

Communications in Mathematics 28 (2020) 253–262 DOI: 10.2478/cm-2020-0007 ©2020 Johannes Schleischitz This is an open access article licensed under the CC BY-NC-ND 3.0

On a question of Schmidt and Summerer concerning 3-systems

Johannes Schleischitz

Abstract. Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper 3-system (P_1, P_2, P_3) with the property $\overline{\varphi}_3 = 1$. In fact, our method generalizes to provide *n*-systems with $\overline{\varphi}_n = 1$, for arbitrary $n \geq 3$. We visualize our constructions with graphics. We further present explicit examples of numbers ξ_1, \ldots, ξ_{n-1} that induce the *n*-systems in question.

1 Parametric Diophantine approximation in dimension three

Let ξ_1, ξ_2 be real numbers so that the set $\{1, \xi_1, \xi_2\}$ is linearly independent over \mathbb{Q} . For q > 0 a parameter, let K(q) be the box of points $(z_0, z_1, z_2) \in \mathbb{R}^3$ that satisfy

 $|z_0| \le e^{2q}$, $|z_1| \le e^{-q}$, $|z_2| \le e^{-q}$.

Further let Λ be the lattice consisting of the points

$$\{(x,\xi_1x-y_1,\xi_2x-y_2):x,y_1,y_2\in\mathbb{Z}\}.$$

The successive minima $\lambda_1(q), \lambda_2(q), \lambda_3(q)$ of K(q) with respect to Λ as functions of q contain the essential information on the simultaneous rational approximation to ξ_1, ξ_2 . It is convenient to study the logarithms of the functions $\lambda_j(q)$, denoted by $L_j(q) = \log \lambda_j(q)$ for j = 1, 2, 3. These functions have the nice property that their slopes are among $\{-2, 1\}$, and their sum is absolutely bounded uniformly in the parameter q. These properties motivated Schmidt and Summerer [7] to define so called 3-systems. A 3-system $P = (P_1, P_2, P_3)$ is a triple of functions $P_j: [0, \infty) \to \mathbb{R}$ with slopes among $\{-2, 1\}$ with the properties that

$$P_1(0) = P_2(0) = P_3(0) = 0,$$

$$P_1(q) \le P_2(q) \le P_3(q)$$

2020 MSC: 11J13, 11H06

 $K\!ey$ words: parametric geometry of numbers, simultaneous approximation $Af\!filiation:$

Middle East Technical University, Northern Cyprus Campus, Kalkanli, Güzelyurt *E-mail*: johannes.schleischitz@univie.ac.at

and

$$P_1(q) + P_2(q) + P_3(q) = 0$$
 for every $q \ge 0$.

Hence, locally in a neighborhood of any q > 0, precisely one of the three functions decays while the other two rise, unless q is a switch point where some P_j are not differentiable (change slope). Moreover, for P to be a 3-system, it is additionally required that if at a switch point q some P_i changes from falling to rising and some other P_j from rising to falling, then i < j unless $P_i(q) = P_j(q)$. It has been shown in [7] that every function triple (L_1, L_2, L_3) as above, associated to some (ξ_1, ξ_2) , corresponds to a 3-system P up to a bounded amount, and conversely by Roy [2] that for any 3-system P there exist ξ_1, ξ_2 satisfying the Q-linear independence condition above and so that $\sup_{q>0} \max_{j=1,2,3} |P_j(q) - L_j(q)| \ll 1$. Roy's result employs a minor technical condition on the mesh of the system P, we do not rephrase it here. Both results [2], [7] are established in more generality.

For given ξ_1, ξ_2 with induced functions $L_j(q)$, let $\varphi_j(q) = L_j(q)/q$ and put

$$\underline{\varphi}_j = \liminf_{q \to \infty} \varphi_j(q) \,, \qquad \overline{\varphi}_j = \limsup_{q \to \infty} \varphi_j(q)$$

for j = 1, 2, 3. Since L_j have slopes -2 and 1 only, it is clear that

$$-2 \le \underline{\varphi}_j \le \overline{\varphi}_j \le 1, \qquad j = 1, 2, 3. \tag{1}$$

By virtue of the results from [2], [7] quoted above, in the sequel we will identify the values $\underline{\varphi}_i, \overline{\varphi}_j$ with quantities derived from an associated 3-system P via

$$\underline{\varphi}_j \longleftrightarrow \liminf_{q \to \infty} \frac{P_j(q)}{q}, \qquad \overline{\varphi}_j \longleftrightarrow \limsup_{q \to \infty} \frac{P_j(q)}{q}, \qquad j = 1, 2, 3, \qquad (2)$$

and vice versa. M. Laurent [1] provided estimates for classical exponents of approximation related to any pair (ξ_1, ξ_2) that is \mathbb{Q} -linearly independent with $\{1\}$. As pointed out in [9] they translate into the language of the functions φ_j as

$$0 \leq \underline{\varphi}_3 \leq \overline{\varphi}_3 \leq 1,$$

$$\underline{\varphi}_3 + \underline{\varphi}_3 \overline{\varphi}_1 + \overline{\varphi}_1 = 0,$$
 (3)

$$2\underline{\varphi}_1 + \overline{\varphi}_3 \le -\underline{\varphi}_3(3 + \underline{\varphi}_1 + 2\overline{\varphi}_3),\tag{4}$$

$$2\overline{\varphi}_3 + \underline{\varphi}_1 \ge -\overline{\varphi}_1(3 + \overline{\varphi}_3 + 2\underline{\varphi}_1). \tag{5}$$

Schmidt and Summerer [9] recently provided additional information by including the second successive minimum in the picture.

Theorem 1 (Schmidt/Summerer, 2017). For any ξ_1, ξ_2 with $\{1, \xi_1, \xi_2\}$ linearly independent over \mathbb{Q} , if $0 \leq \underline{\varphi}_3 < 1$, additionally to the above relations we have

$$\overline{\varphi}_2 \le \overline{\Omega} := \frac{\overline{\varphi}_1 - \underline{\varphi}_1}{2 - \overline{\varphi}_1 - \overline{\varphi}_1 \underline{\varphi}_1},\tag{6}$$

and

$$\underline{\varphi}_2 \ge \underline{\Omega} := \frac{\underline{\varphi}_3 - \overline{\varphi}_3}{2 - \underline{\varphi}_3 - \overline{\varphi}_3 \underline{\varphi}_3} \,. \tag{7}$$

Moreover, these estimates are best possible in the sense that for given numbers $\underline{\varphi}_1, \overline{\varphi}_1, \underline{\varphi}_3, \overline{\varphi}_3$ with $0 \leq \underline{\varphi}_3 < 1$ and (3), (4), (5) there are ξ_1, ξ_2 with $\{1, \xi_1, \xi_2\}$ linearly independent over \mathbb{Q} for whose approximation constants we have $\underline{\varphi}_2 = \underline{\Omega}$ and $\overline{\varphi}_2 = \overline{\Omega}$.

Schmidt and Summerer enclose a remark to Theorem 1 pointing out that in the case $\underline{\varphi}_3 = 1$ excluded in its claim, we have $\overline{\varphi}_2 = 1$ and $\overline{\varphi}_1 = \underline{\varphi}_2 = -1/2$ (by mistake they denoted -1/3 instead in [9]). However, there is a gap in Theorem 1 concerning the existence of graphs with the property $\underline{\varphi}_3 = 1$, and related real numbers ξ_1, ξ_2 . In [9] they state "But one really should prove that $\underline{\xi} = (\xi_1, \xi_2)$ with $(1, \xi_1, \xi_2)$ linearly independent over \mathbb{Q} with $\overline{\varphi}_3 = 1$ exist. We invite the reader to construct a proper 3-system P with this property." The main purpose of this paper is to provide the desired construction. Before we turn to constructing the 3-system, we point out that explicit examples of \mathbb{Q} -linearly independent $\{1, \xi_1, \xi_2\}$ inducing $\underline{\varphi}_3 = \overline{\varphi}_3 = 1$ can be derived from previous results of the author. Concretely [4, Corollary 2.11], upon putting k = n - 1 = 2 and $C = \infty$, yields the following example.

Theorem 2. Let

$$\xi_1 = \sum_{k=1}^{\infty} 10^{-(2k-1)!}, \qquad \xi_2 = \sum_{k=1}^{\infty} 10^{-(2k)!}.$$
 (8)

Then

$$\underline{\varphi}_1 = -2, \qquad \underline{\varphi}_2 = -\frac{1}{2}, \qquad \underline{\varphi}_3 = 1, \qquad (9)$$

$$\overline{\varphi}_1 = -\frac{1}{2}, \qquad \overline{\varphi}_2 = 1, \qquad \overline{\varphi}_3 = 1.$$
 (10)

While the results in [4] are originally formulated in the language of another type of exponents, the two types of exponents determine each other via the identities of [6, Theorem 1.4], and we derive Theorem 2. We note that for the sole purpose of $\overline{\varphi}_3 = 1$, as desired in [9] and rephrased above, in fact any numbers ξ_1, ξ_2 which are simultaneously approximable to any order by rational numbers can be chosen. In particular, one may choose the pair (ξ, ξ^2) with ξ any Liouville number, see [5, Theorem 3.1]. However, then we always have $\underline{\varphi}_3 = 0$. For Liouville's constant given as $\xi = 10^{-1!} + 10^{-2!} + 10^{-3!} + \cdots$, by [5, Theorem 3.2] in place of (9), (10) we have

$$\underline{\varphi}_1 = -2, \qquad \qquad \underline{\varphi}_2 = -\frac{1}{2}, \qquad \qquad \underline{\varphi}_3 = 0, \qquad (11)$$

$$\overline{\varphi}_1 = 0 \,, \qquad \qquad \overline{\varphi}_2 = 1 \,, \qquad \qquad \overline{\varphi}_3 = 1 \,. \tag{12}$$

Alternatively to the above examples, the pure existence of pairs (ξ_1, ξ_2) inducing $\overline{\varphi}_3 = 1$ (or $\underline{\varphi}_3 = 1$) also follows from Roy's results [2] and [3, Theorem 11.5]

(the latter result, already quoted in [9], provides an explicit description of the spectrum of sixtuples $\underline{\varphi}_1, \underline{\varphi}_2, \underline{\varphi}_3, \overline{\varphi}_1, \overline{\varphi}_2, \overline{\varphi}_3$ by a system of complicated inequalities). The main concern of the question of Schmidt and Summerer appears to be the construction of a suitable 3-system, carried out in Section 2.1 below.

2 Construction of a 3-system with $\overline{\varphi}_3 = 1$

We want to present an effective construction of a 3-system with (9), (10), in particular $\overline{\varphi}_3 = 1$. It resembles the combined graph (L_1, L_2, L_3) with respect to the pair (ξ_1, ξ_2) in (8), in an idealized form. In fact the resulting 3-system can be interpreted as the idealized extremal case of the regular graph defined in [8], for the parameter $\rho = \infty$. In Section 2.3 we will briefly sketch how to modify the method to obtain a graph with (11), (12) instead, and give generalizations to *n*-systems.

2.1 The construction

We construct the graphs piecewise as follows. Let

$$0 < l_0 < l_1 < l_2 < l_3 < \cdots$$

be a fast increasing lacunary sequence of real numbers with the property

$$\lim_{i \to \infty} \frac{l_{i+1}}{l_i} = \infty \,. \tag{13}$$

Let $r_0 = 0$. In the interval $[r_0, l_0] = [0, l_0]$ let P_1 decay with slope -2 and P_2, P_3 rise with slope 1, so that $P_1(l_0) = -2l_0$ and $P_2(l_0) = P_3(l_0) = l_0$. Let $w_0 = l_0$ for consistency with later notation. Let l_0 be the first switch point where P_1 starts to rise and P_2 starts to decay. Then the graph of P_1 will meet the graph of P_2 at some point $(r_1, P_1(r_1))$ with $r_1 > l_0$. We may assume $l_1 > r_1$. In the interval $[r_1, l_1]$ we define P_1 as decaying with slope -2 again and the other two functions rising with slope 1. Note that $P_3(l_1) = l_1$ since it has not changed slope yet. Assume this construction of the graphs in $[0, l_1]$ was step 0 of our construction. Now we carry out how to complete the process with identical steps $1, 2, 3, \ldots$ where in step i we define the graphs of P_1, P_2, P_3 in the interval $[l_i, l_{i+1}]$. At position $q = l_1$ we let P_1 and P_3 change slopes so that P_1 rises with slope 1 and P_3 decays with slope -2. The function P_2 still rises with slope 1. We keep these slopes until P_2 meets P_3 at position $q = w_1$. Then we let P_2 decay with slope -2 and the other functions rise with slope 1 until P_2 meets P_1 at some point $(r_2, P_1(r_2))$. We may assume $l_2 > r_2$. Then we let P_1 decay with slope -2 up to $q = l_2$, and the other two functions rise with slope 1 in this interval. This completes step 1. At $q = l_2$ we let P_1 again switch from decaying to rising and conversely for P_3 , and so on. When we repeat the whole process ad infinitum, we claim that P_1, P_2, P_3 represent the combined graph of a 3-system with the properties (9), (10). A sketch of such a 3-system in an initial interval is shown in Figure 1 below. For size reasons we used the slopes -1, 1/2 instead of -2, 1, thereby sketching $P_j(q)/2$ for j = 1, 2, 3.

Figure 1: Visualization of case $\overline{\varphi}_3 = 1$, slopes scaled by factor 1/2.

2.2 The proof

Keep in mind for the following that the switching positions in our construction are ordered

$$0 = r_0 < l_0 = w_0 < r_1 < l_1 < w_1 < r_2 < l_2 < w_2 < \cdots,$$

and also the identification (2). First it is clear that the process yields the combined graph of a 3-system P. Indeed, by construction there is always precisely one P_j decaying, there are infinitely many positions where $P_1 = P_2$ and $P_2 = P_3$ respectively hold, and the switches occur in a way that respects the additional 3-system condition on a local maximum having higher index than a local minimum at switch points mentioned in the introduction. To obtain (9), (10), we first look at positions $q = l_i$ and claim that

$$\lim_{i \to \infty} \frac{P_1(l_i)}{l_i} = -2, \qquad \lim_{i \to \infty} \frac{P_2(l_i)}{l_i} = \lim_{i \to \infty} \frac{P_3(l_i)}{l_i} = 1.$$
(14)

By the identification (2) and by (1) this implies $\underline{\varphi}_1 = -2$ and $\overline{\varphi}_2 = \overline{\varphi}_3 = 1$. By construction P_1 decays with slope -2 in intervals of the form $I_t := [r_t, l_t]$ for $t \ge 0$ and rises in intervals $J_t := [l_{t-1}, r_t]$ for $t \ge 1$. We next check that

$$r_t < 2l_{t-1}, \qquad t \ge 1.$$
 (15)

We trivially have $P_3(l_{t-1}) - P_1(l_{t-1}) \le l_{t-1} - (-2l_{t-1}) = 3l_{t-1}$. On the other hand, since P_1 decays in J_t with slope -2 whereas P_3 rises with slope 1, the function $P_3 - P_1$ has slope 3 in J_t so that they must meet within distance $3l_{t-1}/3 = l_{t-1}$ in the first coordinate on the right from l_{t-1} . This intersection point has first coordinate r_t , and we deduce (15).

The estimate (15) and the assumption (13) clearly imply that the sums of the lengths of the intervals I_t over t = 1, 2, ..., i exceeds the according sums of the intervals J_t by any given factor $\rho > 0$ for large enough i, i.e.

$$\sum_{t=0}^{i} |I_t| > \rho \sum_{t=1}^{i} |J_t|, \qquad i \ge i_0(\rho).$$

Thus since

$$l_i = \sum_{t=0}^{i} |I_t| + \sum_{t=1}^{i} |J_t|$$

and

$$P_1(l_i) = -2\sum_{t=0}^{i} |I_t| + \sum_{t=1}^{i} |J_t|,$$

indeed for sufficiently large i we have

$$\frac{P_1(l_i)}{l_i} < -\frac{2+\rho^{-1}}{1+\rho^{-1}} \,.$$

As we can choose ρ arbitrarily large indeed $\lim_{i\to\infty} P_1(l_i)/l_i = -2$, hence $\underline{\varphi}_1 = -2$ by (1), (2). Since P_2 and P_3 rise with slope 1 in any I_t we infer the remaining claims of (14) by a very similar argument, or directly by using the bounded sum property at $q = l_i$.

Next we show

$$\lim_{q \to \infty} \frac{P_3(q)}{q} = 1.$$
(16)

By construction P_3 has local minima precisely at positions w_i and it rises with slope 1 everywhere outside of the intervals $[l_i, w_i]$, in which it decays with slope -2. In view of (1) it suffices to check that

$$\liminf_{i \to \infty} \frac{P_3(w_i)}{w_i} \ge 1.$$
(17)

By construction

$$P_3(w_i) = l_0 - 2\sum_{j=0}^{i} (w_j - l_j) + \sum_{j=0}^{i-1} (l_{j+1} - w_j).$$

Hence, in view of (13), to verify (17) it suffices to check

$$\lim_{i \to \infty} \frac{w_i}{l_i} = 1.$$
(18)

Now by construction in the interval $[l_i, w_i]$ the function P_2 rises with slope 1 whereas P_3 decays with slope -2, hence $w_i = l_i + u_i$ with u_i defined implicitly by the identity $P_3(l_i) - 2u_i = P_2(l_i) + u_i$, that is $w_i = l_i + (P_3(l_i) - P_2(l_i))/3$. On the other hand, by (14) we have $P_2(l_i) = l_i(1 + o(1))$ and $P_3(l_i) = l_i(1 + o(1))$, hence inserting we derive $w_i = l_i(1 + o(1))$ as $i \to \infty$, as desired. Thus (16) is shown.

Finally we show that

$$\lim_{i \to \infty} \frac{P_1(r_i)}{r_i} = \lim_{i \to \infty} \frac{P_2(r_i)}{r_i} = -\frac{1}{2}.$$
 (19)

Since by construction the local maxima of P_1 and the local minima of P_2 both are attained precisely at the positions r_i , the remaining identities from (9) and (10) are implied. Let $K_t = [w_{t-1}, r_t]$, so that $K_t \subseteq J_t$ and by (13), (18) the complement $J_t \setminus K_t$ is small compared to J_t . In K_t , the function P_1 rises with slope 1 whereas P_2 decays with slope -2. Moreover, by (14) and (18) and since the slopes are bounded

$$\lim_{i \to \infty} \frac{P_1(w_i)}{w_i} = -2, \qquad \lim_{i \to \infty} \frac{P_2(w_i)}{w_i} = 1.$$

Combining these two facts and by definition of r_i , for large *i* we readily conclude $r_i = w_{i-1}(2 - o(1))$ and thus the asymptotic value at r_i is

$$P_1(r_i) = P_1(w_{i-1}) + r_i - w_{i-1} = w_{i-1}(-1 + o(1)),$$

hence indeed $P_1(r_i)/r_i = -1/2 + o(1)$ for large *i*. Thus (19) holds and the proof is finished.

2.3 Generalizations and variations

A similar construction as in Section 2.1 can be done in arbitrary dimension n, where the slopes of the P_j are among $\{-n+1,1\}$. Instead of one sequence $(w_i)_{i\geq 0}$ with $l_i < w_i < r_{i+1}$, we obtain n-2 sequences $(w_i^h)_{i\geq 0}, 1 \le h \le n-2$, induced by positions where P_{n-h+1} meets P_{n-h} , ordered

$$l_i < w_i^1 < w_i^2 < \dots < w_i^{n-2} < r_{i+1}$$
.

We derive *n*-systems $P = (P_1, \ldots, P_n)$ whose approximation constants (via identification (2)) satisfy

$$\underline{\varphi}_1 = -n+1\,,\qquad \underline{\varphi}_2 = \frac{2-n}{2}\,,\qquad \underline{\varphi}_j = 1\,,\quad 3\leq j\leq n,$$

and

$$\overline{\varphi}_1 = \frac{2-n}{2} \,, \qquad \overline{\varphi}_j = 1 \,, \quad 2 \leq j \leq n$$

Again this resembles the special case $\rho = \infty$ of the regular graph [8] in dimension n, and suitable numbers $(\xi_1, \ldots, \xi_{n-1})$ inducing these approximation constants arise from [4, Corollary 2.11] upon taking k = n - 1, $C = \infty$, a particular choice is

$$\xi_j = \sum_{k=0}^{\infty} 10^{-(k(n-1)+j)!}, \qquad 1 \le j \le n-1$$

Finally, we sketch the construction of a 3-system P with the properties (11), (12) in place of (9), (10). We have to alternate between the construction of Section 2.1 and another type of intermediate construction. Take i a large integer and follow the construction from Section 2.1 up to $q = q_0 =: l_i$. Recall $P_1(l_i) \approx -2l_i$ and $P_i(l_i) \approx l_i$ for j = 2,3 by (14). Then we make the first intermediate construction. Starting from q_0 , let P_1 rise with slope 1 and P_2 , P_3 decay with slope roughly -1/2in not too short intervals. The latter can be easily realized by changing the slopes of P_2, P_3 rapidly so that there are many positions q with equality $P_2(q) = P_3(q)$. One may take these equality positions an arithmetic sequence $b_0, b_1 = b_0 + D, b_2 =$ $b_0 + 2D, \ldots, b_h = b_0 + hD$ with some $b_0 \ge q_0, h \ge 0$ and some small increment D > 0, in the following way. Fix D > 0 small. Let $(b_0, P_2(b_0))$ be the intersection point of the line passing through $(q_0, P_2(q_0))$ with slope 1 (graph of P_2) and the line passing through $(q_0, P_3(q_0))$ with slope -2 (graph of P_3), corresponding to w_i in Section 2.1. In $[b_0, b_0 + D/2]$, let P_2 decay with slope -2 and P_3 rise with slope 1. Then at $q_0 + D/2$ interchange the slopes, such that at $b_1 = b_0 + D$ we have $P_2(b_1) = P_3(b_1) = P_2(b_0) - D/2$. We repeat this procedure and stop at the largest index h so that the resulting graphs of P_2, P_3 remain positive on $[0, b_h]$. For simplicity let $\tilde{q} := b_h$. Notice that $P_j(b_l) - P_j(b_0) = -(b_l - b_0)/2 = -lD/2$ for $l = 0, 1, \ldots, h$. Therefore, by (14) and since D is small, it is easy to see that $|P_i(\tilde{q})|$ are all small for j = 1, 2, 3. Now starting at \tilde{q} , let P_1, P_3 rise with slope 1 and P_2 decay with slope -2 until the graphs of P_1 and P_2 meet at some position q_1 . Since $|P_i(\tilde{q})|$ are all small, the expressions $q_1 - \tilde{q}$ and $|P_i(q_1)|$ for j = 1, 2, 3, are small (like $o(q_1)$) as well. This ends the first intermediate construction, illustrated in Figure 2 below (again slopes are scaled with factor 1/2). Now we essentially apply the initial construction (step 0) from Section 2.1 from the interval $[0, l_1]$ again, starting from $q = q_1$ instead of q = 0. Let us denote by q_2 the right endpoint in this construction, that is the value corresponding to l_1 from Section 2.1. Notice that P_1 has a local minimum inside the interval $[q_1, q_2]$, corresponding to l_0 from Section 2.1, and another one at the right endpoint q_2 . Since $|P_j(q_1)|$ are small for j = 1, 2, 3, the P_j indeed behave in $[q_1, q_2]$ essentially like they do in the construction of Section 2.1 in the interval $[0, l_1]$ (see Figure 1). In particular, as for $q = q_0$, at $q = q_2$ again we have $P_1(q_2) \approx -2q_2$ and $P_j(q_2) \approx q_2$ for j = 2,3. Hence at this point we again switch to the intermediate construction to define the P_j in some interval $[q_2, q_3]$. We repeat this iterative process of constructing P in $[q_{2k}, q_{2k+1}]$ and then in $[q_{2k+1}, q_{2k+2}]$, for all $k \geq 1$. It can be checked that the resulting combined graph satisfies (11), (12). Notice hereby that the condition $\underline{\varphi}_2 = -1/2$ forced us to copy the behavior of the P_j on $[0, l_1]$, and not only on $[0, \overline{l_0}]$, in intervals $[q_{2k+1}, q_{2k+2}]$. The procedure can again be generalized to dimension n to provide n-systems with

the properties

$$\underline{\varphi}_1 = -n+1\,,\qquad \underline{\varphi}_2 = \frac{2-n}{2}\,,\qquad \underline{\varphi}_j = 0\,,\quad 3\leq j\leq n,$$

and

$$\overline{\varphi}_1 = 0, \qquad \overline{\varphi}_j = 1, \quad 2 \le j \le n.$$

Figure 2: Intermediate construction in $[q_0, q_1]$, slopes scaled by factor 1/2.

Acknowledgement

The author thanks the referee for the careful reading and for pointing out some inaccuracies!

References

- M. Laurent: Exponents of Diophantine approximation in dimension two. Canadian Journal of Mathematics 61 (1) (2009) 165–189.
- [2] D. Roy: On Schmidt and Summerer parametric geometry of numbers. Annals of Mathematics (2015) 739–786.

- [3] D. Roy: On the topology of Diophantine approximation spectra. Compositio Mathematica 153 (7) (2017) 1512–1546.
- [4] J. Schleischitz: Diophantine approximation and special Liouville numbers. Communications in Mathematics 21 (1) (2013) 39–76.
- [5] J. Schleischitz: On approximation constants for Liouville numbers. Glasnik matematički 50 (2) (2015) 349–361.
- [6] W.M. Schmidt, L. Summerer: Parametric geometry of numbers and applications. Acta Arithmetica 140 (2009) 67–91.
- [7] W.M. Schmidt, L. Summerer: Diophantine approximation and parametric geometry of numbers. Monatshefte für Mathematik 169 (1) (2013) 51–104.
- [8] W.M. Schmidt, L. Summerer: Simultaneous approximation to three numbers. Moscow Journal of Combinatorics and Number Theory 3 (1) (2013) 84–107.
- [9] W.M. Schmidt, L. Summerer: Simultaneous approximation to two reals: bounds for the second successive minimum. *Mathematika* 63 (3) (2017) 1136–1151.

Received: 10 December 2018 Accepted for publication: 29 May 2019 Communicated by: Attila Bérczes