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Spectral Theory of Singular Hahn Difference Equation
of the Sturm-Liouville Type

Bilender P. Allahverdiev, Hiiseyin Tuna

Abstract. In this work, we consider the singular Hahn difference equation
of the Sturm-Liouville type. We prove the existence of the spectral function
for this equation. We establish Parseval equality and an expansion formula
for this equation on a semi-unbounded interval.

1 Introduction

Spectral expansion theorems have attracted mathematicians for a long time. The
first results of this type go back to Weyl [37]. Additional results were obtained
by Stone [34], [35], Naimark [31], Berezanskii [13] and Titchmarsh [36]. Usually, if
we want to solve a partial differential equation using the Fourier method (i.e., the
separation of variables) then we consider the problem of expanding an arbitrary
function as a series of eigenfunctions. Hence the eigenfunction expanding problem
has been studied extensively in the literature (see [2], [3], [4], [5], [6], [7], [13], [15],
[16], [21], [22], [29], [30], [31], [34], [35], [36], [38], [39]).

The study of the Hahn difference operator dates back to Hahn’s works [17]
and [18]. In 1949, Hahn introduced the quantum difference operator D, , defined
by
flw+qz) - f(x)

w4+ (¢g— 1z

where ¢ € (0,1) and w > 0 (see [17], [18]). The Hahn difference operator D, , is
a generalization of the two well-known difference operators; namely, the quantum

Doof(z) =
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g-difference operator (see [23]) and the forward difference operator (see [24], [25]).
This operator has numerous applications in the construction of families of orthog-
onal polynomials and approximation problems (see [8], [12], [14], [27], [28], [32]).
A proper inverse of D,, , and the associated integral calculus were studied in [1], [9].
Next, in [19], Hamza et al. established the theory of linear Hahn difference equa-
tions. They investigated also the existence and uniqueness of the solution of initial
value problems for Hahn difference equations. Moreover, they obtained Gron-
wall’s and Bernoulli’s inequalities with respect to the Hahn difference operator,
and investigated the mean value theorems for this calculus. Later, Hamza and
Makharesh [20] studied Leibniz’s rule and Fubini’s theorem associated with the
Hahn difference operator. Sitthiwirattham [33] investigated the nonlocal boundary
value problem for nonlinear Hahn difference equation. Recently, in [10], Annaby
et al. established a Sturm-Liouville theory associated with the Hahn difference op-
erator in the regular setting. In [11], the authors introduce a couple of sampling
theorems of Lagrange-type interpolation for w, g-integral transforms whose kernels
are either solutions or Green’s function of the w, ¢-Hahn-Sturm-Liouville problem.

In this paper, we study Hahn difference equations of the Sturm-Liouville type.
Having the solutions of such equations we define the new Hilbert space and con-
struct on it the Fourier transform and prove the Parseval equation. Therefore,
we prove the existence of a spectral function for the Hahn difference equations
of the Sturm-Liouville type in Lemma 3. In Theorem 5, a Parseval equality and
an expansion formula in eigenfunctions are established in terms of this spectral
function.

2 Notation and basic results

In this section, our aim is to present some basic concepts concerning the theory of
Hahn calculus. For more details, the reader may refer to [9], [10], [17] and [18].
Throughout the paper, let ¢ € (0,1) and w > 0.

Let wp := w/(1 — ¢q) and let I be a real interval containing wy.

Definition 1 ([17], [18]). Let f: I — R := (—o0,00) be a function. The Hahn
difference operator is defined by

flw+qz) - f(z)

Dy o f(z) = w+(g—Dx
f’(wo), T = Wo,

x # wo,

(1)

provided that f is differentiable at wy. We call D, ,f a w, g-derivative of f.

Remark 1. The Hahn difference operator unifies two well known operators. When
q — 1, we get the forward difference operator which is defined by

flw+z) - f(z)

R.
(w+a)—= ve

Ay flx) =

When w — 0, we get the Jackson g¢-difference operator which is defined by

flgz) — f(z)

@) -z x # 0.

Dy f(x) :=
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Furthermore, under appropriate conditions, we have

lim1 Dy f(z) = f'(x).
q—

w—0

In what follows, we present several important properties of the w, g-derivative.

Theorem 1 ([9]). Let f,g: I — R be w,g-differentiable at x € I and h(z) :=
w + qx. Then, for all x € I we have

i) Dy g(af +bg)(x) = aDw,qf(z) + Dy q9(z), a,b€l,
i) Dy ¢(fg)(z) = Dy o(f(2))g(z) + f(w + 29)Dw,q9(),

I\ () = Pealf(@))g(@) = f(2)Du,q9(x)
ii) D“’q(g)( ) g(x)g(w + zq)

iv) Dy g(h™1(z)) = D_yg1 g1 f ().

The concept of the w, g-integral of the function f can be defined as follows.

J

Definition 2 (Jackson-Norlund Integral [9]). Let f: I — R be a function and
a,b,wg € I. We define the w, g-integral of the function f from a to b by

b b a
[ @ @)= [ 1@ dugt@) = [ 1) dugta),

where

) rzel

| 1040 = (@ - g - Zq"f(

0

provided that the series converges at * = a and x = b. In this case, f is called
w, g-integrable on [a, b].

Similarly, one can define the w, g-integral of a function f over (wp, c0) by
b
[ @) = i [ )@,
wo

The following properties of w, g-integration can be found in [9].

Lemma 1 ([9]). Let f,g: I — R be w, g-integrable on I and let a,b,c € I where
a <c<banda,pB €R. Then the following formulae hold:

1)/ (af () + Bg()) dug —a/f ,q(x)+ﬁ/abg(x)d o)
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iif) /(lbf(x)dw7q(a:):/acf(x)dw,q(x)+/be(3?)dw,q(m)a

b a
iv) / F(@) dug) = - /b F(@) dug(2).
Next, we present the w, ¢g-integration by parts.

Lemma 2 ([9]). Let f,g: I — R be w, g-integrable on I and let a,b € I where
a < b. Then the following formula holds:

b

| H@Puag(@) duaf) + [ aleo-+ 02)Dus (@) o) = FB)g(b) ~ Fladg(a).

a

The next result is the fundamental theorem of Hahn calculus.

Theorem 2 ([9]). Let f: I — R be continuous at wy. Define

F(z):= mf(t)dw,q(t), z el

wo
Then F is continuous at wy. Moreover, D, ,F(z) exists for every x € I and
D.,oF(z) = f(z). Conversely,

[ D (@) dgla) = FO) - Fla)

Let L2 ,(wo,00) be the space of all complex-valued functions defined on [wp, o)

such that
o0 ) 1/2
1= ([ 5@ duoe) <.
wo

The space LZ},q (wo,00) is a separable Hilbert space with the inner product

(fig) = f(x)mdw7qx7 RS Li7q(OJ0, OO)

wo

(see [9]).
The w, ¢-Wronskian of y(-), z(-) is defined by
Weray:2)(@) i= y(@)Duy(2) — 2(@)Dugy(@). @ € [wo,00).  (2)
Now we recall the following well-known theorems of Helly.

Theorem 3 ([26]). Let (wp)neny (N := {1,2,...}) be a uniformly bounded se-
quence of real nondecreasing functions on a finite interval a < A < b. Then there
exists a subsequence (wy, )ken and a nondecreasing function w such that

lim wy,, (A) =w(A), a< A<D

k—o0
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Theorem 4 ([26]). Assume (wy,)nen Is a real, uniformly bounded sequence of non-
decreasing functions on a finite interval a < \ < b, and suppose

lim w,(\) =w(\), a<A<b.

n— o0
If f is any continuous function on a < X\ < b, then
b

b
im [ ) dwn(\) = / FO)dw()) .

n— oo a

3 Main Results

Let us consider the Hahn difference equations of the Sturm-Liouville type given by
D(y) = —¢ Doy 141 Dugy(@) +v(@)y(a) = My(a), @ € (wo,00)  (3)

with the boundary condition
D_ig-1,4-1y(wo)sin B+ y(wo)cos B =0, [eR, (4)

where A is a complex eigenvalue parameter, v is a real-valued continuous function
at wp defined on [wy, 00).
If we endow the problem (3)—(4) with the boundary condition

D_yg-1,4-1y(g"")sina +y(lg ")cosa =0, a€R,neN, (5)

then we deduce that the problem given by (3), (4) and (5) is a regular problem.
n [10], Annaby et al. showed that the boundary value problem (3) with the
boundary conditions (4) and (5) has a compact resolvent, thus this problem has
a purely discrete spectrum.
Let ¢(z) be a solution of the system (3) satisfying the initial conditions

p(wo) =sinff, D_ 41 4-10(wo) = —cos B. (6)

Let o be any nondecreasing function on R. Denote by LZ(R) the Hilbert space of
all functions f: R — R measurable with respect to the Lebesgue-Stieltjes measure
defined by o and such that

| P <.
with the inner product
(F9)e = [ FONG0N) de.

The main result of this section is the following.

Theorem 5. There exists a nondecreasing function o(\) on —oo < A < 00, a spec-
tral function for the boundary value problem given by (3)—(4), with the following
properties.
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i) If f is a real-valued function and f € L2, ,(wo,q™"), then there exists a
function F € L%(R) such that

—-n

lim h {F()\) - /wq f(z)p(z, A) dqu:r} do(A\) =0, (7)

n—oo [_ o

and the Parseval equality

P = [P0 o0y (®)

wo

holds.
ii) The integral

/ T FOo(e. ) do(V)

converges to f in Li’q(wo, 00). That is,

—n

lim [ { F@) - / " PO\ dg(A)}zdw,qx:o. )

n— 00 wo “n

Remark 2. The expression

f@) = [ POl ) o)

—0o0
where the equality is in the sense of (9), is called the expansion theorem.

Let A, 4-n (where m,n € N) denote the eigenvalues of the regular problem
given by (3)—(5), and ¢(z, A) be the solution of the equation (3) satisfying the initial
conditions in (6). The function ¢,, ;= (x) = (2, A\, g~ ) Will be an eigenfunction
corresponding to the eigenvalue A, ;—n.

Let f(-) be an arbitrary real-valued function on L2,  (wo,¢™") and

—n

q
gn= [ Py @)
w

0

where m € N. Then we have

q—n [e'e) 1 q*n 2
/ f2($) dw,qx = Z o2 {/ f(x)@m,q*” (l‘) dw,qx} 5 (10)
wo m=1 m,q~" wo

which is called the Parseval equality (see [10]).
Now we will introduce the nondecreasing step function g,~» on [0,00) by

1
- > 5 , for A <0,
)\<)\m_ —n<0 « q-"
Qg—n (A) = " 1m 7

2 b
o
0<A,, ;—n<XA Tmg—n

for A > 0.
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Then the equality (10) can be written as
qg " oo
[ P@ = [ POde-.0) (11)
wo — 00

where

q*’ﬂ
FOV = [ Fla)ele, ) duge.
wo
We will show that the Parseval equality for the problem given by (3) and (4) can
be obtained from (11) by letting n — oco. To this end, we shall prove the following
lemma.

Lemma 3. The total variation of the functions o, () is uniformly bounded with
respect to ¢~ in each finite interval in the domain ), i.e., for s > 0, there exists a
constant M = M (s) > 0 not depending on ¢~ ™ such that

View-Wt= Y e = p(s) — g (—5) < M. (12)

—s<A a<s m,q™"

m,q

Proof. Let sin 8 # 0. Since ¢(x, \) is continuous at wy, we deduce from the condi-
tion ¢(wp, A\) = sin 3 that there exists a positive number k such that & — wp is so
small and

I 2 1
z (/ oz, A) dw’qm> >3 sin” 3. (13)
wo
Let us define fj(z) by the formula
1
fk([zj): E’ WO§I<II€
0, z=>k.

By virtue of (11) and (13), we conclude that

o= r= [ (3 [ o) do )

wo — oo 0

s 1 k 2
2‘/_5(E /wo 50(1'7)‘) duuqx) qu—"()‘)
>%g¥5/ dog—n(N)

= % sin® {0g-n () = 0= (—5)},

which is the desired result.
If sin 5 = 0, then we can define the function fi(z) by the formula

1
Fulz) = 72 wo <x<k
0, x> k.

By virtue of (10), we get the inequality (12). O
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Proof of Theorem 5. Suppose that the function f¢(x) satisfies the following condi-
tions:

i) fe(x) vanishes outside the interval [wo, ¢~¢],¢~¢ < ¢~™.

ii) The functions f¢(z) and Dy, 4 f¢(x) are continuous on |wp, 00).
iii) fe(x) satisfies the boundary condition (4).

Applying (11) to fe(x), we deduce that

—£

q oo
[ s@ae= [ oy, (1)
wo — 0o
where
-
FOV = [ fel@hola ) duge. (15)
wo
Since ¢(x, \) is a solution of the equation (3), we have

Pl ) = 1T, 1)

By (15), we obtain

R0 = [ R ) duge.

Since fe¢(x) vanishes in a neighbourhood of the point ¢~", and since f¢(x) and

o(x, ) satisfy the boundary condition (6), by using Lemma 2 we obtain that

—-n

B =3 [ el Ve dug

0

By virtue of (11), for any finite s > 0, we conclude that

—n

/|A|>SF3(A)dgq—n(A)< 1/A|>s{/: w(x,A)F(fE(m))dw’qx}zdgq_n()\)

2
$ 0

<% Z{ / so(wd)F(fg(fv))dw,qI}Qd@qn o
-4/ @) P dug

& o

By the formula (14), we deduce that

q ¢ s
fg(x)dw,qx - /

wo —S8

Fi(A)dgqnw]

1 —¢
< 2 ; [—qilD,wqq,qq Dy g fe(z) + v(z)fg(x)}Q dwqz. (16)
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From Lemma 3, it follows that the set {g,-=())} is bounded. Using Theorems 3
and 4, one can find a sequence {g~"*} such that the sequence g,—n, () converges
to a monotone function g(\) as k — oo. Passing to the limit with respect to {¢g~"*}
in (16), we conclude that

g [ BN < % [ I e

wo —Ss 0

q

Letting s — 0o, we see that

—£

B@ = [ R a0,

wo —o00

q

Now, let f be an arbitrary real-valued function on L?u, ¢(wo,00). It is known that

there exists a sequence { f¢(z)} satisfying the conditions i)-iii) and such that
oo

lim [ (f(2) = fe(@)? dugr = 0.

£—o0 wo

Let

Then, we have

/:o fe(@)dy g = /z FZ(X) do(N).

0

Since -
/ (Je (@) — fen(2))? gt 0 a5 £1,65 — 00,
we have
[ (Fe, (V) — Fey, (V)2 do(A) = / (fer (2) — feo(2))% dup g — 0

as &1,& — oo. It follows from the completeness of the space Lf,(]R) that there
exists a limit function F' which satisfies

P@dga= [ PO,
wo — 00
Our next aim is to prove that the function

—£

K = | D @)@ duge

0

converges to F' as £ — oo, in the metric of the space L2(R). Let g be another
function in L2 ,(wo,00). Similarly, let G(A) be defined by g. It is evident that

/ (@) — 9(@))? dyp gz = / TLEO) — GO)) do).

0
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We define

Then we obtain that

o0

| 0 - KePaen = [T P@dugr 20 (€5 )

q=¢

ie., K¢ converges to F' in L2(R) as £ — co. This proves i).

Now, we will prove ii). Suppose that the real-valued functions f,g are in
L2, ,(wo,q™™); and F(\) and G()) are their Fourier transforms, respectively. Then
F 4+ G are the transforms of f £+ g. Consequently, in view of (8), we have

/ @)+ g(@))? dygr = / T FO) + GO do(n),

0 —0o0

/ @) — g(@)? dugr = / T FO) - G2 do(n).

0 —0o0

Subtracting the second relation from the first one, we deduce that

@) dug = [ FOIGO) Qo) 17

We set .
fr(x) = / F(\p(z, 3) do(A),

where F' is the function defined in (7). Let g(-) be a real-valued function which is
equal to zero outside the finite interval [wg, ¢~#]. Thus we obtain

—

/wq Jr(@)g(x) dy gz = /q_“{/T F(\)p(z, \) dg()\)}g(gg) g

- /: F()\){/u:“ o(z,N)g(z) dw,qﬂﬁ} do(A)
- _TT F(AG(N) do(N). (18)
By (17), we have
/w Oo f(@)g(z)dy gz = [ Z F(A)G(A) do(N). (19)

By (18) and (19), we obtain

[ @ = e degr = [ FOGO) de.

0
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By using Cauchy-Schwarz inequality, we see that

2

/ T (@) — o (0)g(@) duge

0

2 2
< /WF () do(V) / G*(\) do()

A>T
<[ PWdw [ 6Eode.
A>T —oo
Applying this inequality to the function

f-,—(l‘) - f($>7 U [WQ,(]—“}

9(x) = 0, x € (g7H, 00),

we deduce that
w

/q @) = @) o < [ F0) o). (20)

0 | A>T

Let us mention that the right-hand side of the inequality (20) does not depend on p.
Hence passing to the limit as 7 — oo gives the desired result. Thus Theorem 5 is
proved. O
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