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On a question of Schmidt and Summerer concerning
3-systems

Johannes Schleischitz

Abstract. Following a suggestion of W.M. Schmidt and L. Summerer,
we construct a proper 3-system (Pp, P2, P3) with the property @, = 1.
In fact, our method generalizes to provide n-systems with p, = 1, for
arbitrary n > 3. We visualize our constructions with graphics. We further
present explicit examples of numbers &1, ..., &,—1 that induce the n-systems
in question.

1 Parametric Diophantine approximation in dimension three

Let &1, &2 be real numbers so that the set {1,&;,£2} is linearly independent over Q.
For ¢ > 0 a parameter, let K(q) be the box of points (20, 21, 22) € R? that satisfy

|z0] <€, |z <e ™, |z <e 9.
Further let A be the lattice consisting of the points

{(z, &0 —y1, &ow — o) s 2, 41,92 € Z} .

The successive minima A1(q), A\2(q), A3(¢) of K(gq) with respect to A as functions
of ¢ contain the essential information on the simultaneous rational approximation
to &1, &. It is convenient to study the logarithms of the functions A;(g), denoted
by L;(q) = logA;(q) for j = 1,2,3. These functions have the nice property that
their slopes are among {—2,1}, and their sum is absolutely bounded uniformly
in the parameter q. These properties motivated Schmidt and Summerer [7] to
define so called 3-systems. A 3-system P = (P;, P2, P;) is a triple of functions
P;: [0,00) — R with slopes among {—2, 1} with the properties that

P1(0) = P(0) = P5(0) =0,
Pi(q) < Pa2(q) < Ps(q)
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and

Pi(q) + P2(q) + P5(q) =0 for every ¢ > 0.

Hence, locally in a neighborhood of any ¢ > 0, precisely one of the three functions
decays while the other two rise, unless ¢ is a switch point where some P; are not
differentiable (change slope). Moreover, for P to be a 3-system, it is additionally
required that if at a switch point ¢ some P; changes from falling to rising and some
other P; from rising to falling, then ¢ < j unless P;(¢) = P;(g). It has been shown
in [7] that every function triple (L1, Lo, L3) as above, associated to some (£1,£2),
corresponds to a 3-system P up to a bounded amount, and conversely by Roy [2]
that for any 3-system P there exist &1,&; satisfying the Q-linear independence
condition above and so that sup,.,max;=123[P;(q) — L;j(q)] < 1. Roy’s result
employs a minor technical condition on the mesh of the system P, we do not
rephrase it here. Both results [2], [7] are established in more generality.
For given &1, &, with induced funtions L;(q), let ¢;(¢) = L;(¢)/q and put

. = liminf p;(q), P, = limsup p;(q),

—J q— 00 q—ro0
for j =1,2,3. Since L; have slopes —2 and 1 only, it is clear that

By virtue of the results from [2], [7] quoted above, in the sequel we will identify
the values gj,¢j with quantities derived from an associated 3-system P via

P; P;
@.Hliminfﬂ, ¢j<—>limsupﬂ, i=1,2,3, (2)
—J q—o0 q q—o0 q

and vice versa. M. Laurent [1] provided estimates for classical exponents of ap-
proximation related to any pair (£1,&>) that is Q-linearly independent with {1}.
As pointed out in [9] they translate into the language of the functions ¢; as

0§£3§¢3§1a

gg +£3¢1 +¢1 = 0’ (3)
20, + 93 < —p,(3+ ¢, +293), (4)
205 +¢, 2 P13 +P5+2p)). (5)

Schmidt and Summerer [9] recently provided additional information by including
the second successive minimum in the picture.

Theorem 1 (Schmidt/Summerer, 2017). For any &1,& with {1,&1,&} linearly
independent over Q, if 0 < P, <1, additionally to the above relations we have
@1 - fl

72 §§1:f
? 2_()01_@181’

(6)
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and _

Py~ ¥3

o, 2 Q= =8 0 (7)

2=y — P30,

Moreover, these estimates are best possible in the sense that for given numbers

P19, P3 With 0 < ¢, < 1 and (3), (4), (5) there are &,& with {1,£1,&}

linearly independent over Q for whose approximation constants we have P, = Q
and B, = ).

Schmidt and Summerer enclose a remark to Theorem 1 pointing out that in
the case ¢, = 1 excluded in its claim, we have ¥y = 1 and p, = Py = —1/2 (by
mistake they denoted —1/3 instead in [9]). However, there is a gap in Theorem 1
concerning the existence of graphs with the property ¢, = 1, and related real
numbers &1, &. In [9] they state “But one really should prove that & = (&1, &) with
(1,&1,&2) linearly independent over Q with 5 = 1 exist. We invite the reader to
construct a proper 3-system P with this property.” The main purpose of this paper
is to provide the desired construction. Before we turn to constructing the 3-system,
we point out that explicit examples of Q-linearly independent {1,&;,&2} inducing
P, =Pz = 1 can be derived from previous results of the author. Concretely [4,
Corollary 2.11], upon putting k = n — 1 = 2 and C' = oo, yields the following
example.

Theorem 2. Let

gl _ Z 107(2]@71)! , 52 _ Z 107(2]@)! ) (8)
k=1 k=1
Then
1
$=-2, Py = T =1, 9)
_ 1 _ _
@1:—57 Py =1, p3=1. (10)

While the results in [4] are originally formulated in the language of another type
of exponents, the two types of exponents determine each other via the identities
of [6, Theorem 1.4], and we derive Theorem 2. We note that for the sole purpose
of B3 = 1, as desired in [9] and rephrased above, in fact any numbers £, £, which
are simultaneously approximable to any order by rational numbers can be chosen.
In particular, one may choose the pair (£,£2) with £ any Liouville number, see [5,
Theorem 3.1]. However, then we always have ¢, = 0. For Liouville’s constant
given as £ = 107" 41072 + 1073 4 .- | by [5, Theorem 3.2] in place of (9), (10)
we have

o =2, =3 -0
¥ =0, Py =1, py=1. (12)
Alternatively to the above examples, the pure existence of pairs ({1, £2) inducing

®p3 = 1 (or p, = 1) also follows from Roy’s results [2] and [3, Theorem 11.5]
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(the latter result, already quoted in [9], provides an explicit description of the
spectrum of sixtuples ¢ 1P P3r P1 P2y Py by a system of complicated inequalities).
The main concern of the question of Schmidt and Summerer appears to be the
construction of a suitable 3-system, carried out in Section 2.1 below.

2 Construction of a 3-system with ¢o; =1

We want to present an effective construction of a 3-system with (9), (10), in par-
ticular 3 = 1. It resembles the combined graph (Li, Lo, L3) with respect to the
pair (£1,&2) in (8), in an idealized form. In fact the resulting 3-system can be in-
terpreted as the idealized extremal case of the regular graph defined in [8], for the
parameter p = co. In Section 2.3 we will briefly sketch how to modify the method
to obtain a graph with (11), (12) instead, and give generalizations to n-systems.

2.1 The construction
We construct the graphs piecewise as follows. Let
O<lo<li<la<liz<--,

be a fast increasing lacunary sequence of real numbers with the property

lim L = o (13)

Let 7o = 0. In the interval [ro,lo] = [0,1o] let P, decay with slope —2 and P, Ps
rise with slope 1, so that P;(lp) = —2ly and P»(lp) = Ps(lo) = lyp. Let wy = I for
consistency with later notation. Let [y be the first switch point where P; starts to
rise and P; starts to decay. Then the graph of P; will meet the graph of P, at some
point (r1, P1(r1)) with r1 > lyp. We may assume /; > r1. In the interval [rq,l;] we
define P; as decaying with slope —2 again and the other two functions rising with
slope 1. Note that Ps(l;) = [; since it has not changed slope yet. Assume this
construction of the graphs in [0,1;] was step 0 of our construction. Now we carry
out how to complete the process with identical steps 1,2,3,... where in step i we
define the graphs of Py, P, Ps in the interval [I;,1;11]. At position ¢ =1 we let Py
and P5; change slopes so that P; rises with slope 1 and P5; decays with slope —2.
The function P; still rises with slope 1. We keep these slopes until P, meets P at
position ¢ = wy. Then we let P, decay with slope —2 and the other functions rise
with slope 1 until P, meets P; at some point (73, P;(r2)). We may assume [y > rs.
Then we let P; decay with slope —2 up to ¢ =I5, and the other two functions rise
with slope 1 in this interval. This completes step 1. At ¢ = lo we let P; again
switch from decaying to rising and conversely for Ps, and so on. When we repeat
the whole process ad infinitum, we claim that P;, P>, P3 represent the combined
graph of a 3-system with the properties (9), (10). A sketch of such a 3-system in
an initial interval is shown in Figure 1 below. For size reasons we used the slopes
—1,1/2 instead of —2, 1, thereby sketching P;(¢)/2 for j =1,2,3.
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Figure 1: Visualization of case p3 = 1, slopes scaled by factor 1/2.

2.2 The proof

Keep in mind for the following that the switching positions in our construction are
ordered

O:T’0<10:w0<7’1<l1<’UJ1<T2<ZQ<’LU2<"',

and also the identification (2). First it is clear that the process yields the combined
graph of a 3-system P. Indeed, by construction there is always precisely one P;
decaying, there are infinitely many positions where P; = P, and P, = Pj respec-
tively hold, and the switches occur in a way that respects the additional 3-system
condition on a local maximum having higher index than a local minimum at switch
points mentioned in the introduction. To obtain (9), (10), we first look at positions
q = l; and claim that

i 1) _ i P2) _ g B

i—oo  ; ’ i—oo  I; i—oo I

~1. (14)
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By the identification (2) and by (1) this implies p = —2 and 3, = §3 = 1. By
construction P; decays with slope —2 in intervals of the form I; := [ry, ] for t > 0
and rises in intervals J; := [l;_1, 7] for ¢ > 1. We next check that

re < 2lt_1, t Z 1. (15)

We trivially have Ps(l;—1)—P1(l4—1) < lt—1—(—2l;—1) = 3l;—1. On the other hand,
since P; decays in J; with slope —2 whereas P; rises with slope 1, the function
P3; — P; has slope 3 in J; so that they must meet within distance 3l;_1/3 = l;_4
in the first coordinate on the right from l;_;. This intersection point has first
coordinate 1, and we deduce (15).

The estimate (15) and the assumption (13) clearly imply that the sums of the
lengths of the intervals I; over t = 1,2,...,4 exceeds the according sums of the
intervals J; by any given factor p > 0 for large enough i, i.e.

i

ML >pd 0l i >ie(p).
t=1

t=0

Thus since ) )
L= L+ |l
t=0 t=1

and

Py (1;)

235+ 1
t=0 t=1

indeed for sufficiently large ¢ we have

Pl(lz) < _2+p71
l; L+p~t°

As we can choose p arbitrarily large indeed lim;_, o, Pi(l;)/l; = —2, hence P, =2
by (1), (2). Since P, and P; rise with slope 1 in any I; we infer the remaining
claims of (14) by a very similar argument, or directly by using the bounded sum
property at ¢ = ;.

Next we show

P.
im 2@ (16)
q—o0 q
By construction Ps has local minima precisely at positions w; and it rises with
slope 1 everywhere outside of the intervals [I;, w;], in which it decays with slope

—2. In view of (1) it suffices to check that

Py(w;
lim inf 2200 5 (17)
71— 00 ’LUZ'
By construction
7 i—1
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Hence, in view of (13), to verify (17) it suffices to check

lim 2 =1, (18)

i—00 lz

Now by construction in the interval [I;, w;] the function P; rises with slope 1 whereas
Pj3 decays with slope —2, hence w; = [;+u; with u; defined implicitly by the identity
Ps(1;) — 2u; = Pa(l;) + g, that is w; = 1; + (P3(l;) — P2(1;))/3. On the other hand,
by (14) we have Px(l;) = 1;(1 4 o(1)) and P3(l;) = I;(1 + o(1)), hence inserting we
derive w; = 1;(1 + o(1)) as i — oo, as desired. Thus (16) is shown.

Finally we show that

g 200 L (19)

lim Ll (ri)

1—00 T 71— 00 T 2

Since by construction the local maxima of P; and the local minima of P, both are
attained precisely at the positions r;, the remaining identities from (9) and (10)
are implied. Let K; = [w_1, 7], so that K; C J; and by (13), (18) the complement
Ji \ K¢ is small compared to J;. In K}, the function P; rises with slope 1 whereas
P, decays with slope —2. Moreover, by (14) and (18) and since the slopes are
bounded

UL S N 5 1C)

1—>00 Ww; 1—>00 w;

=1.

Combining these two facts and by definition of r;, for large ¢ we readily conclude
r; = w;—1(2 — 0(1)) and thus the asymptotic value at r; is

Pi(r;) = Py(wi—1) + 7 —wi—1 = wi—1(=1+o(1)),

hence indeed Py (r;)/r; = —1/2+ o(1) for large 7. Thus (19) holds and the proof is
finished.

2.3 Generalizations and variations

A similar construction as in Section 2.1 can be done in arbitrary dimension n,
where the slopes of the P; are among {—n+1,1}. Instead of one sequence (w;)i>o
with ; < w; < 741, we obtain n — 2 sequences (w!);>0,1 < h < n — 2, induced by
positions where P, _j+1 meets P,,_j, ordered

L <wf <w? <- <wl 2 <rigg.
We derive n-systems P = (Py, ..., P,) whose approximation constants (via identi-
fication (2)) satisfy
- 1 _2n =1, 3<j5<
fl =-n+1, £2 = 9 ’ ;= J n,
and
2—n _
()01 = ) L)0_] = 17 2< J S n
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Again this resembles the special case p = oo of the regular graph [8] in dimension n,
and suitable numbers (1, ...,&,—1) inducing these approximation constants arise
from [4, Corollary 2.11] upon taking k =n — 1, C = oo, a particular choice is

¢ = Z 10~ (k(=D+5) 1<j<n-1.
k=0

Finally, we sketch the construction of a 3-system P with the properties (11), (12)
in place of (9), (10). We have to alternate between the construction of Section 2.1
and another type of intermediate construction. Take ¢ a large integer and follow
the construction from Section 2.1 up to ¢ = qo =: l;. Recall Py(l;) = —2I; and
P;(l;) = ; for j = 2,3 by (14). Then we make the first intermediate construction.
Starting from qo, let P; rise with slope 1 and P», P3 decay with slope roughly —1/2
in not too short intervals. The latter can be easily realized by changing the slopes
of P», P5 rapidly so that there are many positions g with equality P»(q) = Ps(q).
One may take these equality positions an arithmetic sequence by, b; = by + D, by =
bo 4+ 2D, ..., b, = by + hD with some by > ¢o,h > 0 and some small increment
D > 0, in the following way. Fix D > 0 small. Let (b, P»(bg)) be the intersection
point of the line passing through (qo, P2(go)) with slope 1 (graph of P») and the
line passing through (qo, P3(qo)) with slope —2 (graph of Ps), corresponding to
w; in Section 2.1. In [by, by + D/2], let P> decay with slope —2 and Pj rise with
slope 1. Then at gg + D/2 interchange the slopes, such that at b, = by + D we
have Py(b1) = P3(b1) = Pa(bg) — D/2. We repeat this procedure and stop at the
largest index h so that the resulting graphs of Py, P3 remain positive on [0, by]. For
simplicity let ¢ := b,. Notice that P;(b;) — P;(by) = —(by — bo)/2 = —ID/2 for
1=0,1,...,h. Therefore, by (14) and since D is small, it is easy to see that | P;(g)|
are all small for j = 1,2,3. Now starting at ¢, let P;, P; rise with slope 1 and P»
decay with slope —2 until the graphs of P; and P, meet at some position ¢;. Since
|P;(G)| are all small, the expressions g1 —¢ and |P;j(g1)| for j = 1,2, 3, are small (like
0(q1)) as well. This ends the first intermediate construction, illustrated in Figure 2
below (again slopes are scaled with factor 1/2). Now we essentially apply the initial
construction (step 0) from Section 2.1 from the interval [0,[;] again, starting from
q = q1 instead of ¢ = 0. Let us denote by g the right endpoint in this construction,
that is the value corresponding to [y from Section 2.1. Notice that P; has a local
minimum inside the interval [g1,¢2], corresponding to Iy from Section 2.1, and
another one at the right endpoint ¢». Since |P;j(¢1)| are small for j = 1,2, 3, the P;
indeed behave in [q1, g2] essentially like they do in the construction of Section 2.1
in the interval [0,[1] (see Figure 1). In particular, as for ¢ = qo, at ¢ = g2 again
we have Pi(q2) = —2¢2 and Pj(¢q2) =~ g2 for j = 2,3. Hence at this point we
again switch to the intermediate construction to define the P; in some interval
[g2, g3]. We repeat this iterative process of constructing P in [gak, g2k+1] and then
in [gok+1, @axt2], for all k > 1. It can be checked that the resulting combined graph
satisfies (11), (12). Notice hereby that the condition ¢, = —1/2 forced us to copy
the behavior of the P; on [0,l;], and not only on [0, ], in intervals [gag+1, g2k+2)-
The procedure can again be generalized to dimension n to provide n-systems with
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the properties

flz_n+1’ £2:

and

Py

Figure 2: Intermediate construction in [qo, ¢1], slopes scaled by factor 1/2.
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