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Time fractional Kupershmidt equation: symmetry
analysis and explicit series solution with convergence
analysis

Astha Chauhan, Rajan Arora

Abstract. In this work, the fractional Lie symmetry method is applied for
symmetry analysis of time fractional Kupershmidt equation. Using the
Lie symmetry method, the symmetry generators for time fractional Kuper-
shmidt equation are obtained with Riemann-Liouville fractional derivative.
With the help of symmetry generators, the fractional partial differential
equation is reduced into the fractional ordinary differential equation using
Erdélyi-Kober fractional differential operator. The conservation laws are
determined for the time fractional Kupershmidt equation with the help of
new conservation theorem and fractional Noether operators. The explicit
analytic solutions of fractional Kupershmidt equation are obtained using the
power series method. Also, the convergence of the power series solutions is
discussed by using the implicit function theorem.

1 Introduction
Fractional calculus is the theory of fractional integrals and derivatives of arbitrary
order which is evolved towards the end of 17th century. Many researchers are
devoted to the interpretation, properties and applications of fractional order differ-
ential equations [20], [26], [34]. In the recent years, fractional differential equations
(FDEs) have been studied frequently to describe various physical aspects and pro-
cedure in hydrology, visco-elasticity, mechanics, neurons, image processing, physics,
control-theory, electrochemistry and finance [7], [10], [25], [27], [28]. Many efficient
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methods have been developed to obtain the analytical and numerical solutions of
fractional order differential equations like (G′/G)-expansion method [31], homo-
topy perturbation method [39], modified trial equation method [22], exponential
function method [41], sub equational method [33], functional variable method [15]
and so on.

The Lie symmetry method was first introduced by Sophus Lie [14] in 1980. This
method is an algorithmic procedure to obtain the point symmetry which leaves the
considered differential equation invariant. Symmetry analysis provides a lot of in-
formation about the modeled partial differential equations. Therefore, symmetry
analysis [1], [4], [5], [19], [43] have several applications in the field of science and en-
gineering. Adapting the Lie group analysis method and proposing the prolongation
formulas for fractional derivatives, Gazizov et al. [9] studied the symmetry proper-
ties of fractional order differential equations with the help of Riemann-Liouville and
Caputo fractional derivatives [6]. Despite the importance of conservation laws in
internal properties and existence and uniqueness analysis of differential equations,
the conservation laws for fractional differential equations are not widely discussed.
A few works about the symmetry analysis and conservation laws of fractional dif-
ferential equations can be noticed in [2], [11], [29], [35], [40]. Since, some properties
of fractional derivatives are different from the integer order derivatives. Therefore,
obtaining the Lie symmetries and conservation laws for fractional order differential
equations is a topic of great interest for researchers.

The Kupershmidt equation plays an important role in the nonlinear dispersive
waves. Solitary waves propagate in nonlinear dispersive media. These waves pre-
serve a stable form due to dynamic balance between the dispersive and nonlinear
influences. However, in reality, the next state of a the physical phenomenon may
depend no only on its current state but also on its historical states (non-local prop-
erty), which may be successfully modelled by using the theory of derivatives of
fractional order. Fractional order derivative significantly affects the properties of
the equation. The time fractional Kupershmidt equation (0 < α ≤ 1) can be con-
sidered as a generalized form of the original equation for α = 1. Zhang et al. [42]
has obtained the generalized Kupershmidt equation with the help of generalized
Burgers Heirarchy equation. The time fractional generalized Kupershmidt equa-
tion obtained from the classified generalized Kupershmidt equation by replacing
its time derivative with fractional derivative (α) is as follows:

Dα
t u = uxxx + 3u2ux + 3u2

x + 3uuxx + 2βuux + βuxx , (1)

where β is the arbitrary constant and Dα
t u is the Riemann-Liouville fractional

derivative of u for order α, (0 < α ≤ 1), which is defined as follows [12], [23], [30]:

Dα
t u(x, t) =

{
1

Γ(m−α)
∂m

∂tm

∫ t
0
(t− σ)m−α−1u(σ, x) dσ, m− 1 ≤ α ≤ m,m ∈ N,

d∂m

∂tm , α = m ∈ N,

where Γ denotes the Euler’s gamma function.
In this work, we have applied fractional Lie group method to obtain the symme-

try properties and conservation laws for the time fractional Kupershmidt equation.
Using the similarity transformations, the time fractional Kupershmidt equation
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is reduced into fractional differential equation with Erdélyi-Kober operator. The
fractional order partial differential equation is in Euler-Lagrange form. Therefore,
the conservation laws of the fractional PDE has been obtained with the help of
Noether’s operators [3], [17], [18] by Lie symmetries. Using power series method
[38], the explicit series solutions of fractional Kupershmidt equation are derived.
Also, the convergence of obtained series solutions has been proved.

This paper is arranged in the following manner: A brief introduction is pre-
sented about the fractional differential equations in section 1. In section 2, some
basic properties of Riemann-Liouville fractional derivative are given. Also, the ba-
sic idea of fractional Lie symmetry method is described in detail. In section 3, the
proposed method is applied on fractional Kupershmidt equation for obtaining the
symmetry generators. Using the symmetry generators, the fractional Kupershmidt
equation is reduced into the fractional ordinary differential equation with the help
of Erdélyi-Kober fractional differential operator with Riemann-Liouville fractional
derivative. In section 4, the new conserved vectors are obtained for fractional Ku-
pershmidt equation along with formal Lagrangian using new conservation theorem
and fractional generalization of Noether operators. In section 5, the explicit solu-
tions of time fractional Kupershmidt equation are obtained in the form of power
series. Also, the convergence of the obtained series solutions has been proved in
section 5. In section 6, conclusion is presented about the whole study.

2 Preliminaries
2.1 Some basic properties of Riemann-Liouville (RL) fractional derivative:

For an arbitrary order α, the RL derivative has some following properties:

df(x) =
Dα
xf(x)(dx)α

Γ(1 + α)
,

Dα
x(uv) = (Dα

xu)v + u(Dα
xv) ,

Dα
t f(x(t)) =

df

dx
Dα
t x(t) , provided

df

dx
exists

Dα
t t
β =

Γ(β + 1)tβ−α

Γ(β − α+ 1)
, β > α− 1,∫

(dt)β = tβ .

2.2 Basic Idea of Proposed Fractional Lie Symmetry Method

We have consider the coupled time fractional non-linear PDEs with two indepen-
dent variables given in the following form:

Dα
t u = f(x, t, u, ux, ut, uxx, uxxx, . . . ) , (2)

where α > 0 and subscripts represent the partial derivatives.
Let us consider the following symmetry generator of one parameter Lie group
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of transformations under which Eq. (2) remain invariant, given as

x̃ = x+ εξ(x, t, u) +O(ε2),

t̃ = t+ ετ(x, t, u) +O(ε2),

ũ = u+ εη(x, t, u) +O(ε2),

Dα
t ũ = Dα

t u+ εηα,t(x, t, u) +O(ε2), (3)

∂ũ

∂x̃
=
∂u

∂x
+ εηx(x, t, u) +O(ε2),

∂2ũ

∂x̃2
=
∂2u

∂x2
+ εηxx(x, t, u) +O(ε2),

∂3ũ

∂x̃3
=
∂3u

∂x3
+ εηxxx(x, t, u) +O(ε2),

where ε is the group parameter and ξ, τ are η are the infinitesimals of the trans-
formations.

The infinitesimal generator X can be written in following form:

X = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u.

The k-th order prolongation of the fractional vector field is given as

Pr(α,k) X = X + ηα,t
∂

∂uαt
+ ηx

∂

∂ux
+ ηxx

∂

∂uxx
+ · · ·+ ηxx...ik

∂

∂uxx...ik
, k ≥ 1

where the operators ηi are extended infinitesimals [19] and ηα,t, να,t are the frac-
tional extended infinitesimals defined as follows:

ηα,t = Dα
t (η) + ξDα

t (ux)−Dα
t (ξux) + Dα

t (u(Dtτ))−Dα+1
t (τu) + τDα+1

t (u),

ηx = Dx(η)− uxDx(ξ)− utDx(τ), (4)

ηxx = Dx(ηx)− uxxDx(ξ)− uxtDx(τ),

ηxxx = Dx(ηxx)− uxxxDx(ξ)− uxxttDx(τ),

where Dx and Dt denote the total derivatives with respect to independent variables,
defined as

Dt = ∂t + ut∂u + utt∂ut + uxt∂ux + . . . ,

Dx = ∂x + ux∂u + uxx∂ux + utx∂ut . . . .

Now, we focus on the expressions for ηα,t and να,t.
The generalized Leibnitz’s rule is given by

Dα
t (f(t)h(t)) =

∞∑
m=0

(
α

m

)
Dn
t f(t)Dα−n

t h(t) (5)

where (
α

m

)
=

Γ(α+ 1)

Γ(m+ 1)Γ(α+ 1−m)
.
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Now, using Leibniz’s rule (5) in the expressions of ηα,t and να,t, we have

ηα,t = Dα
t (η)− αDα

t (τ)
∂αu

∂tα
−
∞∑
m=0

(
α

m

)
Dm
t (ξ)Dα−m

t ux

−
∞∑
m=0

(
α

m+ 1

)
Dm+1
t (τ)Dα−m

t u . (6)

The chain rule for a composite function is as follows (see [21]):

dαf(g(t))

dtα
=

∞∑
k=0

k∑
r=0

(
k

r

)
1

k!
[−g(t)]r

dkf(g)

dfk
∂α

∂tα
[(g(t))k−r] . (7)

Using Eqs. (5) and (7) in Eq. (6) with f(t) = 1, we have

Dα
t (η) =∂αt η +

(
ηu∂

α
t u− u∂αt ηu

)
+

∞∑
m=0

(
α

m

)
∂mt ηuDα−m

t u+ µ , (8)

where

µ =

∞∑
m=2

m∑
n=2

n∑
j=2

j−1∑
r=0

(
α

m

)(
m

n

)(
j

r

)
1

j!

tm−α

Γ(m+ 1− α)
(−u)r

∂n

∂tn
(uj−r)

∂m−n+jη

∂tm−n∂uj
.

Thus Eq. (6) yields

ηα,t = ∂αt η +

(
ηu − αDt(τ)

)
ηu∂

α
t u− u∂αt ηu + µ

+

∞∑
m=1

[(
α

m

)
∂αt ηu −

(
α

m+ 1

)
Dm+1
t (τ)

]
Dα−m
t (u)

−
∞∑
m=1

(
α

m

)
Dm
t (ξ)Dα−m

t ux. (9)

The infinitesimal generator X must satisfy the invariance conditions [29] for Eq. (2),
which are given as follows:

PrnX(∆u)|∆u=0 = 0,

where ∆u = Dα
t u− f .

3 Time fractional Kupershmidt equation
3.1 Lie symmetries
In this work, we consider a special case of Eq. (1) for which β = 0, to study the
symmetry reduction and conservation laws. So, the time fractional Kupershmidt
equation is represented as follows:

Dα
t u = uxxx + 3u2ux + 3u2

x + 3uuxx, (10)
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where Dα
t (u) is Riemann-Liouville fractional derivative of order α with respect to t.

Applying prolongation of fractional vector field on Eq. (10), we get the following
equations:

ηα,t − ηxxx − 6uηux − 3u2ηx − 6uxη
xx − 3ηuxx − 3uηxx = 0 , (11)

Now, substituting the Eqs. (4) and (9) in the Eq. (11) and equating the coefficients
of various monomials to zero and then solving the over determined system of equa-
tions, we get the following set of infinitesimals for time fractional Kupershmidt
equation:

ξ =
1

3
αc2x+ c1 , τ = c2t+ c3 , η = −1

3
αc2u .

where c1, c2 and c3 are the arbitrary constants.
Since the lower limit of the Riemann integral in Riemann-Liouville fractional

partial derivative is fixed. Therefore, τ(x, t, u, w)|t=0 = 0 should be necessary to
preserve its structure under the transformations (3). Therefore, c3 must be zero
(i.e. τ = tc2).

So, the symmetry generators to form a lie algebra of Eq. (11) are found as:

X1 =
∂

∂x
, (12)

X2 =
1

3
αx

∂

∂x
+ t

∂

∂t
− 1

3
αu

∂

∂u
. (13)

Therefore, the infinitesimal generator X for Eq. (11) can be written as

X = c1X1 + c2X2 .

From Eqs. (12) and (13), we can see that the the vector fields X1 and X2 are closed
under Lie bracket ([Xi,Xj ] = XiXj −XjXi). We have

[X1,X1] = 0, [X1,X2] =
1

3
αX1, [X2,X2] = 0, and [X2,X1] = −1

3
αX1.

Theorem 1. A solution u = ω(x, t) is the invariant solution of Eq. (2) iff

(i) u = ω(x, t) satisfies the FPDE (2), and

(ii) u = ω(x, t) is the invariant surface, i.e.

Xω = 0⇐⇒
(
ξ(x, t, u)

∂

∂x
+ τ(x, t, u)

∂

∂t
+ η(x, t, u)

∂

∂u

)
ω = 0.

3.2 Symmetry reduction for time fractional Kupershmidt equations
In this section, we obtain the reduced equations for (11) by imposing the Lie
symmetries.

For the vector field X2, the characteristic equations are as follows:

dx
1
3αx

=
dt

t
=

du

− 1
3αu

. (14)

After solving the Eq. (14), we obtain the following similarity variables:

z = xt−
1
3α, u = f(z)t−

1
3α. (15)
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Theorem 2. The transformations (15) reduce the Eq. (10) in the fractional non-
linear ordinary equation given as follows:(

P
1− 4α

3 ,α
3
α

f
)

(z)− (fzzz + 3f2fz + 3f2
z + 3ffzz) = 0

with the Erdélyi-Kober fractional differential operator Pτ, αβ [13], [16] defined as

(
Pτ,αβ f

)
:=

m−1∏
j=0

(
τ + j − 1

β
z

d

dz

)(
Kτ+α,m−α
β f

)
(z) , (16)

where

m =

{
[α] + 1, α ∈ N,
α, α /∈ N,

(
Kτ+α,m−α
β f

)
(z) :=

{
1

Γ(α)

∫∞
1

(u− 1)α−1u−(τ+α)f
(
zu

1
β
)

du, α > 0,

f(z), α = 0,

is the Erdélyi-Kober fractional integral operator [16].

Proof. When m − 1 < α < m, m = 1, 2, 3, . . . , from Riemann-Liouville fractional
derivative, we have

Dα
t u(x, t) =

∂m

∂tm

[
1

Γ(m− α)

∫ t

0

(t− s)m−α−1s−
1
3αf

(
xs−

1
3α
)

ds

]
. (17)

Let w = t
s , then ds = − t

w2 dw.
So Eq. (17) can be expressed as

Dα
t u(x, t) =

∂m

∂tm

[
tm−

4α
3

Γ(m− α)

∫ ∞
1

(w − 1)m−α−1wm+1−α−α3 f
(
zw

α
3

)
dw

]
=

∂m

∂tm

[
tm−

4α
3

(
K

1−α3 ,m−α
3
α

f
)

(z)

]
=

∂m−1

∂tm−1

[
∂

∂t

(
tm−

4α
3

(
K

1−α3 ,m−α
3
α

f
)

(z)

)]
(18)

For z = xt
−α
3 and a function φ(z) ∈ C1(0,∞), we get

t
d

dt
φ(z) = tztφ

′(z) = tx(−α
3

)t
−α
3 −1φ′(z) = −α

3
z

d

dz
φ(z) . (19)

From relation (19), Eq. (18) can be written as follows:

Dα
t u(x, t) =

∂m−1

∂tm−1

[(
tm−1− 4α

3

((
m− 4α

3
− α

3
z

d

dz

)(
K

1−α3 ,m−α
3
α

f

)
(z)

))]
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Repeating the above procedure m− 1 times, we obtain

Dα
t u(x, t) = t−

4α
3

m−1∏
j=0

(
1− 4α

3
+ j − α

3
z

d

dz

(
K

1−α3 ,m−α
3
α

f

)
(z)

)
. (20)

Using Eq. (16) in Eq. (20), we obtain

Dα
t u(x, t) = t−

4α
3

(
P

1− 4α
3 ,α

3
α

f
)

(z) .

Therefore, Eq. (10) can be written into a non-linear fractional ordinary differential
equations as follows:(

P
1− 4α

3 ,α
3
α

f
)

(z)− (fzzz + 3f2fz + 3f2
z + 3ffzz) = 0 . �

4 Conservation laws
In this section, we have found the conserved vectors for time fractional Kupershmidt
equations using new conservation theorem [24], [32].

The conservation laws for Eq. (10) are defined as a vector field T = (T 1, T 2),
where T 1 = T 1(x, t, u, ...) and T 2 = T 2(x, t, u, ...) are called conserved vectors for
Eq. (10) if it satisfies the following conservation theorem:

[DtT
1 + DxT

2](10) = 0.

The formal Lagrangian of Eq. (10) can be written in the following form:

L = γ(x, t)(Dα
t (u)− uxxx − 3u2ux − 3u2

x − 3uuxx), (21)

where ω1 is the new dependent variables of x and t.
The Euler Lagrangian operator is defined as follows:

δ

δu
=

∂

∂u
−Dx

∂

∂ux
+ D2

x

∂

∂uxx
−D3

x

∂

∂uxxx
+ · · ·+ (Dα

t )∗
∂

∂Dα
t u

,

where (Dα
t )∗ is the adjoint operator of fractional differential operator Dα

t , given as
follows:

(Dα
t )∗ = (−1)mIm−αs Dm

t ,

where Im−αs is the right-hand-sided fractional integral operator of order m − α,
which is defined as

Im−αs f(x, t) =
1

Γ(m− α)

∫ s

t

f(x, p)

(p− t)α+1−m dp ,

where m = [α] + 1.
So, the adjoint equations can be written as

δL

δu
= 0 .
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The component of conserved vectors are obtained by applying Noether operators to
the Lagrangian. The fractional Noether operator for t-component can be written
by the following formula [3], [17], [18]:

T 1 = τ Ĩ +

m∑
k=0

(−1)kDα−1−k
t (W )Dk

t

∂L

∂Dα
t u
− (−1)mI

(
W,Dm

t

∂L

∂Dα
t u

)
. (22)

Here

I(f, g) =
1

Γ(m− α)

∫ t

0

∫ T

t

f(τ, x)g(µ, x)

(µ− τ)α+1−m dµdτ,

Ĩ is the identity operator and W = η− τut− ξux is the Lie characteristic function.
The other conserved vector T 2 for x-component is represented as

T 2 = ξĨ +W
δL

δux
+ Dx(W )

δL

δuxx
+ (Dx)2(W )

δL

δuxxx
+ . . . . (23)

Now, the Lie characteristics function for the vector X1 is obtained as

W = −α
3
xux − tut −

α

3
u . (24)

Substituting the value of Lagrangian (21) in Eqs. (22) and (23) and using the
value of W from Eq. (24), we have obtained the t-component of conserved vector
for X2 as follows:

T 1 = τ Ĩ + Dα−1
t (W )D0

t

∂L

∂Dα
t u

+ I

(
W,Dt

∂L

∂Dα
t u

)
= γDα−1

t

(
− α

3
xux − tut −

α

3
u

)
+ I

[(
− α

3
xux − tut −

α

3
u

)
, γt

]
Also, the x-component of conserved vector for X2 is obtained in the following form:

T 2 = ξĨ +W

[
∂L

∂ux
−Dx

∂L

∂uxx
+ (Dx)2 ∂L

∂uxxx

]
+ Dx(W )

[
∂L

∂uxx
−Dx

∂L

∂uxxx

]
+ (Dx)2(W )

[
∂L

∂uxxx

]]
= γxx

(
α

3
xux + tut +

α

3
u− 1

)
− γx

[
3u

(
α

3
xux + tut +

α

3
u

)
+

(
2α

3
ux + tuxt +

α

3
xuxx

)]
+ γ

[
3u

(
2α

3
ux + tuxt +

α

3
xuxx

)
+ (3u2 + 3ux)

(
α

3
xux + tut +

α

3
u

)]
.

5 Explicit power series solution
In this section, we investigate the exact analytic solutions of Eq. (10) using power
series method [8], [36], [37], [38] and analyze the convergence of power series solu-
tion. Let

u(x, t) = u(ω), ω = kx− εtα

Γ(1 + α)
, (25)
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where ε and k are arbitrary constants.
From Eqs. (10) and (25), we obtained

εu′ + k3u′′′ + 3ku2u′ + 3k2(u′)2 + 3k2uu′′ = 0 . (26)

Now, we seek a solution of equation (26) in the form of power series as

u(ω) =

∞∑
s=0

csω
s. (27)

From equations (26) and (27), we have

εc1 +

∞∑
s=1

(s+ 1)cs+1ω
s + 6k3c3

+ k3
∞∑
s=1

(s+ 3)(s+ 2)(s+ 1)cs+3ω
s + 3c20c1k

+ 3k

∞∑
s=1

s∑
j=0

j∑
k=0

(s+ 1− k) ck cj−k cs+1−kω
s

+ 3k2
∞∑
s=1

s∑
k=0

(s+ 1− k)(k + 1)ck+1cs+1−kω
s + 6k2c0c2 + 3k2c21

+ 3k2
∞∑
n=1

s∑
k=0

(s+ 2− k)(s+ 1− k)ckcs+2−kω
n = 0 . (28)

Comparing the coefficients for n = 0 in equation (28), we get

3c20c1k + εc1 + 6k3c3 + 3k2c21 + 6k2c0c2 = 0 , (29)

and for n ≥ 1 in equation (28), we have

cs+3 =
−1

(s+ 3)(s+ 2)(s+ 1)

[
(s+ 1)cs+1

+ 3k

s∑
j=0

j∑
k=0

(s+ 1− k)ckcj−kcs+1−k

+ 3k2
s∑

k=0

(s+ 1− k)(k + 1)ck+1cs+1−k

+ 3k2
s∑

k=0

(s+ 2− k)(s+ 1− k) ck cs+2−k

]
, s = 1, 2, . . . . (30)

Thus, for arbitrary chosen values of constants c0, c1 and c2 the other terms of the
sequence {cs}∞s=4 can be determined successively from equations (29) and (30) in
a unique manner. This implies that, there exists a power series solution of equa-
tion (10), given by equation (27) in the form of power series with the coefficients
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given by equations (29) and (30). It can be easily shown that the power series (27)
converges.

Hence, the solution of equation (10) in the form of power series can be written
as follows:

u(ω) = c0 + c1ω + c2ω
2 + c3ω

3 +

∞∑
s=1

cs+3 ω
s+3

= c0 + c1

(
kx− εtα

Γ(1 + α)

)
+ c2

(
kx− εtα

Γ(1 + α)

)2

+ c3

(
kx− εtα

Γ(1 + α)

)3

+
−1

(s+ 3)(s+ 2)(s+ 1)

∞∑
s=0

[
(s+ 1) cs+1

+ 3k

s∑
j=0

j∑
k=0

(s+ 1− k) ck cj−k cs+1−k

+ 3k2
s∑

k=0

(s+ 1− k)(k + 1) ck+1 cs+1−k

+ 3k2
s∑

k=0

(s+ 2− k)(s+ 1− k) ck cs+2−k

](
kx− εtα

Γ(1 + α)

)s+3

, (31)

where cs+3 (s = 1, 2, . . . ) are given by equation (30). The above result can be
summarised as follows:

Theorem 3. Equation (10) admits the power series solution in the form

u(x, t) =

∞∑
s=0

cs

(
kx− εtα

Γ(1 + α)

)s
,

where c0, c1, c2, k and ε 6= 0 are arbitrary constants and cs+3 (s = 1, 2, . . . ) can be
determined by equation (30).

Convergence analysis

Now, we will prove that the power series solution of Eq. (10) is convergent by using
implicit function theorem.

From Eq. (30), we can write

|cs+3| ≤M
[
|cs+1|+

j∑
k=0

|ck||cj−k||cs+1−k|

+

s∑
k=0

|ck+1||cs+2−k|+
s∑

k=0

|ck||cs+1−k|
]
,

where M = max
{

1
|k3| ,

3
|k2| ,

3
|k|
}

.
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If we define a power series µ = Q(ω) =
∑∞
s=0 qsω

s by q0 = |c0|, q1 = |c1|,
q2 = |c2|, q3 = |c3|, and

qs+3 = M
[
qs+1+

j∑
k=0

ckcj−kcs+1−k+

s∑
k=0

ck+1cs+2−k+

s∑
k=0

ckcs+1−k

]
, s = 1, 2, . . . ,

then it is easily seen that |cs| ≤ qs, s = 0, 1, . . . .
In other words, the series µ = Q(ξ) =

∑∞
s=0 qsω

s is a majorant series of equa-
tion (31). Now, we will show that this series µ = Q(ξ) is convergent and has
a positive radius of convergence. We have

Q(ω) = q0 + q1ξ + q2ξ
2 + q3ξ

3 +

∞∑
s=1

qs+3ω
s+3

= q0 + q1ω + q2ω
2 + q3ω

3

+M

[ ∞∑
s=1

cn+1 ω
n+3

∞∑
s=1

s∑
j=0

j∑
k=0

(s+ 1− k) ck cj−k cs+1−k ω
s+3

+

∞∑
s=1

s∑
k=0

ck+1 cs+1−k ω
s+3 +

∞∑
s=1

s∑
k=0

ck cs+2−k ω
s+3

]
= q0 + q1ω + q2ω

2 + q3ω
3 +M

[
ω2Q3(ω) + (2ω − q0ω

2)Q2(ω)

+ (ω2 − 3q0ω − q1ω
2)Q(ω) + q2

0ω
]
.

Consider the implicit functional system with respect to the independent variable
ω as follows:

Q(ω, µ) = mu− q0 + q1ω + q2ω
2 + q3ω

3 +M
[
ω2Q3(ω) + (2ω − q0ω

2)Q2(ω)

+ (ω2 − 3q0ω − q1ω
2)Q(ω) + q2

0ω
]
.

We can see that Q is analytic in the neighborhood of (0, q0) with Q(0, q0) = 0,
Q′µ(0, q0) = 1 6= 0, so by using implicit function theorem, we see that in a neigh-
borhood of the point (0, q0), Q(ω) is analytic with a positive radius. Thus, in the
neighborhood of the point (0, q0) of the plane, the power series (31) is convergent.
This completes the proof.

6 Conclusion
In this work, the fractional Lie symmetry technique has been successfully applied
to study the similarity reductions of time fractional Kupershmidt equation with
Riemann-Liouville fractional derivative. Using Erdelyi-Kober differential operator,
the fractional PDE has been reduced into the fractional ordinary differential equa-
tion. With the help of Noether operators and new conservation theorem, the new
conserved vectors have been obtained successfully along with formal Lagrangian,
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which are used in the study of global behaviour and the stability of solutions of
time fractional Kupershmidt equation. Also, the explicit solutions for the time
fractional Kupershmidt equation are determined in the form of power series. The
convergence of the the power series solution is also discussed. The obtained solu-
tions may be useful in various areas of applied mathematics in interpolating some
physical phenomena, accuracy testing, comparison of numerical results and so on.
There are some possible extensions of this study, e.g. symmetry analysis for space-
time fractional systems of non-linear PDEs with or without variable coefficients.
Some of the extension work is in progress and will be discussed in the future work.
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