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On a question of Schmidt and Summerer concerning
3-systems

Johannes Schleischitz

Abstract. Following a suggestion of W.M. Schmidt and L. Summerer,
we construct a proper 3-system (P1, P2, P3) with the property ϕ3 = 1.
In fact, our method generalizes to provide n-systems with ϕn = 1, for
arbitrary n ≥ 3. We visualize our constructions with graphics. We further
present explicit examples of numbers ξ1, . . . , ξn−1 that induce the n-systems
in question.

1 Parametric Diophantine approximation in dimension three
Let ξ1, ξ2 be real numbers so that the set {1, ξ1, ξ2} is linearly independent over Q.
For q > 0 a parameter, let K(q) be the box of points (z0, z1, z2) ∈ R3 that satisfy

|z0| ≤ e2q , |z1| ≤ e−q , |z2| ≤ e−q .

Further let Λ be the lattice consisting of the points{
(x, ξ1x− y1, ξ2x− y2) : x, y1, y2 ∈ Z

}
.

The successive minima λ1(q), λ2(q), λ3(q) of K(q) with respect to Λ as functions
of q contain the essential information on the simultaneous rational approximation
to ξ1, ξ2. It is convenient to study the logarithms of the functions λj(q), denoted
by Lj(q) = log λj(q) for j = 1, 2, 3. These functions have the nice property that
their slopes are among {−2, 1}, and their sum is absolutely bounded uniformly
in the parameter q. These properties motivated Schmidt and Summerer [7] to
define so called 3-systems. A 3-system P = (P1, P2, P3) is a triple of functions
Pj : [0,∞)→ R with slopes among {−2, 1} with the properties that

P1(0) = P2(0) = P3(0) = 0 ,

P1(q) ≤ P2(q) ≤ P3(q)
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and

P1(q) + P2(q) + P3(q) = 0 for every q ≥ 0.

Hence, locally in a neighborhood of any q > 0, precisely one of the three functions
decays while the other two rise, unless q is a switch point where some Pj are not
differentiable (change slope). Moreover, for P to be a 3-system, it is additionally
required that if at a switch point q some Pi changes from falling to rising and some
other Pj from rising to falling, then i < j unless Pi(q) = Pj(q). It has been shown
in [7] that every function triple (L1, L2, L3) as above, associated to some (ξ1, ξ2),
corresponds to a 3-system P up to a bounded amount, and conversely by Roy [2]
that for any 3-system P there exist ξ1, ξ2 satisfying the Q-linear independence
condition above and so that supq>0 maxj=1,2,3 |Pj(q) − Lj(q)| � 1. Roy’s result
employs a minor technical condition on the mesh of the system P , we do not
rephrase it here. Both results [2], [7] are established in more generality.

For given ξ1, ξ2 with induced funtions Lj(q), let ϕj(q) = Lj(q)/q and put

ϕ
j

= lim inf
q→∞

ϕj(q) , ϕj = lim sup
q→∞

ϕj(q) ,

for j = 1, 2, 3. Since Lj have slopes −2 and 1 only, it is clear that

−2 ≤ ϕ
j
≤ ϕj ≤ 1 , j = 1, 2, 3 . (1)

By virtue of the results from [2], [7] quoted above, in the sequel we will identify
the values ϕ

j
, ϕj with quantities derived from an associated 3-system P via

ϕ
j
←→ lim inf

q→∞

Pj(q)

q
, ϕj ←→ lim sup

q→∞

Pj(q)

q
, j = 1, 2, 3 , (2)

and vice versa. M. Laurent [1] provided estimates for classical exponents of ap-
proximation related to any pair (ξ1, ξ2) that is Q-linearly independent with {1}.
As pointed out in [9] they translate into the language of the functions ϕj as

0 ≤ ϕ
3
≤ ϕ3 ≤ 1,

ϕ
3

+ ϕ
3
ϕ1 + ϕ1 = 0, (3)

2ϕ
1

+ ϕ3 ≤ −ϕ3
(3 + ϕ

1
+ 2ϕ3), (4)

2ϕ3 + ϕ
1
≥ −ϕ1(3 + ϕ3 + 2ϕ

1
). (5)

Schmidt and Summerer [9] recently provided additional information by including
the second successive minimum in the picture.

Theorem 1 (Schmidt/Summerer, 2017). For any ξ1, ξ2 with {1, ξ1, ξ2} linearly
independent over Q, if 0 ≤ ϕ

3
< 1, additionally to the above relations we have

ϕ2 ≤ Ω :=
ϕ1 − ϕ1

2− ϕ1 − ϕ1ϕ1

, (6)
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and

ϕ
2
≥ Ω :=

ϕ
3
− ϕ3

2− ϕ
3
− ϕ3ϕ3

. (7)

Moreover, these estimates are best possible in the sense that for given numbers
ϕ
1
, ϕ1, ϕ3

, ϕ3 with 0 ≤ ϕ
3
< 1 and (3), (4), (5) there are ξ1, ξ2 with {1, ξ1, ξ2}

linearly independent over Q for whose approximation constants we have ϕ
2

= Ω

and ϕ2 = Ω.

Schmidt and Summerer enclose a remark to Theorem 1 pointing out that in
the case ϕ

3
= 1 excluded in its claim, we have ϕ2 = 1 and ϕ1 = ϕ

2
= −1/2 (by

mistake they denoted −1/3 instead in [9]). However, there is a gap in Theorem 1
concerning the existence of graphs with the property ϕ

3
= 1, and related real

numbers ξ1, ξ2. In [9] they state “But one really should prove that ξ = (ξ1, ξ2) with
(1, ξ1, ξ2) linearly independent over Q with ϕ3 = 1 exist. We invite the reader to
construct a proper 3-system P with this property.” The main purpose of this paper
is to provide the desired construction. Before we turn to constructing the 3-system,
we point out that explicit examples of Q-linearly independent {1, ξ1, ξ2} inducing
ϕ
3

= ϕ3 = 1 can be derived from previous results of the author. Concretely [4,
Corollary 2.11], upon putting k = n − 1 = 2 and C = ∞, yields the following
example.

Theorem 2. Let

ξ1 =

∞∑
k=1

10−(2k−1)! , ξ2 =

∞∑
k=1

10−(2k)! . (8)

Then

ϕ
1

= −2 , ϕ
2

= −1

2
, ϕ

3
= 1 , (9)

ϕ1 = −1

2
, ϕ2 = 1 , ϕ3 = 1 . (10)

While the results in [4] are originally formulated in the language of another type
of exponents, the two types of exponents determine each other via the identities
of [6, Theorem 1.4], and we derive Theorem 2. We note that for the sole purpose
of ϕ3 = 1, as desired in [9] and rephrased above, in fact any numbers ξ1, ξ2 which
are simultaneously approximable to any order by rational numbers can be chosen.
In particular, one may choose the pair (ξ, ξ2) with ξ any Liouville number, see [5,
Theorem 3.1]. However, then we always have ϕ

3
= 0. For Liouville’s constant

given as ξ = 10−1! + 10−2! + 10−3! + · · · , by [5, Theorem 3.2] in place of (9), (10)
we have

ϕ
1

= −2 , ϕ
2

= −1

2
, ϕ

3
= 0 , (11)

ϕ1 = 0 , ϕ2 = 1 , ϕ3 = 1 . (12)

Alternatively to the above examples, the pure existence of pairs (ξ1, ξ2) inducing
ϕ3 = 1 (or ϕ

3
= 1) also follows from Roy’s results [2] and [3, Theorem 11.5]
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(the latter result, already quoted in [9], provides an explicit description of the
spectrum of sixtuples ϕ

1
, ϕ

2
, ϕ

3
, ϕ1, ϕ2, ϕ3 by a system of complicated inequalities).

The main concern of the question of Schmidt and Summerer appears to be the
construction of a suitable 3-system, carried out in Section 2.1 below.

2 Construction of a 3-system with ϕ3 = 1

We want to present an effective construction of a 3-system with (9), (10), in par-
ticular ϕ3 = 1. It resembles the combined graph (L1, L2, L3) with respect to the
pair (ξ1, ξ2) in (8), in an idealized form. In fact the resulting 3-system can be in-
terpreted as the idealized extremal case of the regular graph defined in [8], for the
parameter ρ =∞. In Section 2.3 we will briefly sketch how to modify the method
to obtain a graph with (11), (12) instead, and give generalizations to n-systems.

2.1 The construction

We construct the graphs piecewise as follows. Let

0 < l0 < l1 < l2 < l3 < · · · ,

be a fast increasing lacunary sequence of real numbers with the property

lim
i→∞

li+1

li
=∞ . (13)

Let r0 = 0. In the interval [r0, l0] = [0, l0] let P1 decay with slope −2 and P2, P3

rise with slope 1, so that P1(l0) = −2l0 and P2(l0) = P3(l0) = l0. Let w0 = l0 for
consistency with later notation. Let l0 be the first switch point where P1 starts to
rise and P2 starts to decay. Then the graph of P1 will meet the graph of P2 at some
point (r1, P1(r1)) with r1 > l0. We may assume l1 > r1. In the interval [r1, l1] we
define P1 as decaying with slope −2 again and the other two functions rising with
slope 1. Note that P3(l1) = l1 since it has not changed slope yet. Assume this
construction of the graphs in [0, l1] was step 0 of our construction. Now we carry
out how to complete the process with identical steps 1, 2, 3, . . . where in step i we
define the graphs of P1, P2, P3 in the interval [li, li+1]. At position q = l1 we let P1

and P3 change slopes so that P1 rises with slope 1 and P3 decays with slope −2.
The function P2 still rises with slope 1. We keep these slopes until P2 meets P3 at
position q = w1. Then we let P2 decay with slope −2 and the other functions rise
with slope 1 until P2 meets P1 at some point (r2, P1(r2)). We may assume l2 > r2.
Then we let P1 decay with slope −2 up to q = l2, and the other two functions rise
with slope 1 in this interval. This completes step 1. At q = l2 we let P1 again
switch from decaying to rising and conversely for P3, and so on. When we repeat
the whole process ad infinitum, we claim that P1, P2, P3 represent the combined
graph of a 3-system with the properties (9), (10). A sketch of such a 3-system in
an initial interval is shown in Figure 1 below. For size reasons we used the slopes
−1, 1/2 instead of −2, 1, thereby sketching Pj(q)/2 for j = 1, 2, 3.
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Figure 1: Visualization of case ϕ3 = 1, slopes scaled by factor 1/2.

2.2 The proof

Keep in mind for the following that the switching positions in our construction are
ordered

0 = r0 < l0 = w0 < r1 < l1 < w1 < r2 < l2 < w2 < · · · ,

and also the identification (2). First it is clear that the process yields the combined
graph of a 3-system P . Indeed, by construction there is always precisely one Pj

decaying, there are infinitely many positions where P1 = P2 and P2 = P3 respec-
tively hold, and the switches occur in a way that respects the additional 3-system
condition on a local maximum having higher index than a local minimum at switch
points mentioned in the introduction. To obtain (9), (10), we first look at positions
q = li and claim that

lim
i→∞

P1(li)

li
= −2 , lim

i→∞

P2(li)

li
= lim

i→∞

P3(li)

li
= 1 . (14)
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By the identification (2) and by (1) this implies ϕ
1

= −2 and ϕ2 = ϕ3 = 1. By
construction P1 decays with slope −2 in intervals of the form It := [rt, lt] for t ≥ 0
and rises in intervals Jt := [lt−1, rt] for t ≥ 1. We next check that

rt < 2lt−1 , t ≥ 1. (15)

We trivially have P3(lt−1)−P1(lt−1) ≤ lt−1−(−2lt−1) = 3lt−1. On the other hand,
since P1 decays in Jt with slope −2 whereas P3 rises with slope 1, the function
P3 − P1 has slope 3 in Jt so that they must meet within distance 3lt−1/3 = lt−1
in the first coordinate on the right from lt−1. This intersection point has first
coordinate rt, and we deduce (15).

The estimate (15) and the assumption (13) clearly imply that the sums of the
lengths of the intervals It over t = 1, 2, . . . , i exceeds the according sums of the
intervals Jt by any given factor ρ > 0 for large enough i, i.e.

i∑
t=0

|It| > ρ

i∑
t=1

|Jt| , i ≥ i0(ρ).

Thus since

li =

i∑
t=0

|It|+
i∑

t=1

|Jt|

and

P1(li) = −2

i∑
t=0

|It|+
i∑

t=1

|Jt| ,

indeed for sufficiently large i we have

P1(li)

li
< −2 + ρ−1

1 + ρ−1
.

As we can choose ρ arbitrarily large indeed limi→∞ P1(li)/li = −2, hence ϕ
1

= −2
by (1), (2). Since P2 and P3 rise with slope 1 in any It we infer the remaining
claims of (14) by a very similar argument, or directly by using the bounded sum
property at q = li.

Next we show

lim
q→∞

P3(q)

q
= 1 . (16)

By construction P3 has local minima precisely at positions wi and it rises with
slope 1 everywhere outside of the intervals [li, wi], in which it decays with slope
−2. In view of (1) it suffices to check that

lim inf
i→∞

P3(wi)

wi
≥ 1 . (17)

By construction

P3(wi) = l0 − 2

i∑
j=0

(wj − lj) +

i−1∑
j=0

(lj+1 − wj) .
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Hence, in view of (13), to verify (17) it suffices to check

lim
i→∞

wi

li
= 1 . (18)

Now by construction in the interval [li, wi] the function P2 rises with slope 1 whereas
P3 decays with slope −2, hence wi = li+ui with ui defined implicitly by the identity
P3(li)− 2ui = P2(li) + ui, that is wi = li + (P3(li)−P2(li))/3. On the other hand,
by (14) we have P2(li) = li(1 + o(1)) and P3(li) = li(1 + o(1)), hence inserting we
derive wi = li(1 + o(1)) as i→∞, as desired. Thus (16) is shown.

Finally we show that

lim
i→∞

P1(ri)

ri
= lim

i→∞

P2(ri)

ri
= −1

2
. (19)

Since by construction the local maxima of P1 and the local minima of P2 both are
attained precisely at the positions ri, the remaining identities from (9) and (10)
are implied. Let Kt = [wt−1, rt], so that Kt ⊆ Jt and by (13), (18) the complement
Jt \Kt is small compared to Jt. In Kt, the function P1 rises with slope 1 whereas
P2 decays with slope −2. Moreover, by (14) and (18) and since the slopes are
bounded

lim
i→∞

P1(wi)

wi
= −2 , lim

i→∞

P2(wi)

wi
= 1 .

Combining these two facts and by definition of ri, for large i we readily conclude
ri = wi−1(2− o(1)) and thus the asymptotic value at ri is

P1(ri) = P1(wi−1) + ri − wi−1 = wi−1(−1 + o(1)) ,

hence indeed P1(ri)/ri = −1/2 + o(1) for large i. Thus (19) holds and the proof is
finished.

2.3 Generalizations and variations

A similar construction as in Section 2.1 can be done in arbitrary dimension n,
where the slopes of the Pj are among {−n+ 1, 1}. Instead of one sequence (wi)i≥0
with li < wi < ri+1, we obtain n− 2 sequences (wh

i )i≥0, 1 ≤ h ≤ n− 2, induced by
positions where Pn−h+1 meets Pn−h, ordered

li < w1
i < w2

i < · · · < wn−2
i < ri+1 .

We derive n-systems P = (P1, . . . , Pn) whose approximation constants (via identi-
fication (2)) satisfy

ϕ
1

= −n+ 1 , ϕ
2

=
2− n

2
, ϕ

j
= 1 , 3 ≤ j ≤ n,

and

ϕ1 =
2− n

2
, ϕj = 1 , 2 ≤ j ≤ n.
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Again this resembles the special case ρ =∞ of the regular graph [8] in dimension n,
and suitable numbers (ξ1, . . . , ξn−1) inducing these approximation constants arise
from [4, Corollary 2.11] upon taking k = n− 1, C =∞, a particular choice is

ξj =

∞∑
k=0

10−(k(n−1)+j)! , 1 ≤ j ≤ n− 1.

Finally, we sketch the construction of a 3-system P with the properties (11), (12)
in place of (9), (10). We have to alternate between the construction of Section 2.1
and another type of intermediate construction. Take i a large integer and follow
the construction from Section 2.1 up to q = q0 =: li. Recall P1(li) ≈ −2li and
Pj(li) ≈ li for j = 2, 3 by (14). Then we make the first intermediate construction.
Starting from q0, let P1 rise with slope 1 and P2, P3 decay with slope roughly −1/2
in not too short intervals. The latter can be easily realized by changing the slopes
of P2, P3 rapidly so that there are many positions q with equality P2(q) = P3(q).
One may take these equality positions an arithmetic sequence b0, b1 = b0 +D, b2 =
b0 + 2D, . . . , bh = b0 + hD with some b0 ≥ q0, h ≥ 0 and some small increment
D > 0, in the following way. Fix D > 0 small. Let (b0, P2(b0)) be the intersection
point of the line passing through (q0, P2(q0)) with slope 1 (graph of P2) and the
line passing through (q0, P3(q0)) with slope −2 (graph of P3), corresponding to
wi in Section 2.1. In [b0, b0 + D/2], let P2 decay with slope −2 and P3 rise with
slope 1. Then at q0 + D/2 interchange the slopes, such that at b1 = b0 + D we
have P2(b1) = P3(b1) = P2(b0) −D/2. We repeat this procedure and stop at the
largest index h so that the resulting graphs of P2, P3 remain positive on [0, bh]. For
simplicity let q̃ := bh. Notice that Pj(bl) − Pj(b0) = −(bl − b0)/2 = −lD/2 for
l = 0, 1, . . . , h. Therefore, by (14) and since D is small, it is easy to see that |Pj(q̃)|
are all small for j = 1, 2, 3. Now starting at q̃, let P1, P3 rise with slope 1 and P2

decay with slope −2 until the graphs of P1 and P2 meet at some position q1. Since
|Pj(q̃)| are all small, the expressions q1− q̃ and |Pj(q1)| for j = 1, 2, 3, are small (like
o(q1)) as well. This ends the first intermediate construction, illustrated in Figure 2
below (again slopes are scaled with factor 1/2). Now we essentially apply the initial
construction (step 0) from Section 2.1 from the interval [0, l1] again, starting from
q = q1 instead of q = 0. Let us denote by q2 the right endpoint in this construction,
that is the value corresponding to l1 from Section 2.1. Notice that P1 has a local
minimum inside the interval [q1, q2], corresponding to l0 from Section 2.1, and
another one at the right endpoint q2. Since |Pj(q1)| are small for j = 1, 2, 3, the Pj

indeed behave in [q1, q2] essentially like they do in the construction of Section 2.1
in the interval [0, l1] (see Figure 1). In particular, as for q = q0, at q = q2 again
we have P1(q2) ≈ −2q2 and Pj(q2) ≈ q2 for j = 2, 3. Hence at this point we
again switch to the intermediate construction to define the Pj in some interval
[q2, q3]. We repeat this iterative process of constructing P in [q2k, q2k+1] and then
in [q2k+1, q2k+2], for all k ≥ 1. It can be checked that the resulting combined graph
satisfies (11), (12). Notice hereby that the condition ϕ

2
= −1/2 forced us to copy

the behavior of the Pj on [0, l1], and not only on [0, l0], in intervals [q2k+1, q2k+2].
The procedure can again be generalized to dimension n to provide n-systems with



On a question of Schmidt and Summerer concerning 3-systems 261

the properties

ϕ
1

= −n+ 1 , ϕ
2

=
2− n

2
, ϕ

j
= 0 , 3 ≤ j ≤ n,

and
ϕ1 = 0 , ϕj = 1 , 2 ≤ j ≤ n.

q

P(q)

P1

P3

P2

q1b8 = q̃q0 = li b0b0 b1 b2 b3 b4 b5 b6 b7

Figure 2: Intermediate construction in [q0, q1], slopes scaled by factor 1/2.
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