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Reductive homogeneous spaces and nonassociative
algebras

Alberto Elduque

Abstract. The purpose of these survey notes is to give a presentation of a
classical theorem of Nomizu [21] that relates the invariant affine connections
on reductive homogeneous spaces and nonassociative algebras.

These notes have been around for about 20 years. They were polished on the
occasion of a CIMPA research school, held in Marrakech (April 13–24, 2015), where
an initial version became the notes of a course with the same title in this school.
The title of the school was ‘Géométrie différentielle et algèbres non associatives’.
The author is indebted to the participants in the course for their questions and
comments, that improved the initial exposition.

The purpose of the notes is to present a classical result by Nomizu [21] that
relates the invariant affine connections on reductive homogeneous spaces to nonas-
sociative algebras defined on the tangent space of a point. This allows us to give
precise algebraic descriptions of these connections, of their torsion and curvature
tensors, . . .

Nomizu’s result constitutes a very nice bridge between these two areas men-
tioned in the title of the school.

Modulo basic results, the presentation is self contained. The first three sections
review the results on smooth manifolds, on affine connections and on Lie groups
and Lie algebras that will be needed for our purpose. The fourth section is devoted
to study the invariant affine connections on homogeneous spaces, following the
presentation in [1, Chapter IV].

Nomizu’s Theorem is presented and proved in Section 5, based on the pre-
vious work. The proof given by Nomizu in his seminal paper is quite different.
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Also, Lie-Yamaguti algebras will be introduced in Section 5, Exercise 9. Finally, in
Section 6 left and bi-invariant affine connections in Lie groups will be studied. Sev-
eral classes of algebras, like Lie-admissible, flexible, associative or left-symmetric,
appear naturally.

Several exercises, complementing the theory, are scattered through the text.
The material presented is well known (see [1], [14], [15]). It is expected that

this presentation will be useful to the readers, and will whet their appetite to learn
more about the subject.

1 Manifolds
1.1 Manifolds
In these notes an n-dimensional manifold will indicate a second countable Hausdorff
topological space M covered by a family of open sets {Uλ : λ ∈ Λ}, together with
coordinate maps

φλ : Uλ → Rn

p 7→
(
x1(p), x2(p), . . . , xn(p)

)
,

such that φλ is a homeomorphism of Uλ into its range, an open set in Rn, satisfying
that

φλ ◦ φ−1
µ : φµ(Uλ ∩ Uµ)→ φλ(Uλ ∩ Uµ)

is a C∞-map (i.e., all the partial derivatives of any order exist and are continuous).
The family of “charts” {(Uλ, φλ) : λ ∈ Λ} is called an atlas of the manifold.

The reader may consult [7], [25] or [1] for the basic facts in this section.

Example 1. The euclidean space Rn with the trivial atlas {(Rn, id)}. (Or any open
subset of Rn.)

Example 2. The unit circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} with the atlas
consisting of the following four charts:

Utop = {(x, y) ∈ S1 : y > 0} φtop : Utop → R, (x, y) 7→ arccosx ,

Ubottom = {(x, y) ∈ S1 : y < 0} φbottom : Ubottom → R, (x, y) 7→ arccosx ,

Uright = {(x, y) ∈ S1 : x > 0} φright : Uright → R, (x, y) 7→ arcsin y ,

Uleft = {(x, y) ∈ S1 : x < 0} φleft : Uleft → R, (x, y) 7→ arcsin y .

Here we assume arccos : (−1, 1)→ (0, π) and arcsin : (−1, 1)→
(
−π2 ,

π
2

)
.

Note that, for example, Utop ∩ Uleft = {(x, y) ∈ S1 : y > 0, x < 0} and the
change of coordinates is the map:

φtop ◦ φ−1
left :

(
0,
π

2

)
→
(π

2
, π
)

t 7→ π − t ,

which is clearly C∞.
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Example 3. The cartesian product M ×N of an m-dimensional manifold M and
an n-dimensional manifold N is naturally an (m+ n)-dimensional manifold.

A continuous map Ψ: M → N between two manifolds M and N of respective
dimensions m and n is smooth if for any charts (Uλ, φλ) and (Vµ, ϕµ) of M and N
respectively, the map (between open sets in Rm and Rn):

ϕµ ◦Ψ ◦ φ−1
λ : φλ

(
Uλ ∩Ψ−1(Vµ)

)
→ ϕµ(Vµ)

is of class C∞.
In particular, we will consider the set C∞(M) of smooth maps from the mani-

fold M into R. This is a unital, commutative, associative ring with the pointwise
addition and multiplication of maps. Actually, it is an algebra over R, as we can
multiply maps by constants.

1.2 Vector fields
A nonassociative real algebra is a real vector space A endowed with a bilinear
map (multiplication) m : A × A → A. We will usually (but not always!) write xy
for m(x, y). The notions of homomorphism, subalgebra, ideal, . . . , are the natural
ones. Note that the word nonassociative simply means ‘not necessarily associative’.

For example, a Lie algebra is a nonassociative algebra L with multiplication
(x, y) 7→ [x, y] such that

• [x, x] = 0 for any x ∈ L (the product is anticommutative),

• [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 for any x, y, z ∈ L (Jacobi identity).

Given a nonassociative algebra A and a homomorphism ϕ : A → R, a ϕ-
derivation is a linear map d : A → R such that d(xy) = d(x)ϕ(y) + ϕ(x)d(y)
for any x, y ∈ A. The set of ϕ-derivations forms a vector space.

On the other hand, a derivation of A is a linear map D : A → A such that
D(xy) = D(x)y + xD(y) for any x, y ∈ A. The set of derivations Der(A) is a Lie
algebra with the usual ‘bracket’: [D1, D2] = D1 ◦D2 −D2 ◦D1.

Exercise 1. Check that indeed, if D1 and D2 are derivations of A, so is [D1, D2].

Given a manifold M and a point p ∈ M , the map ϕp : C∞(M) → R given by
evaluation at p: ϕp(f) := f(p), is a homomorphism. The tangent space TpM at p
is the vector space of ϕp-derivations of C∞(M)1. That is, the elements of TpM
(called tangent vectors at p) are linear maps vp : C∞(M)→ R, such that

vp(fg) = vp(f)g(p) + f(p)vp(g)

for any f, g ∈ C∞(M).
Given a chart (U, φ) of M with p ∈ U and φ(q) =

(
x1(q), . . . , xn(q)

)
for any

q ∈ U, we have the natural tangent vectors ∂
∂xi

∣∣
p

given by

f 7→ ∂(f ◦ φ−1)

∂xi

(
φ(p)

)
.

1There are other possible definitions, but this is suitable for our purposes.
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Actually, the elements ∂
∂xi

∣∣
p
, i = 1, . . . , n, form a basis of TpM .

The disjoint union
TM :=

⋃
p∈M

TpM

is called the tangent bundle of M . It has a natural structure of manifold with atlas
{(Ũλ, φ̃λ) : λ ∈ Λ}, where Ũλ =

⋃
p∈Uλ TpM and

φ̃λ : Ũλ → R2n = Rn × Rn
n∑
i=1

αi
∂

∂xi

∣∣∣∣
p

∈ TpM 7→
(
φλ(p), (α1, . . . , αn)

)
.

A vector field of a manifold M is a smooth section of the natural projection
π : TM →M , vp ∈ TpM 7→ p. That is, a vector field is a smooth map

X : M → TM

p 7→ Xp ,

such that Xp ∈ TpM for any p ∈ M . Any vector field X induces a derivation of
the algebra C∞(M) as follows: for any f ∈ C∞(M), the image of f under this
derivation, also denoted by X, is the smooth map

Xf : p 7→ Xp(f) .

Any derivation of C∞(M) is obtained in this way from a vector field. Therefore,
we will identify the set of vector fields, denoted by X(M), with the Lie algebra
Der

(
C∞(M)

)
.

Exercise 2. Let R be a commutative associative algebra and let L = Der(R) be its
Lie algebra of derivations (keep in mind the case R = C∞(M)!).

• Prove that L is a module over R by means of (aD)(b) = aD(b) for any
a, b ∈ R.

• Prove that [aD, bE] = ab[D,E] +
(
aD(b)

)
E−

(
bE(a)

)
D for any a, b ∈ R and

D,E ∈ L.

Let Φ: M → N be a smooth map between two manifolds, and let vp ∈ TpM
be a tangent vector at a point p ∈ M . Then we can push forward vp to a tangent
vector Φ∗(vp) defined by Φ∗(vp)(f) = vp(f ◦ Φ) for any f ∈ C∞(N). The ‘tangent
map’ Φ∗ : TM → TN , vp ∈ TpM 7→ Φ∗(vp) ∈ TΦ(p)N is smooth.

In particular, if γ : (−ε, ε) → M is a smooth map with γ(0) = p (a curve
centered at p), then

γ̇(0) := γ∗

(
d

dt

∣∣∣∣
t=0

)
: f 7→ d(f ◦ γ)

dt
(0)

is a tangent vector at p ∈M . Any tangent vector is obtained in this way.
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Two vector fields X ∈ X(M) and Y ∈ X(N) are said to be Φ-related if Φ∗(Xp) =
YΦ(p) for any p ∈M . In other words, X and Y are Φ-related if

(Y f) ◦ Φ = X(f ◦ Φ)

for any f ∈ C∞(N).

Exercise 3. Consider vector fields X1, X2 ∈ X(M) and Y1, Y2 ∈ X(N) such that
Xi and Yi are Φ-related, for i = 1, 2. Prove that [X1, X2] and [Y1, Y2] are also
Φ-related.

If the smooth map Φ above is a diffeomorphism (i.e.; it is smooth, bijective,
and the inverse is also smooth), then Φ induces an isomorphism of Lie algebras
(denoted by Φ∗ too):

Φ∗ : X(M)→ X(N)

X 7→ Φ∗(X) : f ∈ C∞(N) 7→ X(f ◦ Φ) ◦ Φ−1 ∈ C∞(N).

In this case, the vector fields X ∈ X(M) and Y ∈ X(M) are Φ-related if and only
if Y = Φ∗(X).

1.3 Flows
Let X ∈ X(M) be a vector field on a manifold M . For any p ∈ M there exists a
positive real number ε > 0, a neighbourhood U of p in M , and a smooth map

Φ: (−ε, ε)× U →M

(t,m) 7→ Φ(t,m) ,

such that for any f ∈ C∞(M) and any m ∈ U we have Φ(0,m) = m, and

XΦ(t,m)f =
d

dt
f
(
Φ(t,m)

) (
= lim
s→0

f
(
Φ(t+ s,m)

)
− f

(
Φ(t,m)

)
s

)
. (1)

The map Φ is a local flow of X at p.
Local flows always exist by the fundamental existence and uniqueness theorem

for first-order differential equations, which also implies that

Φ(t1 + t2,m) = Φ(t1,Φ(t2,m)) (2)

when this makes sense.
The vector field X is said to be complete if there exists a global flow

Φ: R×M →M ,

so that (1) holds for any m ∈ M and t ∈ R. (Note that, conversely, any smooth
map Φ: (−ε, ε)×M →M satisfying (2) determines a vector field by equation (1).)

If X is a complete vector field with global flow Φ, for any t ∈ R the map
Φt : M → M given by Φt(m) = Φ(t,m) is a diffeomorphism and, for any vector
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field Y ∈ X(M), the Lie bracket [X,Y ] can be computed as follows (see [7, Theorem
4.3.2]):

[X,Y ] =
d

dt

∣∣∣∣
t=0

(Φ−t)∗(Y ) = lim
t→0

(Φ−t)∗(Y )− Y
t

. (3)

Thus, the value at a point p: [X,Y ]p, is given by

[X,Y ]p = lim
t→0

(Φ−t)∗(YΦt(p))− Yp
t

(a limit in the vector space TpM). Actually, for f ∈ C∞(M), consider the smooth
map

H : R× R→ R
(t, s) 7→ H(t, s) = YΦt(p)(f ◦ Φs) .

Then,

∂H

∂t
(0, 0) =

d

dt

∣∣∣∣
t=0

YΦt(p)(f) =
d

dt

∣∣∣∣
t=0

(Y f)(Φt(p)) = Xp(Y f),

∂H

∂s
(0, 0) =

d

ds

∣∣∣∣
s=0

Yp(f ◦ Φs) = Yp

(
d

ds

∣∣∣∣
s=0

(f ◦ Φs)

)
(by the equality of mixed partial derivatives)

= Yp(Xf) .

Hence we obtain

d

dt

∣∣∣∣
t=0

YΦt(p)(f ◦ Φ−t) =
d

dt

∣∣∣∣
t=0

H(t,−t) = Xp(Y f)− Yp(Xf) = [X,Y ]p(f),

as indicated in (3).
Two vector fields X,Y ∈ X(M) commute (i.e.; [X,Y ] = 0) if and only if the

corresponding flows commute: for any m ∈M there is a δm > 0 such that

Φt ◦Ψs(m) = Ψs ◦ Φt(m)

for −δm < t, s < δm [7, Theorem 2.8.20].

2 Affine connections
Affine connections constitute the extension to “non flat” manifolds of the idea of
directional derivative of vector fields. It provides the idea of “parallel transport”.

Definition 1. An affine connection on a manifold M is an R-bilinear map

∇ : X(M)× X(M)→ X(M)

(X,Y ) 7→ ∇XY ,

with the following properties:
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1. ∇ is C∞(M)-linear in the first component:

∇fXY = f∇XY

for any X,Y ∈ X(M) and any f ∈ C∞(M). (Recall from Exercise 2 that
X(M) is a module for C∞(M).)

2. For any X,Y ∈ X(M) and any f ∈ C∞(M), the equation

∇X(fY ) = (Xf)Y + f∇XY

holds.

The first property implies that for any X,Y ∈ X(M) and any point p ∈ M ,(
∇XY

)
p

depends only on Xp and Y , so we may define ∇vY ∈ TpM for any
v ∈ TpM and Y ∈ X(M), which we should think as the derivative of the vector
field Y in the direction v at the point p.

Also, the second property shows that
(
∇XY

)
p

depends on the values of Y
in a neighbourhood of p. Thus affine connections can be restricted to open sub-
sets of M , in particular to domains of charts. If (U, φ) is a chart of M with
φ(q) =

(
x1(q), . . . , xn(q)

)
, we obtain the C∞(U)-basis of the vector fields in X(U):{

∂
∂x1

, . . . , ∂
∂xn

}
. By properties (1) and (2), the restriction of the affine connection

∇ on M to U is determined by the values

∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
,

for some maps Γkij ∈ C∞(U). These maps Γkij are called the Christoffel symbols of
∇ in the chart (U, φ).

Then, forX,Y ∈ X(M), their restrictions to U are of the formX|U =
∑n
i=1 fi

∂
∂xi

and Y |U =
∑n
i=1 gi

∂
∂xi

(fi, gi ∈ C∞(U) for i = 1, . . . , n), and the vector field(
∇XY

)
|U is given by:

(
∇XY

)
|U =

n∑
k=1

 n∑
i=1

fi
∂gk
∂xi

+

n∑
i,j=1

figjΓ
k
ij

 ∂

∂xk
. (4)

Definition 2. Given an affine connection ∇ on a manifold M , for any vector field
X ∈ X(M) the Nomizu operator

LX : X(M)→ X(M)

is the C∞(M)-linear form such that

LXY = ∇XY − [X,Y ]

for any Y ∈ X(M).
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Exercise 4. Check that LX is indeed C∞(M)-linear.
More generally, let φ be a unital commutative and associative ring, R a com-

mutative associative φ-algebra and D = Der(R) its Lie algebra of derivations (this
is a module over R by Exercise 2). Define an affine connection ∇ on (R,D) as a
φ-bilinear map

∇ : D ×D → D

(δ1, δ2) 7→ ∇δ1δ2 ,

subject to:

• ∇rδ1δ2 = r∇δ1δ2,

• ∇δ1(rδ2) = δ1(r)δ2 + r∇δ1δ2,

for any r ∈ R and δ1, δ2 ∈ D. Prove that for δ ∈ D, the Nomizu operator
Lδ : D → D, δ′ 7→ ∇δδ′ − [δ, δ′], is R-linear.

The C∞(M)-linearity of LX implies that for any q ∈ M , the tangent vector(
LXY

)
q

depends only on Yq, so we have a well defined endomorphism

(LX)|q : TqM → TqM .

Also, (LX)|q depends only on the values of X in a neighbourhood of q.
In order to define what we understand by “parallel transport” we need some

preliminaries.

Definition 3. Let a, b ∈ R, a < b, and let γ : [a, b] → M be a smooth map into a
manifold M (this means that there is ε > 0 such that γ extends to a smooth map
(a−ε, b+ε)→M). A vector field along the curve γ is a smooth map ν : [a, b]→ TM
such that the diagram

TM

π

��

[a, b]
γ
//

ν

<<

M

commutes.

We will denote by X(γ) the vector space of vector fields along γ.
For example, the derivative γ̇ given by:

γ̇(t) := γ∗

(
d

dt

)
∈ Tγ(t)M

is a vector field along γ. If (U, φ) is a chart such that the image of γ is contained
in U and φ(γ(t)) = (γ1(t), . . . , γn(t)), then

γ̇(t) =

n∑
i=1

γ′i(t)

(
∂

∂xi

)
γ(t)

.
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Given an affine connection ∇ on the manifold M , a curve γ : [a, b]→M and a
vector field Y ∈ X(M), in local coordinates we can express Y as

Y =

n∑
i=1

gi
∂

∂xi
,

for smooth maps gi. Then we can compute

∇γ̇(t)Y =
n∑
i=1

∇γ̇(t)

(
gi

∂

∂xi

)

=

n∑
i=1

(
γ̇(t)(gi)

∂

∂xi

∣∣∣∣
γ(t)

+ gi(γ(t))

n∑
k=1

γ′j(t)Γ
k
ji(γ(t))

∂

∂xk

∣∣∣∣
γ(t)

)

=

n∑
k=1

dgk(γ(t))

dt
+

n∑
i,j=1

γ′j(t)gi(γ(t))Γkji(γ(t))

 ∂

∂xk

∣∣∣∣
γ(t)

,

and this depends only on the values of Y in the points γ(t). This allows us,
given a vector field along γ: ν ∈ X(γ), which in local coordinates appears as
ν(t) =

∑n
i=1 νi(t)

∂
∂xi

∣∣
γ(t)

, to define

∇γ̇(t)ν ∈ Tγ(t)M ,

by means of

∇γ̇(t)ν =

n∑
k=1

dνk(t)

dt
+

n∑
i,j=1

γ′j(t)νi(t)Γ
k
ji(γ(t))

 ∂

∂xk

∣∣∣∣
γ(t)

∈ Tγ(t)M .

In this way we obtain an operator

X(γ)→ X(γ)

ν 7→
(
t 7→ ∇γ̇(t)ν

)
.

Definition 4. With M and γ as above, a vector field along γ: ν ∈ X(γ), is said to
be parallel if ∇γ̇(t)ν = 0 for any a ≤ t ≤ b.

The existence and uniqueness of solutions for ordinary differential equations
prove that for any a ≤ c ≤ b, if v0 ∈ Tγ(c)M , then there is a unique parallel vector
field ν along γ such that νγ(c) = v0. This field ν is called the parallel transport of
v0 along γ.

Definition 5. The curve γ is said to be a geodesic if γ̇ is parallel along γ.

There are two important tensors attached to any affine connection on a mani-
fold.
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Definition 6. Let ∇ be an affine connection on a manifold M .

• The torsion tensor of ∇ is the C∞(M)-bilinear map:

T : X(M)× X(M)→ X(M)

(X,Y ) 7→ T (X,Y ) := ∇XY −∇YX − [X,Y ] .

If the torsion tensor is identically 0, then ∇ is said to be symmetric (or
torsion-free).

• The curvature tensor of ∇ is the C∞(M)-trilinear map:

R : X(M)× X(M)× X(M)→ X(M)

(X,Y, Z) 7→ R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

If the curvature tensor is identically 0, then ∇ is said to be flat.

Exercise 5. Check that the torsion and curvature tensors are indeed C∞(M)-linear
in each component. Define these concepts in the general setting of Exercise 2.

The C∞(M)-linearity implies that the values of T (X,Y ) or R(X,Y )Z at a given
point p ∈ M depend only on the values of the vector fields X, Y and Z at this
point. Hence it makes sense to consider the torsion T (u, v) or curvature R(u, v)w
for u, v, w ∈ TpM .

Exercise 6. Prove that an affine connection ∇ is symmetric if its Christoffel sym-
bols in any chart satisfy Γkij = Γkji for any 1 ≤ i, j, k ≤ n.

Exercise 7. A pseudo-Riemannian manifold is a manifold M endowed with a non-
degenerate symmetric C∞(M)-bilinear form (the pseudo-metric)

g : X(M)× X(M)→ C∞(M).

Again the value g(X,Y ) at a point p depends only on Xp and Yp, so g restricts to
an R-bilinear map gp : TpM × TpM → R. The nondegeneracy of g means that gp
is nondegenerate for any p ∈M .

Prove that for any pseudo-Riemannian manifold (M, g) there is a unique affine
connection ∇ such that:

(i) ∇ is symmetric,

(ii) Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) for any X,Y, Z ∈ X(M).

This connection is called the Levi-Civita connection. For this connection, the
parallel transport defines isometries among the tangent spaces at different points.
[Hint: Permute cyclically X,Y, Z in condition (ii) and combine the resulting equa-
tions, using (i), to get that g(∇XY,Z) is uniquely determined. Now use that g is
nondegenerate.]
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3 Lie groups and Lie algebras
A Lie group is a manifold G which is also an abstract group such that the multi-
plication map

G×G→ G

(g1, g2) 7→ g1g2 ,

and the inversion map

G→ G

g 7→ g−1

are smooth maps.

Exercise 8. Identify the unit circle S1 with the set of norm one complex numbers.
This set is a group under complex multiplication. Check that in this way S1

becomes a Lie group.

Remark 1. Given an element g in a Lie group G, the left multiplication by g gives a
map Lg : G→ G which is a diffeomorphism (with inverse Lg−1). The same applies
to the right multiplication Rg.

The Lie algebra of a Lie group G is the real vector subspace of “left-invariant
vector fields”:

L(G) := {X ∈ X(G) : (Lg)∗(X) = X,∀g ∈ G}.

By Exercise 3, g = L(G) is a Lie subalgebra of X(G). Moreover, the natural map

g→ TeG

X 7→ Xe ,

where e denotes the neutral element of the group structure, turns out to be a linear
isomorphism (check this!), as any left-invariant vector field is determined uniquely
by its value at any given point. Hence the dimension of g as a vector space coincides
with the dimension of G as a manifold.

Example 4. The general linear group GLn(R) consists of the n×n regular matrices
over R. This is the inverse image of the open set R \ {0} under the smooth map
(actually it is a polynomial map) given by the determinant det : Matn(R) → R.
Thus GLn(R) is an open set in the euclidean space Matn(R) ' Rn2

and hence it is
a manifold too. The multiplication is given by a polynomial map and the inversion
by a rational map, and hence they are both smooth.

Since GLn(R) is open in Rn2

there is the global chart with standard coordinates
{xij : 1 ≤ i, j ≤ n}, where xij(A) denotes the (i, j)-entry of the matrix A. Then
the tangent space at any point A ∈ G = GLn(R) can be identified with the vector
space of n× n-matrices Matn(R) by means of the map:

TAG→ Matn(R)

v 7→
(
v(xij)

)n
i,j=1

.
(5)
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(Note that v =
∑
i,j v(xij)

∂
∂xij

∣∣
A

.)

Let g be the Lie algebra of G = GLn(R), and let X ∈ g. For any A =
(
aij
)
∈ G,

the left-invariance of X gives:

XA(xij) = (LA)∗(XIn)(xij) = XIn(xij ◦ LA)

= XIn

(
n∑
k=1

aikxkj

)
(the (i, j)-entry of AB is

n∑
k=1

aikbkj)

=

n∑
k=1

aikXIn(xkj) =

n∑
k=1

XIn(xkj)xik(A).

Therefore, we obtain

Xxij =

n∑
k=1

XIn

(
xkj
)
xik. (6)

(Here In denotes the identity matrix, which is the neutral element of G.)
Consider now two elements X,Y ∈ g. X and Y are determined by XIn and YIn

respectively, and these can be identified as in (5) with the matrices A :=
(
XIn(xij)

)
and B :=

(
YIn(xij)

)
. Then we get

[X,Y ]In(xij) = XIn(Y xij)− YIn(Xxij)

= XIn

(
n∑
k=1

bkjxik

)
− YIn

(
n∑
k=1

akjxik

)
(because of (6))

=

n∑
k=1

bkjaik −
n∑
k=1

akjbik = xij
(
[A,B]

)
.

Denote by gln(R) the Lie algebra defined on the vector space Matn(R) with the
usual Lie bracket [A,B] = AB−BA. Then the above computation shows that the
linear map

g→ gln(R)

X 7→
(
XIn(xij)

)n
i,j=1

,

is a Lie algebra isomorphism.
Moreover, for any A ∈ gln(R) the map

γA : R→ G

t 7→ exp(tA) :=

∞∑
n=0

tnAn

n!
,

is a smooth group homomorphism. Besides, γ̇(0) = A (with the identification above
TInG ' gln(R)). We conclude that the smooth map

ΦA : R×G→ G

(t, B) 7→ B exp(tA)

is the global flow of the left-invariant vector field X with XIn = A.



Homogeneous spaces and nonassociative algebras 211

We may substitute GLn(R) by GL(V ) (the group of linear automorphisms of V )
for a finite-dimensional real vector space V , and gln(R) by gl(V ) (the Lie algebra
of linear endomorphisms of V with the natural Lie bracket) in the Example above.
Once we fix a basis of V we get isomorphisms GL(V ) ∼= GLn(R) (of Lie groups)
and gl(V ) ∼= gln(R) (of Lie algebras).

In general, left-invariant vector fields on a Lie group G are always complete and
there is a smooth map from the Lie algebra g to G, called the exponential:

exp: g→ G, (7)

which restricts to a diffeomorphism of a neighbourhood of 0 ∈ g (g ' Rn) onto an
open neighbourhood of e ∈ G such that for any X ∈ g, its global flow is given by
the map

Φ: R×G→ G

(t, g) 7→ g exp(tX) .

Any open neighbourhood of e ∈ G generates, as an abstract group, the connected
component of e, which is a normal subgroup. In particular, the subgroup generated
by exp(g) is the connected component G0 of e.

Remark 2. In this situation, for any t ∈ R, Φt is the diffeomorphism Rexp(tX)

(right multiplication by exp(tX)). Note that for any h ∈ G, the left invariance of
any X ∈ g gives (Lh)∗(X) = X, so for any g, h ∈ G,(

(Lh)∗(X)
)
hg
f = Xg(f ◦ Lh) =

d

dt

∣∣∣∣
t=0

(f ◦ Lh)(g exp(tX)) ,

and this certainly agrees with

Xhgf =
d

dt

∣∣∣∣
t=0

f(hg exp(tX)) .

Also, condition (2) implies that the smooth map R → G, t 7→ exp(tX) is a group
homomorphism (called a one-parameter subgroup).

We may consider too the real subspace of “right-invariant” vector fields:

gright := {X ∈ X(G) :
(
Rg
)
∗(X) = X ∀g ∈ G} .

Again, the natural map gright → TeG, X 7→ Xe, is a linear isomorphism.

Proposition 1. Let G be a Lie group with Lie algebra g. Consider the linear
isomorphisms

ϕleft : g→ TeG ϕright : gright → TeG

X 7→ Xe X̂ 7→ X̂e.
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Then the map

g→ gright

X 7→ −ϕ−1
right ◦ ϕleft(X)

is an isomorphism of Lie algebras.
In other words, given v ∈ TeG, let X ∈ g (respectively X̂ ∈ gright) be the left

(respectively right) invariant vector field with Xe = v (respectively X̂e = v). Then
the map X 7→ −X̂ is a Lie algebra isomorphism.

Proof. The smooth map

Φright : R×G→ G

(t, g) 7→ exp(tX)g .

is the global flow of X̂, because for any f ∈ C∞(G):

X̂g(f) =
(

(Rg)∗(X̂e)
)

(f) = X̂e(f ◦Rg)

= v(f ◦Rg) = Xe(f ◦Rg)

=
d

dt

∣∣∣∣
t=0

(f ◦Rg)(exp(tX)) =
d

dt

∣∣∣∣
t=0

f(exp(tX)g) .

Now consider the inversion map ι : G → G, g 7→ g−1. It is a diffeomorphism, so
ι∗ : X(G)→ X(G) is an isomorphism of Lie algebras.

For g ∈ G, X and X̂ as in the Proposition, and f ∈ C∞(G) we get:

(
ι∗X)g−1f = Xg(f ◦ ι) =

d

dt

∣∣∣∣
t=0

(f ◦ ι)(g exp(tX))

=
d

dt

∣∣∣∣
t=0

f
(
(g exp(tX))−1

)
=

d

dt

∣∣∣∣
t=0

f(exp(−tX)g−1) = −X̂g−1(f) .

We conclude that ι∗(X) = −X̂, so X and −X̂ are ι-related. In particular, this
shows that ι∗ takes left invariant vector fields to right invariant vector fields, and
hence it gives an isomorphism from g to gright. �

For any element g in a Lie group G, conjugation by g gives a diffeomorphism:

ιg : G→ G

x 7→ gxg−1 ,

and this induces a Lie algebra isomorphism Adg := (ιg)∗ : X(G) → X(G) that
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preserves g. Indeed, for X ∈ g and h ∈ G

(Lh)∗(AdgX) = (Lh)∗ ◦ (ιg)∗(X) = (Lh)∗ ◦ (Lg)∗ ◦ (Rg−1)∗(X)

= (Rg−1)∗ ◦ (Lh)∗ ◦ (Lg)∗(X)

(because LxRy = RyLx for any x, y ∈ G)

= (Rg−1)∗X (as X is left invariant)

= (Rg−1)∗ ◦ (Lg)∗(X) = AdgX.

We obtain in this way the so called adjoint representation:

Ad: G→ GL(g)

g 7→ Adg ,

which is a homomorphism of Lie groups (i.e., a smooth group homomorphism).

Given a homomorphism of Lie groups ϕ : G → H and a left invariant vector
field X ∈ g (the Lie algebra of G), the map t 7→ ϕ(exp(tX)) gives a Lie group
homomorphism R→ H and hence the map

Φ: R×H → H

(t, h) 7→ hϕ(exp(tX))

is the global flow of a left invariant vector field Y ∈ h (the Lie algebra of H), which
is ϕ-related to X. This induces a Lie algebra homomorphism ϕ∗ : g→ h such that
the diagram

g
ϕ∗ //

exp

��

h

exp

��

G
ϕ
// H

(8)

is commutative.
In particular, we obtain a commutative diagram

g
Ad∗ //

exp

��

gl(g)

exp

��

G
Ad // GL(g)

(9)

where, on the right exp denotes the standard exponential of linear endomorphisms.
For X,Y ∈ g we get:

Adexp(tX)Y =
(
ιexp(tX)

)
∗Y

=
(
Rexp(−tX)

)
∗ ◦
(
Lexp(tX)

)
∗(Y )

=
(
Rexp(−tX)

)
∗(Y ) (as Y is left invariant).
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Since Φt = Rexp(tX) is the global flow of X (Remark 2), we obtain from (3) the
equation

d

dt

∣∣∣∣
t=0

(
Rexp(−tX)

)
∗(Y ) = [X,Y ] . (10)

Therefore the map t 7→ Adexp(tX)Y is the one-parameter group in g ' TeG whose
derivative at 0 is [X,Y ]. Alternatively, t 7→ Adexp(tX) is the one-parameter group
in the Lie group GL(g) whose derivative at 0 is the linear endomorphism adX : Y 7→
[X,Y ] (adX ∈ gl(g), the Lie algebra of GL(g)).

We conclude that
Adexp(tX) = exp(tadX) (11)

for any X ∈ g and t ∈ R. Hence we obtain (Ad)∗ = ad: g→ gl(g), and the diagram
in (9) becomes the following commutative diagram:

g
ad //

exp

��

gl(g)

exp

��

G
Ad // GL(g)

(12)

Remark 3. On the left hand side of (12) we have an arbitrary Lie group and its
Lie algebra, while on the right hand side we have a very concrete Lie group: the
general linear Lie group on a vector space, and its Lie algebra.

4 Invariant affine connections on homogeneous spaces
4.1 Homogeneous spaces
Let G be a Lie group with Lie algebra g, M a manifold and let

τ : G×M →M

(g, p) 7→ τ(g, p) = g · p

be a smooth action. That is, τ is both a smooth map and a group action.
If the group action τ is transitive (i.e., for any p, q ∈ M there is an element

g ∈ G such that g · p = q), then M is said to be a homogeneous space. (Formally,
we should consider homogeneous spaces as triples (M,G, τ).)

Example 5. The n-dimensional sphere

Sn := {(x1, . . . , xn+1) ∈ Rn+1 :

n+1∑
i=1

x2
i = 1}

is a homogeneous space relative to the natural action of the special orthogonal
group: SO(n+ 1)× Sn → Sn.

On the other hand, S2n−1 can be identified with the set{
(z1, . . . , zn) ∈ Cn :

n∑
i=1

|zi|2 = 1
}
,

and hence it is a homogeneous space relative to the natural action of the special
unitary group: SU(n)× S2n−1 → S2n−1.
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Given a homogeneous space M , fix an element p ∈ M and consider the corre-
sponding isotropy subgroup:

H := {g ∈ G : g · p = p} .

This is a closed subgroup of G and hence (see e.g. [7, Theorem 5.3.2]) it is a Lie
group too, with Lie algebra

h := {X ∈ g : exp(tX) ∈ H ∀t ∈ R} .

(Recall the map exp: g→ G in equation (7).) The Lie algebra h is then a subalgebra
of g.

Moreover, the set of left cosets G/H is a manifold with a suitable atlas such
that the bijection

G/H →M

gH 7→ g · p

is a diffeomorphism (see e.g. [7, Proposition 5.4.12]).
For any X ∈ g we can define a global flow:

Φ: R×M →M

(t,m) 7→ exp(tX) ·m.

The associated vector field in X(M) will be denoted by X+. Hence we have

X+
m(f) =

d

dt

∣∣∣∣
t=0

f
(
exp(tX) ·m

)
for any m ∈ M and f ∈ C∞(M). The next result summarizes some of the main
properties of these vector fields.

Proposition 2. Let M be a homogenous space of the Lie group G as above. Then
the following properties hold:

(i) For any q ∈ M , let πq : G→ M be the smooth map g 7→ g · q. Then for any
X ∈ g and f ∈ C∞(M)

X+
q (f) = Xe(f ◦ πq).

In other words, X+
q = (πq)∗(Xe).

(ii) For any X ∈ g, let X̂ be the right invariant vector field on G with Xe = X̂e

(see Proposition 1). Then X̂ and X+ are πq-related for any q ∈M . Moreover,
X+ is determined by this property.

(iii) The map

g→ X(M)

X 7→ −X+

is a Lie algebra homomorphism.
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(iv) For any g ∈ G, denote by τ(g) the diffeomorphism M →M , q 7→ g · q. Then
for any g ∈ G and X ∈ g we have

τ(g)∗(X
+) =

(
AdgX)+ .

(v) Fix, as before, a point p ∈ M , then π := πp : G → M induces a linear
surjection

π∗ : g(' Te(G))→ TpM

X 7→ d

dt

∣∣∣∣
t=0

π(exp(tX)) = X+
p ,

with kerπ∗ = h (the Lie algebra of the isotropy subgroup H at p).

Proof. For (i), we proceed as follows:

X+
q (f) =

d

dt

∣∣∣∣
t=0

f
(
exp(tX) · q

)
=

d

dt

∣∣∣∣
t=0

f
(
πq(exp(tX))

)
= Xe(f ◦ πq).

For (ii), take any f ∈ C∞(M) and g ∈ G to obtain(
X+f

)
◦ πq(g) =

(
X+f

)
(g · q) = X+

g·q(f)

= Xe(f ◦ πg·q) = Xe(f ◦ πq ◦Rg)
= X̂g(f ◦ πq) =

(
X̂(f ◦ πq)

)
(g) .

Hence (X+f) ◦ πq = X̂(f ◦ πq), as required.
By Exercise 3, for any X,Y ∈ g, the vector fields [X̂, Ŷ ] in G and [X+, Y +] in M

are πq-related for any q ∈ M . But [X̂, Ŷ ] = −[̂X,Y ] by Proposition 1, so −[̂X,Y ]
and [X+, Y +] are πq-related for any q ∈ M , and this shows that [X+, Y +] =
−[X,Y ]+, thus proving (iii).

Now, for any q ∈M and f ∈ C∞(M) we obtain:(
τ(g)∗(X

+)
)
g·q(f) = X+

q (f ◦ τ(g)) = Xe(f ◦ τ(g) ◦ πq)

= Xe(f ◦ πg·q ◦ ιg)
(as πg·q ◦ ιg(h) = πg·q(ghg

−1) = (gh) · q = τ(g) ◦ πq(h))

=
(
AdgX

)
e
(f ◦ πg·q) =

(
AdgX

)+
g·q(f),

and this proves (iv).
Finally,

kerπ∗ =

{
X ∈ g :

d

dt

∣∣∣∣
t=0

π
(
exp(tX)

)
= 0

}
=

{
X ∈ g :

d

dt

∣∣∣∣
t=0

exp(tX) · p = 0

}
contains h. But π∗ is surjective, and hence kerπ∗ = h by dimension count. �
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Therefore, under the conditions of the Proposition above, the map

φ : g/h→ TpM

X + h 7→ X+
p

(13)

is a linear isomorphism that allows us to identify TpM with g/h. Under this
identification, for any h ∈ H, the map τ(h)∗ : TpM → TpM corresponds, because
of Proposition 2(iv), to the map

j(h) : g/h→ g/h

X + h 7→ (AdhX) + h.
(14)

That is, we get a commutative diagram

g/h
j(h)

//

φ

��

g/h

φ

��

TpM
τ(h)∗

// TpM

(15)

The map j : H → GL(g/h), h 7→ j(h), is the natural representation of H on
g/h (induced by the adjoint representation).

In what follows, when we refer to a homogeneous space M ' G/H, we mean
that G is a Lie group acting smoothly and transitively on M , and that a point
p ∈M has been fixed with H as isotropy subgroup.

Remark 4. Proposition 2(v) shows that for any q ∈M , the subspace {X+
q : X ∈ g}

fills the whole TqM . In other words, the space {X+ : X ∈ g} spans X(M) as a
C∞(M)-module.

4.2 Invariant affine connections on homogeneous spaces
Definition 7. Let M ' G/H be a homogeneous space. An affine connection ∇
on M is said to be invariant if for any X,Y ∈ X(M) and g ∈ G,

τ(g)∗(∇XY ) = ∇τ(g)∗(X)τ(g)∗(Y ) .

Proposition 3. Let ∇ be an invariant affine connection on a homogeneous space
M ' G/H. Then for any X ∈ g (the Lie algebra of G) and any g ∈ G we have:

L(AdgX)+ = τ(g)∗ ◦LX+ ◦ τ(g−1)∗ .

Proof. For any X ∈ g, recall from Proposition 2(iv) that (AdgX)+ = τ(g)∗(X
+),

so it is enough to prove that Lτ(g)∗U ◦ τ(g)∗ = τ(g)∗ ◦LU for any U ∈ X(M), and
this is a straightforward consequence of the invariance of ∇. �

Therefore, the invariant affine connection∇, which is determined by the Nomizu
operators LX+ for X ∈ g because of Remark 4, is actually determined by the
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endomorphisms LX+

∣∣
p
, because for any q ∈ M , there is an element g ∈ G such

that q = g · p, and for Y ∈ g we have

LX+(Y +
g·p) = LX+

(
τ(g)∗(Adg−1Y )+

p

)
(Proposition 2(iv))

= τ(g)∗L(Adg−1X)+
(
(Adg−1Y )+

p

)
.

If we identify TpM with g/h via the map φ in (13) we may think of LX+

∣∣
p

as a
linear endomorphism of g/h.

Hence ∇ is determined by the linear map, also denoted by L:

L : g→ EndR(g/h)

X 7→ LX : g/h→ g/h

Y + h 7→ φ−1
(
LX+(Y +

p )
)
.

(16)

Proposition 4. Let ∇ be an invariant affine connection on the homogeneous space
M ' G/H. Then the linear map L just defined satisfies the following properties:

(a) LAdhX = j(h) ◦LX ◦ j(h−1) for any X ∈ g and h ∈ H.

(b) LX(Y + h) = [X,Y ] + h for any X ∈ h and Y ∈ g.

In other words, L : g → EndR(g/h) is a homomorphism of H-modules that
extends the natural (adjoint) representation of h on g/h.

Actually, (a) is a direct consequence of Proposition 3 and the commutativity
of (15), and (b) follows because for X ∈ h, X+

p = 0, so
(
∇X+Y +

)
p

= 0, and hence(
LX+(Y +)

)
p

=
(
∇X+Y +

)
p
− [X+, Y +]p = [X,Y ]+p .

Conversely, given an R-linear map L : g→ EndR(g/h) satisfying the properties
(a) and (b) above, we may define, for X,Y ∈ g and g ∈ G:

• ∇X+
p
Y + := φ

(
LX(Y + h)

)
− [X,Y ]+p ∈ TpM (well defined by property (b)),

• ∇X+
g·p
Y + := τ(g)∗

(
∇(Adg−1X)+p

(Adg−1Y )+
)

(well defined by property (a)),

and this defines an invariant affine connection on M .
We summarize the above arguments in the next result, which goes back to

Vinberg [23, Theorem 2].

Theorem 1. The invariant affine connections on a homogeneous space M ' G/H
are in bijection with the R-linear maps L : g→ EndR(g/h) satisfying the properties
(a) and (b) in Proposition 4.

Remark 5. Condition (a) above means that the map L in the Theorem is a homo-
morphisms of H-modules, and this implies that it is a homomorphism of h-modules:

L[U,X] = [̃(U),LX ]
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for any U ∈ h and X ∈ g, where ̃(U) is the endomorphism of g/h such that
̃(U)(Y + h) = [U, Y ] + h for any Y ∈ g. Indeed, property (a) gives

LAdexp(tU)X ◦ j(exp(tU)) = j(exp(tU)) ◦LX

in EndR(g/h) for any t ∈ R. Taking the derivative at t = 0 we get

L[U,X] + LX ◦ ̃(U) = ̃(U) ◦LX ,

as required.

The torsion and curvature tensors of an invariant affine connection on a ho-
mogeneous space M ' G/H can now be expressed in terms of the linear map L
in (16), because, by invariance, it is enough to compute them at the point p.

Torsion For X,Y ∈ g we have

T (X+, Y +) := ∇X+Y + −∇Y +X+ − [X+, Y +]

= LX+(Y +)−LY +(X+) + [X+, Y +]

= LX+(Y +)−LY +(X+)− [X,Y ]+ (by Proposition 2(iii)),

so at the point p we get

T (X+, Y +)p = φ
(
LX(Y + h)−LY (X + h)− ([X,Y ] + h)

)
,

which corresponds, through the map φ in (13) to

T (X + h, Y + h) := LX(Y + h)−LY (X + h)−
(
[X,Y ] + h

)
. (17)

Curvature Again, for X,Y ∈ g we have

R(X+, Y +) := [∇X+ ,∇Y + ]−∇[X+,Y +]

= [LX+ + adX+ ,LY + + adY + ]−∇[X+,Y +]

= [LX+ ,LY + ] + [adX+ ,LY + ] + [LX+ , adY + ]

+ ad[X+,Y +] −∇[X+,Y +]

= [LX+ ,LY + ] + [adX+ ,LY + ] + [LX+ , adY + ]−L[X+,Y +] .

Now, given a manifold M with an affine connection, an affine transformation
is a diffeomorphism ϕ such that ϕ∗(∇XY ) = ∇ϕ∗(X)ϕ∗(Y ) for any vector fiels
X,Y ∈ X(M), and a vector field X ∈ X(M) is called an infinitesimal affine trans-
formation if its local flow Φt is an affine transformation for −ε < t < ε for some
ε > 0.

If X ∈ X(M) is an infinitesimal affine transformation, for any Y,Z ∈ X(M) we
get:

[X,∇Y Z] =
d

dt

∣∣∣∣
t=0

(Φ−t)∗(∇Y Z) (because of (3))

=
d

dt

∣∣∣∣
t=0

(
∇(Φ−t)∗(Y )(Φ−t)∗(Z)

)
= ∇[X,Y ]Z +∇Y [X,Z] .

(18)
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The last equality above is proved as follows. Locally (i.e., in local coordinates)

Y (t, q) := (Φ−t)∗Y =
∑
i

fi(t, q)
∂

∂xi

and

Z(t, q) := (Φ−t)∗Z =
∑
i

gi(t, q)
∂

∂xi
.

Hence

∇Y (t,q)Z(t, q) =
∑
i,j

fi(t, q)
∂gj(t, q)

∂xi

∂

∂xj
+
∑
i,j

fi(t, q)gj(t, q)Γi,j(q)
∂

∂xk
.

(Note that the Christoffel symbols do not depend on t.) Now take the derivative
with respect to t at t = 0 using Leibniz’s rule to get the required equality.

Returning to our homogeneous space M ' G/H with an invariant affine con-
nection ∇, for any X ∈ g, X+ is an infinitesimal affine transformation, because
its global flow is τ(exp(tX)) and ∇ is invariant. Hence, by (18), we get for any
X,Y ∈ g:

[adX+ ,LY + ] = [adX+ ,∇Y + + adY + ] = ∇[X+,Y +] + ad[X+,Y +]

= L[X+,Y +] = −L[X,Y ]+ ,

so the formula above for R(X+, Y +) becomes:

R(X+, Y +) = [LX+ ,LY + ] + L[X+,Y +] −L[Y +,X+] −L[X+,Y +]

= [LX+ ,LY + ] + L[X+,Y +] = [LX+ ,LY + ]−L[X,Y ]+ ,

which at the point p ∈M corresponds via φ in (13) to

R(X + h, Y + h) = [LX ,LY ]−L[X,Y ] ∈ EndR(g/h). (19)

Remark 6. Equation (19) shows that the connection ∇ is flat (i.e., its curvature is
trivial) if and only if the map L : g→ gl(g/h) is a homomorphism of Lie algebras,
that is, L gives a representation of g in the quotient space g/h.

5 Nomizu’s Theorem
5.1 Reductive homogeneous spaces
Definition 8. The homogeneous space M ' G/H is said to be reductive if there is
a decomposition as a direct sum of vector spaces g = h⊕m such that Adh(m) ⊆ m
for any h ∈ H. (Such decomposition is called a reductive decomposition.)

Remark 7. Because of (11), the condition AdH(m) ⊆ m implies [h,m] ⊆ m, and
the converse holds if H is connected.

A big deal of information on the reductive homogneous space M ' G/H is
located in the following two products defined on m (' g/h ' TpM):
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Binary product:
X · Y := [X,Y ]m , (20)

the projection of [X,Y ] on m

Ternary product:
[X,Y, Z] := [[X,Y ]h, Z] , (21)

where [X,Y ]h denotes the projection of [X,Y ] on h.

Exercise 9. Let g be a Lie algebra, h a subalgebra and m a subspace such that
g = h⊕m and [h,m] ⊆ m.

1. Prove the following properties:

(LY1) X ·X = 0,

(LY2) [X,X, Y ] = 0,

(LY3)
∑

(X,Y,Z)

(
[X,Y, Z] + (X · Y ) · Z

)
= 0,

(LY4)
∑

(X,Y,Z)[X · Y,Z, T ] = 0,

(LY5) [X,Y, U · V ] = [X,Y, U ] · V + U · [X,Y, V ],

(LY6) [X,Y, [U, V,W ]] = [[X,Y, U ], V,W ]+[U, [X,Y, V ],W ]+[U, V, [X,Y,W ]],

for any X,Y, Z, T, U, V,W ∈ m, where
∑

(X,Y,Z) stands for the cyclic sum on
X,Y, Z.

A vector space endowed with a binary and a ternary multilinear products
satisfying these properties is called a Lie-Yamaguti algebra. These algebras
were named ‘general Lie triple systems’ by Yamaguti [26]. The name ‘Lie-
-Yamaguti algebras’ was given by Kinyon and Weinstein [13]. Irreducible
Lie-Yamaguti algebras have been studied in [4], [5].

2. Prove that if (m, ·, [. . . ]) is a Lie-Yamaguti algebra, then there is a Lie algebra
g containing m and a subalgebra h of g complementing m with [h,m] ⊆ m
such that X · Y = [X,Y ]m and [X,Y, Z] = [[X,Y ]h, Z] for any X,Y, Z ∈ m.

[Hint: Let h be the subspace of End(m) spanned by the endomorphismsm
[X,Y, ·] for X,Y ∈ m, and define g = h⊕m with a suitable bracket.]

5.2 Invariant affine connections on reductive homogeneous spaces
Let M ' G/H be a reductive homogeneous space with reductive decomposition
g = h⊕m. In this case we will identify the quotient space g/h with m. Hence any
linear map L : g→ EndR(g/h) satisfying properties (a) and (b) in Proposition 4 is
determined by the linear map

L̃ : m→ EndR(m)

X 7→ L̃X : m→ m

Y 7→ φ̃−1
(
LX+(Y +

p )
)
,
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where φ̃ : m→ TpM is the composition of the identification m ' g/h and the map
φ : g/h→ TpM in (13).

Note that the restriction of the map L in (16) to h is determined by property (b)
in Proposition 4, while property (a) translates, thanks to (14), into the condition

L̃AdhX = Adh
∣∣
m
◦ L̃X ◦Adh−1

∣∣
m

(22)

for any h ∈ H and X ∈ m.
But any such map L̃ determines (and is determined by) the bilinear map

α : m×m→ m

(X,Y ) 7→ α(X,Y ) := L̃X(Y ) ,

and Equation (22) is equivalent to the condition

α
(
AdhX,AdhY ) = Adh

(
α(X,Y )

)
for any h ∈ H and X,Y ∈ m.

This proves the following theorem of Nomizu, which is the main result of this
course:

Theorem 2 (Nomizu, 1954). The invariant affine connections on a reductive ho-
mogeneous space M ' G/H with reductive decomposition g = h⊕m are in bijection
with the vector space of nonassociative multiplications α : m×m→ m such that H
acts by automorphisms, i.e., AdH

∣∣
m
⊆ Aut(m, α).

Remark 8. The vector space m is a module for the group H, and the vector space
of nonassociative multiplications as in the Theorem above is naturally isomorphic
to HomH(m⊗R m,m).

Moreover, the condition AdH
∣∣
m
⊆ Aut(m, α) implies that adh

∣∣
m

is contained in
Der(m, α). The converse is valid if H is connected.

Remark 9. Nomizu [21] proved this result in a very different way. He defined the
product α(X,Y ) by extending locally X and Y to some invariant vector fields X̃
and Ỹ defined on a neighbourhood of p and imposing α(X,Y ) := ∇X̃p Ỹ ∈ TpM '
m.

The torsion and curvature tensors are determined in equations (17) and (19),
which now become simpler:

T (X,Y ) = α(X,Y )− α(Y,X)−X · Y ,
R(X,Y )Z = α(X,α(Y,Z))− α(Y, α(X,Z))− α(X · Y,Z)− [X,Y, Z] ,

for any X,Y, Z ∈ m, where X · Y = [X,Y ]m and [X,Y, Z] = [[X,Y ]h, Z] as in (20)
and (21).

There are always two distinguished invariant affine connections in this case:
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• Natural connection (or canonical connection of the first kind), given by

α(X,Y ) =
1

2
X · Y ,

for X,Y ∈ m, which is symmetric (T (X,Y ) = 0 for any X,Y ∈ m).

• Canonical connection (of the second kind), given by α(X,Y ) = 0 for any
X,Y ∈ m.

Remark 10. These two connections coincide if and only if X · Y = 0 for any
X,Y ∈ m, and this is equivalent to the fact that the reductive decomposition
g = h⊕m be a Z/2Z-grading: g0̄ = h is a subalgebra, g1̄ = m is a g0̄-module, and
[g1̄, g1̄] ⊆ g0̄.

This is the case for the symmetric spaces, which are the coset spaces G/H for
a Lie group G endowed with an order 2 automorphism σ such that

Gσ0 ⊆ H ⊆ Gσ ,

where Gσ = {g ∈ G : σ(g) = g} is the subgroup of fixed elements by σ and
Gσ0 is the connected component of Gσ containing the neutral element. In this case
h = {X ∈ g : σ∗(X) = X} is the Lie algebra ofH, and m := {X ∈ g : σ∗(X) = −X}
is a complementary subspace. Since (σ∗)

2 = (σ2)∗ is the identity, and σ∗
∣∣
g

is an
automorphism, this gives a reductive decomposition g = h ⊕ m, which is clearly a
Z/2Z-grading. (Gradings on Lie algebras are the subject of [9].)

The invariant affine connections on symmetric spaces, and the associated alge-
bras, have been studied in [2], [17].

Nomizu’s Theorem allows us to transfer geometric conditions to algebra, or
algebraic conditions to geometry.

For example, given a homogeneous space M ' G/H, and a vector field X ∈ g,
the curve γ : t 7→ exp(tX) · p is a geodesic with respect to an invariant affine
connection ∇ if and only if

∇X+
exp(tX)·p

X+ = 0

for any t ∈ R. (Recall that γ̇(t) = X+
exp(tX)·p by the definition of X+.) But

∇X+
g·p
Y + = τ(g)∗

(
∇(Adg−1X)+p

(Adg−1Y )+
)

by Proposition 2, since ∇ is invariant. From Adexp(−tX)X = X (see (11)), we check
that ∇X+

exp(tX)·p
X+ = 0 for any t ∈ R if and only if ∇X+

p
X+ = 0, or LX+(X+

p ) = 0.

The last condition is equivalent to LX(X+h) = 0, where L : g→ EndR(g/h) is
the linear map in (16). Hence, if M ' G/H is reductive and α is the multiplication
on m determined by ∇ we obtain the following result:

Proposition 5. Under the hypotheses above, the multiplication α attached to ∇
is anticommutative (i.e., α(X,X) = 0 for any X ∈ m) if and only if the geodesics
through p are exactly the curves t 7→ exp(tX) · p for X ∈ m.
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Note that given a tangent vector v ∈ TpM there is a unique geodesic µ(t)
through p: µ(0) = p, such that µ̇(0) = v (in general, µ is defined only locally).
The geodesics through other points are given by ‘translation’. Actually, if q = g ·p,
then

τ(g−1)∗∇X+
q
X+ = ∇τ(g−1)∗(X+

q )τ(g−1)∗(X
+) = ∇(Adg−1X)+p

(Adg−1X)+
p ,

so if ∇X+
p
X+ = 0 for any X ∈ g, also ∇X+

q
X+ = 0 for any X ∈ g and q ∈M .

Corollary 1. The natural connection is the only symmetric invariant affine con-
nection such that the curves t 7→ exp(tX) · q are geodesic for any X ∈ m and
q ∈M .

Proof. If α is anticommutative, then we have T (X,Y ) = 2α(X,Y )−X ·Y . So the
connection is symmetric (zero torsion) if and only if α(X,Y ) = 1

2X · Y . �

Exercise 10. Let M ' G/H be a homogeneous space endowed with an invariant
pseudo-metric g. This means that M is pseudo-Riemannian with the pseudo-metric
g satisfying

g(τ(x)∗(u), τ(x)∗(v))x·q = g(u, v)q

for any x ∈ G and u, v ∈ TqM . Hence, for any q ∈ M , X ∈ g, and U, V ∈ X(M)
we have:

X+
q (g(U, V )) =

d

dt

∣∣∣∣
t=0

g(U, V )exp(tX)·q

=
d

dt

∣∣∣∣
t=0

g
(
τ(exp(−tX))∗(U), τ(exp(−tX))∗(V )

)
q

= g
(
[X+, U ], V

)
q

+ g
(
U, [X+, V ]

)
q

(see (3)).

In particular, for X ∈ h, X+
p = 0, so g

(
[X+, U ], V

)
p

+ g
(
U, [X+, V ]

)
p

= 0.

1. Prove that the Levi-Civita connection of (M, g) is invariant.

2. Check that the Nomizu operator LX+ for X ∈ g satisfies

g
(
LX+(U), V )

)
+ g
(
U,LX+(V )

)
= 0

for any U, V ∈ X(M).

3. Conclude that for X,Y, Z ∈ g we have

2g
(
LX+(Y +), Z+

)
= g
(
[X,Y ]+, Z+

)
− g
(
[X,Z]+, Y +

)
− g
(
X+, [Y,Z]+

)
.

4. Prove that if L : g → EndR(g/h) is the associated linear map in Theorem 1
and we identify gp : TpM × TpM → R with a bilinear map

ḡ : g/h× g/h→ R

by means of (13), then for any X,Y, Z ∈ g we get

2ḡ
(
LX(Y + h), Z + h

)
= ḡ
(
[X,Y ] + h, Z + h

)
− ḡ
(
Y + h, [X,Z] + h

)
− ḡ
(
X + h, [Y, Z] + h

)
.
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5. Deduce that if M is reductive with reductive decomposition g = h⊕ m, and
we identify ḡ with a bilinear map (also denoted by ḡ) m × m → R, the
multiplication α in m attached by Nomizu’s Theorem 2 with the Levi-Civita
connection on M is determined by the equation:

2ḡ
(
α(X,Y ), Z

)
= ḡ(X · Y,Z)− ḡ(X · Z, Y )− ḡ(X,Y · Z)

for any X,Y, Z ∈ m. Conclude from (2) that

ḡ(α(X,Y ), Z) + ḡ(Y, α(X,Z)) = 0

for any X,Y, Z ∈ m.

6. Since the Levi-Civita connection is symmetric, α(X,Y ) = 1
2X · Y + µ(X,Y ),

where µ(X,Y ) is a commutative multiplication in m. Prove that this com-
mutative multiplication is determined by the equation:

2ḡ
(
µ(X,Y ), Z

)
= ḡ(Z ·X,Y ) + ḡ(X,Z · Y )

for any X,Y, Z ∈ m.

7. Prove that the Levi-Civita connection coincides with the natural connection
if and only if

ḡ(Y ·X,Z) = ḡ(Y,X · Z)

for any X,Y, Z ∈ m (i.e., ḡ is associative relative to the product X ·Y ). In this
case M is said to be a naturally reductive homogeneous manifold (see [20]).

6 Examples
6.1 Left invariant affine connections on Lie groups
Any Lie group G is a reductive homogeneous space under the action of G into itself
by left multiplication. The isotropy subgroup at any point is trivial. Hence G is
a reductive homogeneous space with h = 0 and m = g. Also, for any X ∈ g, the
vector field X+ is nothing else but the right invariant vector field X̂ ∈ gright with
X̂e = Xe (see Proposition 1).

According to Nomizu’s Theorem (Theorem 2) we have a bijection{
Left invariant affine
connections on G

}
←→

{
bilinear maps
α : g× g→ g

}
∇ 7→ α(X,Y ) := φ−1

(
(LX+(Y +)e

)
where φ : g→ TeM , X 7→ Xe, as in (13).

For X,Y ∈ g we get(
LX+(Y +)

)
e

= LX̂(Ŷe) = LX̂(Ye) =
(
LX̂(Y )

)
e

=
(
∇X̂Y − [X̂, Y ]

)
e
,

and (
∇X̂Y

)
e

= ∇X̂eY = ∇XeY =
(
∇XY

)
e
.

Besides, ∇XY ∈ g by left invariance, and [X̂, Y ] = 0 since the corresponding flows
commute: the flow of X̂ is Lexp(tX) and the flow of Y is Rexp(tY ) and left and right
multiplications commute by associativity of the multiplication in the group G.

Here we use the following result:



226 Alberto Elduque

Lemma 1. Let M be a manifold, X,Y ∈ X(M) with flows Φt and Ψt respectively.
If Φt ◦Ψs = Ψs ◦ Φt for some ε > 0 and −ε < s, t < ε, then [X,Y ] = 0.

Proof. Just notice that for any f ∈ C∞(M) and any point q ∈M

[X,Y ]q(f) =
d

dt

∣∣∣∣
t=0

(
(Φ−t)∗(Y )

)
q
(f) =

d

dt

∣∣∣∣
t=0

YΦt(q)(f ◦ Φ−t)

=
d

dt

∣∣∣∣
t=0

(
d

ds

∣∣∣∣
s=0

(
f ◦ Φ−t ◦Ψs(Φt(q))

))
=

d

dt

∣∣∣∣
t=0

(
d

dt

∣∣∣∣
t=0

(
f ◦ Φs(q)

))
(because Φ−t and Ψs commute)

=
d

dt

∣∣∣∣
t=0

(
Yq(f)

)
= 0 (as Yq(f) does not depend on t). �

Therefore
(
LX+(Y +)

)
e

=
(
∇XY

)
e

and φ−1
(
(LX+(Y +)e

)
= ∇XY . Hence the

bijection in Nomizu’s Theorem becomes a very natural one:{
Left invariant affine
connections on G

}
←→

{
bilinear maps
α : g× g→ g

}
∇ 7→ α(X,Y ) = ∇XY

(23)

Remark 11. • The canonical connection is then the connection that satisfies
∇XY = 0 for any X,Y ∈ g. That is, it is the affine connection in which the
left invariant vector fields are parallel.

• A left invariant affine connection ∇ on a Lie group G is symmetric if and only
if ∇XY −∇YX = [X,Y ] for any X,Y ∈ g. This means that the algebra (g, α)
(with multiplication α(X,Y ) = ∇XY ) is Lie-admissible with associated Lie
algebra g:

A nonassociative algebra (A,α) is said to be Lie-admissible if the new algebra
defined on A but with multiplication α−(x, y) := α(x, y) − α(y, x) is a Lie
algebra (the associated Lie algebra). For instance, associative algebras and
Lie algebras are Lie-admissible.

• A left invariant affine connection ∇ on a Lie group G is flat if and only if
[∇X ,∇Y ] = ∇[X,Y ] for any X,Y ∈ g.

Exercise 11. A nonassociative algebra (A,α) is left-symmetric if the associator,
defined as the trilinear map (x, y, z) := α(α(x, y), z)− α(x, α(y, z)) (the associator
measures the lack of associativity of α!), is symmetric in the first two components.

1. Prove that any left-symmetric algebra is Lie-admissible.

2. Deduce that a left invariant affine connection on a Lie group G is symmetric
and flat if and only if the corresponding nonassociative algebra (g, α) (where
α(X,Y ) = ∇XY ) is left-symmetric and the algebra (g, α−) is just the Lie
algebra g. (Therefore, the left invariant symmetric (i.e., torsion-free) and flat
affine connections on a Lie group are in a natural bijection with the set of
left-symmetric algebra structures on the corresponding Lie algebra.)



Homogeneous spaces and nonassociative algebras 227

The reader may consult the survey paper [6] for more results on (and applica-
tions of) left-symmetric algebras.

6.2 Bi-invariant affine connections on Lie groups
Let ∇ be a left invariant affine connection on a Lie group G. Then ∇ is also right
invariant if for any g ∈ G and X,Y ∈ g,

(Rg−1)∗(∇XY ) = ∇(Rg−1 )∗(X)(Rg−1)∗(Y ).

But by left invariance (Rg−1)∗(X) = (Rg−1)∗ ◦ (Lg)∗(X) = AdgX, and similarly
for Y and ∇XY . Hence ∇ is bi-invariant if and only if

Adg(∇XY ) = ∇AdgX(AdgY )

for any g ∈ G and X,Y ∈ g. Therefore the bijection in (23) restricts to a bijection{
Bi-invariant affine
connections on G

}
←→

 bilinear maps
α : g× g→ g

with AdG ⊆ Aut(g, α)


∇ 7→ α(X,Y ) = ∇XY .

Note that the space on the right can be canonically identified with HomG(g⊗Rg, g),
which is contained in Homg(g⊗R g, g) (and they coincide if G is connected).

Remark 12. • If ∇ is a symmetric bi-invariant affine connection on a Lie group
G, and α : g×g→ g is the associated multiplication (α(X,Y ) = ∇XY ), then
we know from Remark 11 that (g, α) is Lie-admissible with associated Lie
algebra g. But here α lies in Homg(g⊗R g, g). This means that

[X,α(Y,Z)] = α([X,Y ], Z) + α(Y, [X,Z])

for any X,Y, Z ∈ g. That is, adX is a derivation of (g, α). Then the algebra
(g, α) is flexible and Lie-admissible. (See Exercise 12). Flexible Lie-admissible
algebras are studied in [19].

• If ∇ is a symmetric and flat bi-invariant affine connection on a Lie group G,
and α : g× g→ g is the associated multiplication: α(X,Y ) = ∇XY , then we
know from Remark 11 that (g, α) is left-symmetric and flexible, but then the
algebra (g, α) is associative [18]. (See Exercise 12.)

Exercise 12. Let (A,α) be a nonassociative algebra. By simplicity, write α(x, y) =
xy for any x, y ∈ A. Recall from Exercise 11 that the associator of the elements
x, y, z ∈ A is the element (x, y, z) = (xy)z − x(yz). The algebra (A,α) is said to
be flexible if (x, y, x) = 0 for any x, y ∈ A. That is, the associator is alternating in
the first and third arguments.

1. Assume that this algebra is Lie-admissible (i.e.; the bracket [x, y] := xy− yx
satisfies the Jacobi identity). Prove that it is flexible if and only if the map
adx : y 7→ [x, y] is a derivation of (A,α) for any x ∈ A: [x, yz] = [x, y]z+y[x, z]
for any x, y, z ∈ A.
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2. Check that the Lie algebra su(n) of the special unitary group SU(n), endowed
with the multiplication given by:

α(X,Y ) = µXY − µ̄Y X − µ− µ̄
n

trace(XY ),

where µ ∈ C satisfies µ+ µ̄ = 1, is a flexible and Lie-admissible algebra.

This example plays a key role in the classification of the invariant connections
on compact simple Lie groups by Laquer [16].

3. Prove that an algebra (A,α) is flexible and left-symmetric if and only if it is
associative.

Simple non-Lie Malcev algebras [11], and other interesting nonassociative alge-
bras [3], [8], [10], [12], [22], appear too related to some specific reductive homoge-
neous spaces.

Nomizu’s Theorem has been extended in order to study invariant affine con-
nections on principal fibre bundles which admits a fibre-transitive Lie group of
automorphisms [24], but this is out of the scope of this introductory survey.

References
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