds < o0, (24)

for a given € > 0, there exists a constant L > 0, such that

r

55(7+1)71f(5, u(s)) ’ ds <e. (25)
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. —B(1+7) .
However, because , hgl ¢ - 1, there exists a constant T; > 0, such that
t—>

50 1+4+t—B0+~) =
for any t1,t3 > 11, and we obtain

t;ﬁ(l‘i’"/) t;ﬁ(1+7)

<eE.

‘ t;ﬁ(lJr’Y)

' t;ﬁ(lJr’Y)

1 _|_t2—/3(1+v) 1 +t1_’8(1+7) 1_|_t1—5(1+7) 1 _|_t2—/3(1+v)
(26)

= 1 and thus there exists a constant T > L > 0,

L. . t76(5+w)(tﬁ_sﬂ)571
Similarly, tl}gloo T AT

such that for any t1,t2 > T5 and 0 < s < L, it holds that

‘t;ﬁ(éﬂ) (tg _ 35)5*1 tl—ﬂ(6+v) (tlﬁ _ 55)5*1

1+t2—5(1+’y) 1+t1—5(1+7)
=B+7) 18 B6—1 =B+7) (18 BY6—1
t t S t t S
S (—1[3(1+ )) L= (—2ﬂ<1+ ))
L+t 70 T L+t 70
—B(3+7) 14,8 BY6—1 —B(0+7) 1,8 B\6—1
t ty — L t to — L
S (—16(1+ )) 1-= (—26(1+ >)
1+t 70 L4t 707
< €. (27)

Now, we choose T' > max {11, T5} for all t1,to > T. By (23), we can obtain

.A’U,(tg) - Au(tl)
1+t2—/3(1+’7) 1+t1_6(1+7)
8 —6(1+7) t—5(1+7) ) B(y4+1)-1
N 1)—
0] L6, P05 T B /0 ‘5 f(s’“(s))’ ds
B t2 4 —B(y+9) tﬁ — gh)s—1 _
I(s) 2 1+t(_2/3(1+v)) SOV (s, u(s)) ds
2

t1 ,—B(YV+H8) B B\&—1
_/ 21 (th —s”) 5'8(7+1)_1f(s,u(8)) ds
0

14470
B t; —B(1+7) t;ﬁ(l+’y) 00 O
1) —
< F((S) 1+t —B(147) 1+t*5(1+"/) /0 ‘S f(S,’LL(S))’ ds
: ./ ty " (8 — 57) By+1)-1
s f(s,u(s))ds
F(é) 1+t —B(1+) ( )
L ,—B(v+38) B $B)o-1
b (t1 —8")"" sy+1)-1
s f(s,u(s))ds
\/() 1+t ﬁ(1+7) ( )
ﬂ /tz t ﬁ('}"‘ﬂ”(tﬁ ,3)571 B(’y+1)71
s f(s,u(s))ds
) 14,0 ( )

(6
t1 4 —B(v+9) 1,8 61
B / 1 tl (tl — 86) S’B(PYJrl)ilf(S,u(S)) ds :
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a direct calculation yields

Au(tg) _ .Au(tl)
1 +t;ﬁ(1+7) 1 +t;ﬂ(1+7)

B
I'(9)

- F(ﬁzs) /0

1 + tl_ﬁ(l‘i"Y)

3 to tz—ﬁ(’H‘J)(tg _ 86)671 Bly1)-1
TG ), T 14,000 [$7OHD7 (s, us)| ds
2

B[PV = 7 sy
- F(5)/L 4 ¢ P ‘3 ! f(S,U(S))‘ ds.
1

5 B0+) ¢ A0+)

<

(oo}
5(7+1)—1f (s) ’ d
s s, u(s S
1 75276(1+7) 1 t;5(1+'y) /0 ‘ ( )

t;5(7+5) (tg _ sﬂ)5—l

1 + t;ﬁ(1+7)

‘sﬁ(wrl)*lf(s, u(s)) ’ ds

From (24), (25), (26), (27) and for ¢1,t2 — oo we obtain

‘ Au(ts) B Au(ty)
1+t2*ﬁ(1+'7) 1+t;5(1+7)

“tol

L
+F(65)€/0 ‘85(’7+1)—1f(87u(8))’d8+r2£)5.

sﬁ(wrl)*lf(s, u(s)) ‘ ds

Hence, V is equiconvergent at co. Consequently, Lemma 6 yields that V' is relatively
compact.
Therefore, A: Co, — Cy is completely continuous. O

3.1 Existence of at least one solution

Now, to prove the first following existence result, we use the Leray-Schauder non-
linear alternative fixed point theorem.

Theorem 5. Assume that hypotheses (H1)-(H2) hold, and that there exists k > 0,
such that

Bw(k) fOOO P(s)ds
k()

<1 (28)
then, the fractional boundary value problem (2)—(3) has at least one solution u € §).

Proof. From the proof of Lemma 7, we know that A is a completely continuous
operator. We apply the nonlinear alternative of Leray-Schauder to prove that A
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has at least one nontrivial solution in . Let u € 9, such that u = AAu, A € (0,1).
From (22), we obtain

. polh) [
Jull = MAul < Aul < 70 [ s(s)as.

and thus Bolk) [
w
k< i) [ v as
hence,
Buw(k) [y~ v (s)ds
o) 21,

which contradicts (28). By Theorem 2 and Lemma 7, the boundary value problem
(2)—(3) has at least one solution u € €. O

3.2 Existence of at least one positive solution

In this subsection, we establish the existence of a positive solution for the boundary
value problem (2)—(3). First, we introduce the following results.

Remark 3. Let 6,8,7, X, 0,1, 7 € Rysuchthat 1 <6 <2, >0, -2 <~y < —1,
A>1,and I,7,0 > 0. If the conditions (H2)—(H3) hold, then

+oo +oo
/ SN f (s u(s)) ds < 7 / S (s uls)ds, (29)
0 3z

Wheren:m+1>l.

In fact, for all ¢ € [%,T], there exists a finite constant ¢ > 0, such that
PN £ (¢ u) > p. Thus,

[Tty asz [0 u(s) ds

T

A2 A2
7(A2 —1)
> VIS
and hence,
A’ T s
7= > 1.
=T /;2 s f(s,u(s))ds > (30)

If sup tP+V=1f(¢ u(t)) is bounded for u € (0,00), then there exists some
t€(0,75]

lop > 0, such that

[P0 ()| < o, Vi € (0,551
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Similarly, if sup t5(1+7)—1f(t, u(t)) is unbounded for u € (0,00), then there
te(o,/\%]
exists My > 0, such that

sup sup tﬁ(1+7)_1f(t,u(t)) <, for some l; > 0.
0<u<Mo t€(0,5]

T

In all cases, if we choose | = max{lo, [}, for all ¢ € (0, 7], then we obtain
PO (1 ult)) <,

and thus

/0>\2 SB(1+’Y)—1f(S7u(S)) ds < % (31)

From (30) and (31), we can find that

+oo z
/ 55(1+7)—1f(3, u(s)) ds = / 55(1+7)_1f(s,u(s)) ds

0 0

+ /+OO 56(1+7)71f(5,u(5)) ds

Ir T -1
< —+ PN (s, u(s)) ds

<y . S ) s

-

22

+oo
+ / sﬁ(H'y)*lf(s,u(s)) ds

22

—+00
<Gremp U [, S

22

+oo
< 17/ sﬁ(H'y)*lf(s,u(s)) ds.
2

Let us define the cone K by

o u(t) p(7)
u(t) > 0, and V¢ > 0; ten[lénT] T 0T > p llull o ¢ -

K{UECOO

Lemma 8. We have A(K) C K.

Proof. We know from Lemma 5 that

[Au(t)]
A t fr— —_— =
Al o 14 PO T ah

B [T D1 (5 u(s)) ds:
<t ) F(s,u(s)) ds; (32)

< G(t,s _
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also from (29) and Lemma 5, for all ¢ € B,TL 7> 0, and A > 1, we obtain

Aul(t) < G(,s) Bly+1)—1
14 ¢-A0) :/o Trepam® 0 F(suls)ds

_[>  G(ts)
Jo 14t-80+)

< Gt s) _
+/T T T (s, uls)) ds
a2

T _Gs) B(y+1)-1
- /g Ty T (s uls) ds
A

sﬁ(“""l)_lf(s, u(s)) ds

s SPOAD=1 (5 u(s)) ds
o) [ S )

+
pr) 8 / sPFN=Lf (5, u(s)) ds. (33)
n ()
From (32), we obtain
Au(t) p(7)
i 2 M A
Au(t - .

therefore, tenﬁln] H—tifg(zﬂ) > # | A(u)| ., which proves that A(K) C K. O

For convenience, we denote some important constants:

(t, (1+ fﬁ(lw))u) g(t, (1+ t*5(1+7))u)

Fo = v SRR u ,
t, (14t PO+ t, (1 +t=A0+M)y
fo = lim inf ( ( ) ), Fo = lim sup ( ( ) )
u—0t>0 u u—+o00o t>0 U

Theorem 6. Assume that hypotheses (H2)-(H3) hold. If the following condition
is satisfied:
F() = 07 foo = 00,

then the boundary value problem (2)—(3) has at least one positive solution.

Proof. From Lemma 7, A is a completely continuous operator. Now, because
Fy = 0, we may choose r; > 0, such that

g(t,(1+t7 P Yy) < eu, for 0 <u <7y, t >0, (34)
where € > 0 satisfies
I'(d)
ﬁfOJrOO a(s)ds .

e< (35)
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Therefore, for all v € K and ||u||,, = 71, from Lemma 5, we have

Au(t) > Gl(t,s) B(y+1)—1
1+ ¢80+ :/0 1+t7ﬁ(1+7)8 B f(SaU(S))dS

B /OO B(14y)—1
< —= s N=11(s,u(s)) ds.

F((S) o ( ( ))
By the condition (H3) and from (34), we obtain

Auft) B[
14 ¢t=80+7) < 1“(5)/0 a(s)g(s,u(s)) ds

<®Atww@@+sm”%+g%ﬂ0“
3 o0 u(s)
r@) /0 A

/8 o0
ﬁgnwmé als) ds.

Therefore, from (35), we obtain

IN IN
—
[« 5=

IN

|Au|l o < llull, v € K and |jul|,, =7y, VEt>0. (36)

oo ?

If we choose

O ={ueCx,|lull, <r},
then (36) shows that
|Aull, < lully, for ue K NoQy.

Furthermore, because f,, = 0o, there exists r > 0 such that
g(t, (1+ t_’B(H'”))u) >mu, foru>r, ¢t >0, (37)

where m > 0 is chosen so that

n°T(9)

"2 5 [ alo)ds )

Let ry > max{rl, %} and Oy = {u € C, ||ul|, <72} then Q; C Q.
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Thus, for all v € K and ||u||, = 72, we have that

p(7)

u(t) i u POy PO s

>
1+4¢=80+) = 52%27 1+¢80+) = g

From (33), (37), (38) and by the condition (H3), for all T <t < 7, we have

Ault) ()
14+ ¢B0+y) — nF((S)
)

>

)
> DT ™ a(s)gs, (14 572040) 00y as

1+ s—B0+7)
> u(s)
m/o a(s) T 5 80 ds

[
™ {2, Tt J, o
A

P (r)mlull. / a(s)ds > Jull, -

X

Y

Y

v

Hence, [|Aul, > [jull, for v € K N 0Qy. Therefore, by the first part of
Theorem 3, it follows that A has a fixed point in K N 9(22\Q;). This completes
the proof. 0

Similarly to the previous theorem, we can prove the following theorem.

Theorem 7. Assume that hypotheses (H2)-(H3) hold. If the following condition
is satisfied:

fo = o0, F.=0,

then the boundary value problem (2)—(3) has at least one positive solution.

Proof. From Lemma 7, A is a completely continuous operator. Now, because
fo = oo, there exists R; > 0 such that

g(t7 (1+t*5(1+”’))u> > Mu, for 0 <u< Ry, t>0, (39)

where M > 0 is chosen so that

n°T(6)
M2 ) [ a) s

(40)

Let © = {u € C, |lull,, < R1}. Thus, if u € K and |u||,, = R1 (u € 0),
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then for all ¢ € [%,7], from (33), (39), (40) and by the condition (H3), we obtain

Au(t) S Ié)
1+ ¢80+ =

o | " ()9 (s, u(s)) ds

> gﬁg; OOO als)g (s, (1+ s*/ﬁ(lﬂ))%) ds
> f]ﬁigiM/;a(s)Hg(%ds

> 2 ; o)™ Jul., ds

> Nl [ ats)ds >l

A

Hence

|Au|| o > |Jull, , for ue K NoQ,.
Furthermore, from F,, = 0, there exists R > 0, such that
g(t7 (1+ t_5(1+"’))u) <eu, for u > R, and t > 0, (41)

where € > 0 satisfies

e < 6]?((5) (42)

J  a(s)ds

Let Qs = {u € Cw, |Jul|, < Ra}, where Ry > max {R1, R}. Then, Q; C Q.

Now, we define the function J as

J: R+ — RJ’_,
J(a) = sup Supg(t, (1+ t_ﬁ(1+7))u).
o<u<a t>0

Suppose u € K and |ul|,, = R2 (u € 0€2). Then from (41) we obtain

sup supg(t7 (1 + t_ﬁ(”'y))u) <e sup u=cRy
0<u< Ry t>0 0<u<Rs

— J(Ry) <eRp=clull, .  (43)
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Given Lemma 5 and the condition (H3), (42) and (43) yield that

Au) B s
e <1y, S ) 6

< o [ ot (17000 Y
po[~ - u(s)
= W/o () s supg (s, (14704) Ty ) ds
_ B[
= W/o a(s)J(Rz)ds

Hence, || Au||, < |lull,,, for v € K N oQs.
Therefore, by the second part of Theorem 3, it follows that A has a fixed point
in K No(2 \ ). The proof is complete. O
3.3 Uniqueness of solution
The last result of the existence is based on the Banach contraction principle theo-
rem.
Theorem 8. Assume that hypotheses (H1), (H2), and (H4) hold. If
qp
NG

then the boundary value problem (2)—(3) has a unique solution u € Cw.

<1, (44)

Proof. We shall show that the operator A defined by (21) is a contraction mapping.
Let u,v € C. From Lemma 5 and by the condition (H4), we can obtain that

Au(t) — Av(t > G(t, _
A = [ S (sae) ~ (s s

< o [T () = S0 s
A -
SN®A a(s) Ju — o] ds
B[~ - t
<oy, w00+ |
this implies that
B i B i —B(1+7)
| A(u) — A@)||, < T0) [l v||oo/0 q(s)(1+s )ds
S BT

o *

— 1)
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It follows from the assumption (44) and the preceding estimate that A is a con-
traction mapping. Applying Banach’s fixed point Theorem 4, the operator A has

a fixed point that corresponds to the unique solution of problem (2)—(3).

4 Examples

g

In this section, we present some examples to illustrate the usefulness of our main

results.

Example 1. Consider the following boundary value problem:

_33
Dy () + 13 ’ v_le=t =0, t>0,
142
lim t%I?’Eu(t) =0, (45)
500
P —
tlg(r)lot 21, 2u(t) = 0.
3 .
Here, f(t,u) =t2 " Lo=3y=-3andB=1.
(H1) It is easy to show that the function f is continuous for any (¢,u) € (0,00) xR.

(H2) From the expression of the function f, it follows that

F(t,u) = tB(ler)—lf(t7 (1 + t—ﬁ(1+7))u) —

If we choose w(u) =

with w € C((0,
(H2) holds.

Vu, () =

ule™*
~t then we obtain

[F(t, )| < ¢(H)w(|ul), on (0,00) X R,

00), (0,00)) nondecreasing and ¢ € L*(0,00). Then, the condition

If we choose k > %, we show that

k) fooo ¥(s)ds

kT(5)

2
NG

< 1

therefore, (28) is satisfied. Hence, all the conditions of Theorem 5 hold, and prob-
lem (45) has at least one solution.

Example 2.

t2 exp

Here, f(t,u) =

(1+V1)

Consider the following problem:

3 1 emou’ ()

>§u(t) + (1+\/—)

u(t) =

D,
llmt2]16’3
t—0 N
lim ¢~ 216’

t—o0

t>0,

()=0-

—t)u?

_ _ _5
,8=1,v= ffandcsfg.
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(H2) F(t,u) = tﬁ(l"r’Y)_lf(L (1+ t_5(1+”f))u) = exp(—t)u?, verify

[F(t, u)| < ¢(t)w(|ul), on (0,+00) xR,

where 9 (t) = exp(—t) € L'(0,+00) and w(u) = u? € C((0,+00), (0,+00)). Then,
the condition (H2) holds.
(H3) It is clear that the function f is continuous on (0, +o0) % (0, +00), and

- exp(—t)u?

S+ VD)
where a(t) = exp(—t) and g(t,u) = l-ti/i € C((0,+00) x (0,400)). Hence, the
condition (H3) is satisfied.

We have g(t, (1 + v/t)u) = u?, which implies that

g(t, (1 4+ Vt)u)

(L, = a(t)g(t,u),

Fy = lim sup =0,

u—0 >0

foo = lim inf —g(t, (1+ \/f)u) =

u—oo t>0 u

It follows from Theorem 6 that problem (46) has at least one positive solution.

Example 3. We take B =1, v = —§ and § = %. Consider the following problem:

Sult) + f(t,u) = o, t>0,
L 165
hmtﬁo 2% %u(t) = (47)
16 5
limy oo t~3 1,0 ’Gu(t) - 0,

where f(t,u) = t3 [arctan(llf\‘/g) + 1} exp(—t).

(H2) It is clear that F(t,u) = [arctan(|u|) + 1] exp(—t), verify
[E'(t, w)| < g(t)w(|ul),
where ¥(t) = exp(—t) € L'(0, +00), w(u) = arctan(|u|)+1 € C((0, +00), (0, +00)).
Then, the condition (H2) holds.
(H3) f(t,u) is continuous on ((0,+00) x (0, +00), (0, +00)), and
u

t_%f(t,u) = [arctan(l _|'_ \[> + 1] exp(—t) = a(t)g(t, u),

where a(t) = exp(-t), g(t,u) = [arctan(ll_\‘/) —|—1] € C((0,400) x (0,400)).
Hence, the condition (H3) is satisfied.
We have g(t, (1 + v/t)u) = arctan(|Ju|) + 1, which implies that

o0+ Vi) _

arctan(|u|) + 1

Fy = lim sup lim — =~ T = oo,
u—0 t>0 w50 "
1 ) .
foo = lim me fi 2ctan(lu) 1
u—00 t>0 oot "

It follows from Theorem 7 that problem (47) has at least one positive solution.
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Example 4. We take 5 =1,v=—% and § = % Consider the following problem:

33
Dy *%u(t) + f
U

. 1.0,
lim; ,ot21
1

2

t,u)=0, >0,
H=0, (48)

3
_ thewn
where f(t,u) = U th) arctan(|ul).
(H1) f(t,u) is continuous on ((0,+00) x R, (0, +00)).

(H2) Tt is clear that F(t,u) = %\/;) arctan(|ul), verify

[F(t, u)| < ¢(t)w(|ul),

where 4(t) = exp(~t) € L'(0,+00), w(u) = <2201 & ¢((0, +00), (0, +00)).
Then (H2) holds.
(H4) We have

() — ()| = ’2\;’:(101% arctan(|ul) - m arctan(|v|)’
= m‘amtanﬂu) — arctan(|v|)
M“
T 2ym(1+1t2)
M u — v
= 2+ 1)
exp(—t)

2y/m(1417)

oo 1, exp(—t) 1
= 14-t¢2 —dt = < 00.
! /0 ( )2\/7?(1 +17) 2ym

Hence, the condition (H4) is satisfied.
Moreover, we have

ul = o]

If we put ¢(t) = , then we obtain

B 1 1 _,

@) 2y/a0E) =
and the condition (44) is satisfied. It follows from Theorem 8 that the boundary
value problem (48) has a unique solution u € C,.

5 Conclusion

In this work, the existence and uniqueness of a positive solution for the nonlinear
fractional differential equations with initial conditions comprising the Erdélyi-
-Kober fractional derivatives have been discussed in a special Banach space C» (0, 00).
For our discussion, we have used the Leray-Schauder nonlinear alternative and Guo-
-Krasnosel’skii fixed point theorems, as well as the Banach contraction principle.
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The differential operator used has two additional parameters (6 and +y), which
may give higher degrees of freedom than the fractional differential equation reported
in literature. Future work will be directed toward the Caputo version of the Erdélyi-
-Kober fractional differential equation and fractional coupled systems of differential
equations involving Erdélyi-Kober derivatives.
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