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Homogeneous Einstein manifolds based on symplectic
triple systems

Cristina Draper Fontanals

Abstract. For each simple symplectic triple system over the real numbers,
the standard enveloping Lie algebra and the algebra of inner derivations of
the triple provide a reductive pair related to a semi-Riemannian homoge-
neous manifold. It is proved that this is an Einstein manifold.

1 Introduction
This note arises from the Second International Workshop on Nonassociative alge-
bras held in Porto, May 2019. My talk there dealt with some results on 3-Sasakian
manifolds [15] and how their close relationship with complex symplectic triple sys-
tems could bolster the study of some concrete questions related to curvature and
holonomy [13]. The fact that, for a real symplectic triple system, the standard
enveloping algebra is never a compact Lie algebra, made me wonder how the ge-
ometry of the related manifold could be. This geometry is of course quite different
from 3-Sasakian geometry, since 3-Sasakian manifolds are Riemannian and com-
pact. Nevertheless, the algebraic relation should have geometric implications. To
be precise, the first intuition is that these manifolds may be Einstein, just as 3-
-Sasakian manifolds are. Indeed, this is the case, which can be proved using only
algebraic properties of the non-associative structure involved, i.e. that of the sym-
plectic triple system. This is the aim of this note, namely to provide a purely
algebraic proof that these manifolds are Einstein, that is, their Ricci tensor is a
multiple of the metric.
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An exhaustive survey of results concerning Einstein metrics on compact man-
ifolds of dimension at least four is found in the classical monograph [9]. Besse
group tries to answer the following question: are there any best (or nicest, or dis-
tinguished) Riemannian structures on [a manifold] M? Note that, for surfaces, the
best metrics are those of constant (Gaussian) curvature. For dimension greater
than 2, a good generalization is being of constant Ricci curvature. Recall that
the Ricci curvature of a semi-Riemannian manifold is a quadratic differential form
defined by the trace of the curvature tensor. The choice of an Einstein metric as
privileged in some way can be justified both mathematically and physically. On one
hand, there is a limited number of such metrics, on the other hand, Einstein metrics
are the solutions to the Euler-Lagrange equations for stationary points of the inte-
gral of the scalar curvature. A key result is that every G-homogeneous Riemannian
manifold of irreducible isotropy is Einstein [26]. Also interesting in this regard is
the complete classification of simply connected G-homogeneous Riemannian mani-
fold (G a connected compact simple Lie group) such that the metric induced by the
Killing form is Einstein [24]. There is both a regular interest and a large number
of recent works on homogeneous Einstein metrics, see [1] for a review. To cite just
a few results, [10] has proved that every compact simply connected homogeneous
space of dimension at most 11 admits a homogeneous Einstein metric, whereas
the compact manifold SU(4)/SU(2) is a counterexample in dimension 12 as shown
in [25]. In this latter work, the techniques to prove the existence of homogeneous
Einstein metrics follow a variational approach, by searching critical points of the
total scalar curvature functional. A variety of works about homogeneous Einstein
metrics has been contributed by Arvanitoyeorgos and his collaborators. For in-
stance, [4] finds which compact simple Lie groups admit non-naturally reductive
Einstein metrics, [3] constructs explicit invariant non-Kähler Einstein metrics on
generalized flag manifolds, and [5] obtains new invariant Einstein metrics on the
quaternionic Stiefel manifold of all orthonormal p-frames in Hn.

In contrast, not much has been settled on homogeneous non-compact Einstein
manifolds. One of the most cited papers on this topic is [18], which presents a
systematic study of the existence and moduli of homogeneous Einstein metrics
with negative scalar curvature. Other works to be pointed out are [23] on non-
compact homogeneous Einstein manifolds attached to graded Lie algebras or [22]
on the solvmanifolds which are naturally homogeneous submanifolds of symmetric
spaces of non-compact type. Anyway, all these examples are Riemannian.

The family of manifolds that are studied in this work are semi-Riemannian,
thus constituting a broad field to explore. However, the choice of such family
within this broad field, far from being arbitrary, stems from its close relationship
with (Riemannian) 3-Sasakian manifolds, which are, in turn, very well known [11].
It is worth mentioning that our tools for finding this family of Einstein metrics
differ completely from the ones in the above cited works. Such previous techniques
include combinatorial arguments, computational methods such as Gröbner basis,
and some indirect arguments too. In contrast, we resort to a direct proof that only
uses algebraic properties of the related ternary structure. An appealing feature
of the work is that all the cases are dealt with in a unified approach. Besides, as
the trace is invariant by complexification, some (well-known) results on Einstein
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metrics on compact 3-Sasakian manifolds [19] could be recovered from our work.
We would like to emphasize the role of non-associative algebras (and non-

-associative structures, in general) in the study of Geometry. Of course, the inter-
play between Algebra and Geometry in the theory of homogeneous spaces is ob-
vious, but it is not so clear the great amount of non-associative structures hidden
after some geometric objects, in particular of ternary type. Without being exhaus-
tive, some examples to be remarked could be Jordan and Lie triple systems [8], or
Lie-Yamaguti algebras [7]. Also, some relations between ternary non-associative
structures in general (and symplectic triple systems in particular) and physics are
explained in [20]. In our work, Freudenthal triple systems [21] will appear in con-
nection to a new tensor related to the curvature (see Remark 1).

This work is structured as follows. Section 2 describes the symplectic triple
system structure, as well as two important attached Lie algebras, namely, the
standard enveloping algebra and the Lie algebra of the inner derivations of the
triple. These two pieces will be, respectively, the Lie algebras of the groups G and
H of our homogeneous manifolds G/H. It is also listed a collection of examples
of simple symplectic triple systems that this theory can be applied to, precisely
those with split standard enveloping algebra. Section 3 deals with the related
manifolds, starting with the introduction of a G-invariant metric inspired in the
3-Sasakian case. Thereupon the computations in [13] can be used to have a com-
plete description of the Riemannian curvature tensor in terms of the triple product
and of the symplectic form attached to the symplectic triple system. This algebraic
expression of the curvature tensor is very convenient for our purposes. The key is
to introduce a new tensor Q in Lemma 1 which measures how far the manifolds
are from being of constant sectional curvature. This tensor turns out to have zero
trace in the manifolds under study (Proposition 1 (b)), which equivales to the fact
that the Ricci tensor is multiple of the metric (Corollary 1). All along this note
our approach is algebraic.

2 The algebraic structure
2.1 Symplectic triple systems

The ternary structure of symplectic triple system made its first appearance in [27],
and its standard enveloping algebra in [17]. The material here is mainly extracted
from [13].

Definition 1. Let T be a real vector space endowed with a non-zero alternating
form (·, ·) : T × T → R, and a triple product [·, ·, ·] : T × T × T → T . It is said that
(T, [·, ·, ·], (·, ·)) is a symplectic triple system if satisfies

[x, y, z] = [y, x, z] , (1)

[x, y, z]− [x, z, y] = (x, z)y − (x, y)z + 2(y, z)x , (2)

[x, y, [u, v, w]] = [[x, y, u], v, w] + [u, [x, y, v], w] + [u, v, [x, y, w]] , (3)

([x, y, u], v) = −(u, [x, y, v]) , (4)

for any x, y, z, u, v, w ∈ T .
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An ideal of the symplectic triple system T is a subspace I of T such that
[T, T, I] + [T, I, T ] ⊂ I and the system is said to be simple if [T, T, T ] 6= 0 and it
contains no proper ideal. The simplicity of T is equivalent to the non-degeneracy
of the bilinear form [16, Proposition 2.4].1 If d ∈ gl(T ) = EndF(T )−, d is called a
derivation if

d([u, v, w]) = [d(u), v, w] + [u, d(v), w] + [u, v, d(w)] ,

for all u, v, w ∈ T . For instance, Eq. (3) tells that the map dx,y : T → T ,

dx,y(z) := [x, y, z] ,

is a derivation for any x, y ∈ T . Moreover, Eq. (3) also implies that

inder(T ) :=

{ n∑
i=1

dxi,yi : xi, yi ∈ T, n ∈ N
}
,

is a Lie subalgebra of the general linear algebra gl(T ), since

[dx,y, du,v] = d[x,y,u],v + du,[x,y,v] ∈ inder(T ).

This receives the name of algebra of inner derivations. Now, consider

V = Re1 ⊕ Re2

a two-dimensional vector space with the non-zero alternating bilinear form

〈·, ·〉 : V × V → R

given by 〈e1, e2〉 = 1. Note that, by identifying each

γ ∈ sp(V, 〈·, ·〉) = {γ ∈ gl(V ) : 〈γ(a), b〉+ 〈a, γ(b)〉 = 0 ∀a, b ∈ V }

with its matrix relative to the basis {e1, e2} of V , the symplectic Lie algebra
sp(V, 〈·, ·〉) coincides with sl2(R), because

γe1,e2 =

(
−1 0
0 1

)
; γe1,e1 =

(
0 2
0 0

)
; γe2,e2 =

(
0 0
−2 0

)
;

being γa,b := 〈a, ·〉b+ 〈b, ·〉a ∈ sp(V, 〈·, ·〉). Consider the vector space

g(T ) := sp(V, 〈·, ·〉)⊕ inder(T )⊕ V ⊗ T ,

and endow it with the following skew-symmetric product, when extending by lin-
earity:

• [γ + d, γ′ + d′] := [γ, γ′] + [d, d′];

1In this reference, dimT > 2 is required, but this is only used in the proof in the case the
ground field has characteristic 3. Such hypothesis is not necessary if the field is R.
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• [γ + d, a⊗ x] := γ(a)⊗ x+ a⊗ d(x);

• [a⊗ x, b⊗ y] := (x, y)γa,b + 〈a, b〉dx,y;

where γ, γ′ ∈ sp(V, 〈·, ·〉), d, d′ ∈ inder(T ), a, b ∈ V and x, y ∈ T . Thus (g(T ), [·, ·])
is a Z2-graded Lie algebra, with homogeneous components given by

g(T )0̄ := sp(V, 〈·, ·〉)⊕ inder(T ) ; g(T )1̄ := V ⊗ T . (5)

The algebra g(T ) is called the standard enveloping algebra related to the symplectic
triple T . Moreover, g(T ) is a simple Lie algebra if and only if so is (T, [·, ·, ·], (·, ·))
[16, Theorem 2.9]. The reductive pairs under study will be (g(T ), inder(T )), for T
a simple symplectic triple system over the reals, where the chosen complementary
subspace is the orthogonal to h = inder(T ) with respect to the Killing form, that
is,

m = sp(V, 〈·, ·〉)⊕ V ⊗ T .
All the above definitions and results work analogously for the complex field.

Note that, if T is a real symplectic triple system, then TC = T ⊗R C is a complex
symplectic triple system, since it satisfies the properties (1)–(4) in Def. 1. Moreover,
if T is simple, then TC is simple, since the bilinear form (·, ·) : TC × TC → C is
non-degenerate just when (·, ·) so is. This implies that the standard enveloping
algebra g(T ) is not only simple but central simple, i.e., g(T )C is a simple complex
Lie algebra. This will allow us to use the computations in [15], [13], since, for
a 3-Sasakian homogeneous manifolds M = G/H, there exists a complex simple
symplectic triple system W such that (Lie(G)C,Lie(H)C) ∼= (g(W ), inder(W )).

2.2 Some key examples
The classification of the symplectic triple systems is well-known for the complex
field, but this is not the case for the real one. A very recent classification is
achieved in [14], where precisely a key tool is the fact that T ⊗R C is a complex
simple symplectic triple system when T is a real simple symplectic triple system.

Here we focus on some important examples of simple symplectic triple systems
over R, directly adapted from the examples over C, precisely those whose standard
enveloping algebra is split. There appears just one such real simple symplectic triple
system T related to each complex simple symplectic triple system. That family of
examples with split standard enveloping algebra is exhibited here in order to have
available some examples of homogeneous manifolds this theory can be applied to,
although this is not a complete list according to [14].

We call a symplectic triple system T of symplectic (respectively of orthogonal,
special, exceptional) type when the standard enveloping algebra is a symplectic
(respectively orthogonal, special, exceptional) Lie algebra.

Example 1. Consider the non-degenerate alternating bilinear form

(·, ·) : R2n × R2n → R

given by ((
x1

x2

)
,

(
y1

y2

))
= x1 · y2 − x2 · y1 , (6)
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if x1, x2, y1, y2 ∈ Rn, for · the usual scalar product in Rn. Then T = R2n is a
symplectic triple system with the triple product given by

[x, y, z] := (x, z)y + (y, z)x ,

if x, y, z ∈ T . It is easy to check that the algebra of inner derivations inder(T ) is
isomorphic to

sp2n(R) =
{
f ∈ gl2n(R) : (f(x), y) + (x, f(y)) = 0,∀x, y ∈ R2n

}
=

{(
A B
C −At

)
: B = Bt, C = Ct, A,B,C ∈ gln(R)

}
;

and the standard enveloping algebra g(T ) is isomorphic to the symplectic Lie alge-
bra sp2n+2(R), where the alternating bilinear form in V ⊕ R2n ∼= R2n+2 is defined
as

(u+ x, v + y) := 〈u, v〉+ (x, y) ,

if u, v ∈ V ∼= R2, x, y ∈ R2n. This symplectic triple system T = R2n with
(g(T ), inder(T )) ∼= (sp2n+2(R), sp2n(R)) has symplectic type.

Example 2. Let b : R2n×R2n → R be the non-degenerate symmetric bilinear form

b(x, y) = xt
(

0 In
In 0

)
y .

Then T = R4n is a symplectic triple system with alternating form((
x

x′

)
,

(
y

y′

))
:=

1

2

(
b(x, y′)− b(x′, y)

)
,

and triple product given by[(
x
x′

)
,

(
y
y′

)
,

(
z
z′

)]
:=(

− 1
2

(
b(x, y′) + b(x′, y)

)
z + b(x, y)z′ + b(x, z)y′ − b(y′, z)x− b(x′, z)y + b(y, z)x′

1
2

(
b(x, y′) + b(x′, y)

)
z′ − b(x′, y′)z + b(x, z′)y′ − b(y′, z′)x− b(x′, z′)y + b(y, z′)x′

)
for any x, x′, y, y′, z, z′ ∈ R2n. Besides, the algebra of inner derivations inder(T )
is isomorphic to sl2(R) ⊕ son,n(R) and the standard enveloping algebra g(T ) is
isomorphic to the orthogonal algebra son+2,n+2(R). This symplectic triple system
T = R4n has orthogonal type, with

(g(T ), inder(T )) ∼= (son+2,n+2(R), sl2(R)⊕ son,n(R)) .

Example 3. Take T = R2n with the alternating form as in Eq. (6), but with the
triple product defined by[(

x1

x2

)
,

(
y1

y2

)
,

(
z1

z2

)]
=

(
−2(z1 · y2)x1 − 2(z1 · x2)y1 − (x1 · y2 + x2 · y1)z1

2(z2 · y1)x2 + 2(z2 · x1)y2 + (x1 · y2 + x2 · y1)z2

)
.
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This is again a simple symplectic triple system with

(g(T ), inder(T )) ∼= (sln+2(R), gln(R)) ,

of special type.

Example 4. Let C be a real (finite-dimensional) unital composition algebra, that
is, endowed with a non-degenerate quadratic form N : C → R such that N(xy) =
N(x)N(y). Then, either C is a real division algebra (belonging to {R,C,H,O}),
or C is isomorphic, with N(x) = xx̄, to one of the next examples:

• R2, for (x, y) = (y, x);

• Mat2×2(R) with

(
α x
y β

)
=

(
β −x
−y α

)
;

• The Zorn matrix algebra, that is,

{(
α x
y β

)
: α, β ∈ R, x, y ∈ R3

}
with prod-

uct (
α x
y β

)(
α′ x′

y′ β′

)
=

(
αα′ + x · y′ αx′ + β′x+ x× x′

α′y + βy′ − y × y′ ββ′ + y · x′
)

and involution

(
α x
y β

)
=

(
β −x
−y α

)
, where · and × denote the usual dot

and cross products in R3. It is also called split-octonion algebra and denoted
by Os.

These three algebras have non-trivial idempotents, so that they are not division
algebras. Assume C is either R or one of these non-division composition algebras.
Take

H3(C) = {x = (xij) ∈ Mat
3×3

(C) : xji = xij}

the set of hermitian matrices with coefficients on C, which turns out to be a Jordan
algebra with the symmetrized product x ◦ y = 1

2 (xy + yx). Then the vector space

TC =

{(
α a
b β

)
: α, β ∈ R, a, b ∈ H3(C)

}
becomes a simple symplectic triple system of exceptional type with the alternat-
ing map and triple product given as in [13, Example 2.6]. In this way the pair
(g(T ), inder(T )) turns out to be isomorphic, respectively, to

(f4,4, sp6(R)) , (e6,6, sl6(R)) , (e7,7, so6,6(R)) , (e8,8, e7,7) .

The following symplectic triple system has exceptional type too. Take Vn =
Rn[X,Y ] the linear space of the degree n homogeneous polynomials in two variables
X,Y . For any f ∈ Vn, g ∈ Vm, the transvection (f, g)q ∈ Vm+n−2q is defined by
(f, g)q = 0 if q > min(n,m), and

(f, g)q =
(n− q)!
n!

(m− q)!
m!

q∑
i=0

(−1)i
(
q

i

)
∂qf

∂xq−i∂yi
∂qg

∂xi∂yq−i
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otherwise. Then T = V3, with the alternating form given by (f, g) := (f, g)3 and
the triple product given by

[f, g, h] := 6((f, g)2, h)1 ,

is a symplectic triple system with related reductive pair

(g(T ), inder(T )) = (g2,2, sl2(R)) .

In this case, the corresponding homogeneous manifold has been considered in [6,
§5.4], but the metric considered there, induced by the Killing form, is not an
Einstein metric.

3 The geometric structure
If G is any Lie group with related Lie algebra g(T ), it is well-known that there is
a unique connected subgroup H of G whose related Lie algebra is h = inder(T ).
In case H is closed, or equivalently H has the topology induced from G, then
M = G/H is a homogeneous space. This will always be the case. It is difficult
to have general arguments for checking that a subgroup is closed only with the
infinitesimal information about its Lie algebra. But, in our case, G and H can be
taken not only as matrix Lie groups, but also as algebraic groups.

Accordingly with our previous list of (split) examples, we get a (not complete)
list of homogeneous manifolds this theory can be applied to. For instance, focusing
on the classical examples,

Sp2n+2(R)/Sp2n(R) ; SO+
n+2,n+2(R)/SO+

n,n(R)× SL2(R) ;

SLm+2(R)/GL+
m(R) .

(7)

• Symplectic case: Take the vector space U = R2n endowed with a non-
-degenerate alternating form ω : U ×U → R, and V = R2 with the symplectic
form 〈·, ·〉 as in Section 2.1. Consider the group

G = Sp(U ⊕ V, ω ⊥ 〈·, ·〉) ∼= Sp2n+2(R) .

The (obviously closed) subgroup H = {σ ∈ G : σ|V = id} can be naturally
identified with Sp(U , ω) ∼= Sp2n(R), by means of the map σ 7→ σ|U .

• Orthogonal case: Take the vector space U = R2n endowed with a non-
-degenerate bilinear symmetric form b : U × U → R of neutral signature.
Take Hs = Mat2×2(R) as in Example 4, with the symmetric bilinear form
N – of neutral signature too – whose related quadratic form is given by the
determinant. Consider the group G = SO(U ⊕ Hs, b ⊥ N) ∼= SOn+2,n+2(R).
The closed subgroup {σ ∈ G : σ(U) ⊂ U , σ(Hs) ⊂ Hs} can be naturally
identified with S(On,n(R) × O2,2(R)) by means of the map σ 7→ (σ|U , σ|Hs

).
Taking in mind that SL2(R)× SL2(R) ∼= SO2,2(R), (a, b) 7→ LaRb : Hs → Hs
(left and right multiplication operators), the subgroup we are interested in is

H = {σ ∈ G : σ(U) ⊂ U ,det(σ|U ) = 1, σ(Hs) ⊂ Hs, στa = τaσ ∀a ∈ SL2(R)} ,
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where τa ∈ G is defined by τa|U = id and τa|Hs
= La. The group H is closed

since it is defined as the zero set of a smooth function (in fact, a polynomial
function), noting that commuting with τa for any a ∈ SL2(R) is equivalent
to commute with {τai}i=1,2, for

a1 =

(
1 1
0 1

)
, a2 =

(
1 0
1 1

)
.

It can be easily checked that H ∼= SOn,n(R) × SL2(R). Note that G =
SOn+2,n+2(R) is not connected, so, in order to agree with Eq. (7), take the
identity component G0 = SO+

n+2,n+2(R). In fact, we can apply the theory
both to G/H and to G0/H0.

• Special case: Take a vector subspace U = Rm, and, as before V = R2.
Consider the group G = {σ ∈ GL(U ⊕ V ) : detσ = 1}, which is isomorphic
to SLm+2(R). The closed subgroup

H = {σ ∈ G : σ(U) ⊂ U , detσ|U > 0, σ|V =
1√

detσ|U
idV }

is isomorphic to GL+(U) ∼= GL+
m(R), again by means of the map σ 7→ σ|U .

3.1 Background
Thus our situation is, from now on, a Lie group G with related Lie algebra g = g(T ),
and a closed connected subgroup H of G whose related Lie algebra is h = inder(T ),
for some T simple symplectic triple system over R. In particular, M = G/H is a
reductive homogeneous space.

The differential map π∗ of the canonical projection π : G → M permits us to
identify the tangent space Tπ(e)M with

m = sp(V, 〈·, ·〉)⊕ V ⊗ T ≤ g(T ) ∼= TeG ,

by the linear isomorphism (π∗)e|m : m → ToM , for o = π(e) = eH ∈ M . Thus we
can work in an algebraic setting. Let us denote by [·, ·]h and [·, ·]m the composition
of the bracket [·, ·] : m × m → g with the projections πh, πm : g → g of g = h ⊕ m
onto each summand, respectively. Recall the Z2-grading on g = g0̄⊕ g1̄ considered
in Eq. (5).

Take the G-invariant metric g on M determined by go : ToM × ToM → R,
which, under the identification (π∗)e|m, is defined by

g|sp(V ) = − 1

4(n+ 2)
κ, g|g1̄

= − 1

8(n+ 2)
κ, g|sp(V )×g1̄

= 0, (8)

for κ the Killing form of g. Observe that the choice of this metric is inspired in
the Einstein metric in any 3-Sasakian homogeneous manifold [15, Theorem 4.3ii)].
Our knowledge of the Killing form shows, as in [13, Eq. (20)], the behaviour of g|g1̄

,
that is,

g(a⊗ x, b⊗ y) =
1

2
〈a, b〉(x, y) , (9)
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for any a, b ∈ V , x, y ∈ T .
In order to work with the Levi-Civita connection, the only metric affine con-

nection with zero torsion, consider the related map αg : m × m → m, which is the
only h-invariant map satisfying

αg(X,Y )− αg(Y,X) = [X,Y ]m

and
g(αg(X,Y ), Z) + g(Y, αg(X,Z)) = 0

for any X,Y, Z ∈ m. With similar arguments as in [15, Theorem 4.3], such map is
proved to be

αg(X,Y ) =


0 if X ∈ sp(V, 〈·, ·〉) and Y ∈ g1̄ ,
1
2 [X,Y ]m if either X,Y ∈ sp(V, 〈·, ·〉) or X,Y ∈ g1̄ ,

[X,Y ]m if X ∈ g1̄ and Y ∈ sp(V, 〈·, ·〉) .
(10)

Now, the curvature tensor can be expressed in terms of this related map as
follows:

R(X,Y )Z = αg(X,αg(Y,Z))− αg(Y, αg(X,Z))− αg([X,Y ]m, Z)− [[X,Y ]h, Z] ,

for any X,Y, Z ∈ m. More specifically, by [13, Proposition 4.1],

R(ξ, ξ′)(ξ′′ + a⊗ x) = −1

4
[[ξ, ξ′], ξ′′] , (11)

R(a⊗ x, ξ)(ξ′ + b⊗ y) = −1

2
(x, y)〈a, b〉ξ + g(ξ, ξ′)a⊗ x , (12)

R(a⊗ x, b⊗ y)(ξ + c⊗ z) =
γa,c(b)⊗ (x, z)y − γb,c(a)⊗ (y, z)x

2
− 〈a, b〉c⊗ [x, y, z] , (13)

for any ξ, ξ′, ξ′′ ∈ sp(V, 〈·, ·〉), a, b, c ∈ V , x, y, z ∈ T , and recall that trilinearity
allows us to know completely R : m×m×m→ m. This algebraic expression will be
used next to prove that indeed M is an Einstein manifold, since it is not difficult
to compute the trace of the related map R(−, X)Y in a unified way independently
of the choice of the symplectic triple system T .

3.2 Ricci tensor
Recall that the Ricci tensor is the symmetric (0, 2)-tensor defined by

Ric(X,Y ) = trR(−, X)Y .

We compute this trace directly, by using the properties of the symplectic triple sys-
tem. To that aim, we introduce a tensor Q as the difference between the curvature
tensor and certain metric operators. This will make easier the computations for
the trace.
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Lemma 1. The curvature tensor equals

R(X,Y ) = g(Y,−)X − g(X,−)Y +Q(X,Y ),

where Q(X,Y ) : m → m, Z 7→ Q(X,Y, Z) (X,Y, Z ∈ m) vanishes if X, Y or Z
belongs to sp(V ), and is defined by linear extension on V ⊗ T by

Q(a⊗ x, b⊗ y, c⊗ z) = 〈a, b〉c⊗ ((x, z)y + (y, z)x− [x, y, z])

for any a, b, c ∈ V , x, y, z ∈ T .

The proof is straightforward following [13, Eqs. (18) and (19)] and the lines in
[13, Remark 4.3]. These computations are obtained as an immediate consequence
of Eqs. (11)–(13), where the algebraic expression of the curvature operators is
described.

The key for checking that g is always an Einstein metric is that the introduced
tensor Q will have zero trace. Observe that this tensor measures how far is the
manifold from being of constant sectional curvature equal to 1, so that, for in-
stance, Q = 0 if (and only if) the symplectic triple system is of symplectic type
(Example 1).

Proposition 1. We have

a) tr g(X,−)Y = g(X,Y ) for any X,Y ∈ m; and

b) trQ(X,−, X) = 0 for all X ∈ V ⊗ T .

Proof. Recall that if (W, g) denotes a real vector space W with a non-degenerate
symmetric bilinear form g : W×W → R, then the trace of any linear map f : W →W
can be computed from any orthogonal basis {Ei} of W as

tr(f) =
∑
i

g(f(Ei), Ei)/g(Ei, Ei) .

Item a) is very well-known: we complete 0 6= {Y } until an orthogonal basis.
Then the matrix of the map f = g(X,−)Y relative to such a basis has only the
first row different from zero, so its the trace is g(X,Y ) since f(Y ) = g(X,Y )Y .

For item b), take {xi, yi}i=1,...,m a basis of T such that the symplectic form is
given by

(xi, yj) = δij ; (xi, xj) = (yi, yj) = 0 ,

what is usually called a symplectic basis of T . (Here it is essential the simplicity
of T .) Recall our choice of e1, e2 ∈ V with 〈e1, e2〉 = 1 used throughout this work.
This provides the following orthogonal basis {Ei}4mi=1 of (V ⊗ T, g|V⊗T ),

Ei = e1 ⊗ xi + e2 ⊗ yi , Ei+m = e1 ⊗ yi − e2 ⊗ xi ,
Ei+2m = e1 ⊗ yi + e2 ⊗ xi , Ei+3m = e1 ⊗ xi − e2 ⊗ yi ;
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for i ∈ {1, . . . ,m}. It satisfies g(Ei, Ei) = 1 if i ∈ {1, . . . , 2m} and g(Ei, Ei) = −1
if i ∈ {2m + 1, . . . , 4m}, taking in mind Eq. (9). Take X an arbitrary element in
V ⊗ T , which can be written as X = e1 ⊗ z + e2 ⊗ t for some z, t ∈ T . Thus the
trace of the map Q(X,−, X) : m→ m is

trQ(X,−, X) = S0 + S1 − S2 − S3 ,

for Sk =
∑m
i=1 g(Q(X,Ei+km, X), Ei+km), since Q(X, sp(V ), X) = 0. For conve-

nience, denote by
{x, y, z} := (x, z)y + (y, z)x− [x, y, z] (14)

the trilinear map defined on T . Now, we compute, for 1 ≤ i ≤ m,

Q(X,Ei, X) = e1 ⊗
(
{z, yi, z} − {t, xi, z}

)
+ e2 ⊗

(
{z, yi, t} − {t, xi, t}

)
,

Q(X,Ei+m, X) = −e1 ⊗
(
{z, xi, z}+ {t, yi, z}

)
− e2 ⊗

(
{z, xi, t}+ {t, yi, t}

)
,

Q(X,Ei+2m, X) = e1 ⊗
(
{z, xi, z} − {t, yi, z}

)
+ e2 ⊗

(
{z, xi, t} − {t, xi, t}

)
,

Q(X,Ei+3m, X) = −e1 ⊗
(
{z, yi, z}+ {t, xi, z}

)
− e2 ⊗

(
{z, yi, t}+ {t, xi, t}

)
.

By following the computation, and taking into account Eq. (9), we have

g(Q(X,Ei, X), Ei) =
1

2

(
({z, yi, z} − {t, xi, z}, yi)− ({z, yi, t} − {t, xi, t}, xi)

)
=

1

2

(
−(z, yi)

2 − (xi, t)
2 − 2(t, z)(xi, yi) + 2(xi, z)(yi, t)−

− ([z, yi, z], yi) + ([t, xi, z], yi) + ([z, yi, t], xi)− ([t, xi, t], xi)
)
,

and, analogously,

g(Q(X,Ei+m, X), Ei+m) =
1

2

(
−(z, xi)

2 − (yi, t)
2 − 2(t, z)(xi, yi)− 2(yi, z)(xi, t)

− ([z, xi, z], xi)− ([t, yi, z], xi)− ([z, xi, t], yi)

− ([t, yi, t], yi)
)
,

g(Q(X,Ei+2m, X), Ei+2m) =
1

2

(
−(z, xi)

2 − (yi, t)
2 + 2(t, z)(xi, yi) + 2(yi, z)(xi, t)

− ([z, xi, z], xi) + ([t, yi, z], xi) + ([z, xi, t], yi)

− ([t, yi, t], yi)
)
,

g(Q(X,Ei+3m, X), Ei+3m) =
1

2

(
−(z, yi)

2 − (xi, t)
2 + 2(t, z)(xi, yi)− 2(xi, z)(yi, t)

− ([z, yi, z], yi)− ([t, xi, z], yi)− ([z, yi, t], xi)

− ([t, xi, t], xi)
)
.

If we sum, for i = 1, . . . ,m, we get that the trace trQ(X,−, X) = S0 +S1−S2−S3
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can be obtained as

trQ(X,−, X) =

m∑
i=1

(
([t, xi, z], yi)− ([t, yi, z], xi) + ([z, yi, t], xi)

− ([z, xi, t], yi)− 4(t, z)(xi, yi) + 2(xi, z)(yi, t)− 2(yi, z)(xi, t)
)
. (15)

Now we use the properties defining a symplectic triple system in Def. 1 to get

([t, xi, z], yi)− ([t, yi, z], xi)
(4)
= ([t, xi, yi], z)− ([t, yi, xi], z)

= ([t, xi, yi]− [t, yi, xi], z)

(2)
= ((t, yi)xi − (t, xi)yi + 2(xi, yi)t, z)

= −(yi, t)(xi, z) + (xi, t)(yi, z) + 2(xi, yi)(t, z) . (16)

We replace in the above equation xi with yi and z with t, to get

([z, yi, t], xi)− ([z, xi, t], yi) = −(xi, z)(yi, t) + (yi, z)(xi, t) + 2(yi, xi)(z, t) . (17)

Finally, we substitute Eqs. (16) and (17) in Eq. (15), which directly gives

trQ(X,−, X) =

m∑
i=1

0 = 0 ,

which ends the proof. �

Now we get, as a corollary, our main result.

Corollary 1. Take (M, g) the semi-Riemannian space given by

• M = G/H is a homogeneous space such that there is a real simple symplectic
triple system T with (Lie(G),Lie(H)) = (g(T ), inder(T ));

• g is the metric defined in Eq. (8).

Then M is an Einstein manifold, since, for any X,Y ∈ m,

Ric(X,Y ) = (dimM − 1)g(X,Y ) .

Consequently, its scalar curvature is always positive, given by

sg = (dimM − 1) dimM .

Proof. For any X,Y ∈ m, the Ricci tensor is

Ric(X,Y ) = trR(−, X)Y = g(X,Y ) tr idm − tr g(−, Y )X + trQ(−, X, Y )

= g(X,Y ) dimM − g(X,Y )− trQ(X,−, Y ) .
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In particular m × m → R, (X,Y ) 7→ trQ(X,−, Y ) is a bilinear symmetric map,
since it is obtained as a difference of bilinear symmetric maps. This permits to
prove that it is a zero map only by checking that every X ∈ m is isotropic, that is,
trQ(X,−, X) = 0. Indeed, if X ∈ V ⊗ T , this is true by Proposition 1 (b); and,
if X ∈ sp(V ), it is clear that the endomorphism Q(X,−, X) ∈ gl(m) is identically
zero by Lemma 1.

The conclusion about the scalar curvature is immediate. �

Remark 1. We would like to point out that (T, {·, ·, ·}), with the brace-product
defined in Eq. (14), is a Freudenthal triple system [21]. It is well-known the close
relationship between these two ternary structures, symplectic triple systems and
Freudenthal triple systems, but don’t forget that our very geometric tensor Q is
defined by

Q

(
ξ +

∑
i

ai ⊗ xi, ξ′ +
∑
j

bj ⊗ yj , ξ′′ +
∑
k

ck ⊗ zk
)

=
∑
i,j,k

〈ai, bj〉ck ⊗ {xi, yj , zk} .

Before I conclude, I should like to add some additional final thoughts, because
this paper poses more questions than those it answers. We have studied some
families of homogeneous manifolds which are Einstein. What manifolds are we
speaking about, exactly? What else can be said about their topology and geome-
try? And taking into consideration that there is a 3-Sasakian geometry, not only
3-Sasakian homogeneous manifolds, a last question arises: is there a geometry
whose homogeneous examples are precisely these manifolds based on symplectic
triple systems?

I was given a partial answer to this last question by V. Cortés in Colloque
en Géométrie différentielle et algèbres non associatives held at CIRM, November
2019, as follows. Starting from a para-quaternionic Kähler manifold (M, g,Q),
Alekseevsky and Cortés introduced the principal bundle P ′ on M of standard ba-
sis (J1, J2, J3) of Qx for all x ∈ M , [2] (with the notations therein). Then, they
endowed P ′ with two Einstein pseudo-Riemannian metrics by means of submer-
sion theory (see details in [2, Section 7, Corollary 5]). The family of homogeneous
Einstein manifolds we described can be seen from the point of view in [2]. Namely,
in our approach the para-quaternionic Kähler manifolds correspond with the sym-
metric space associated to the pair (g(T )0̄, g(T )1̄) in (5). Hence the manifolds
we consider are the total spaces of principal bundles of standard basis on para-
-quaternionic Kähler symmetric spaces. Nevertheless, we would like to point out
that our approach is different from [2]. As we focus on the homogeneous case,
then the description of the Einstein metrics is given in terms of the Killing form
(see (8)), and the curvature properties are deduced quite easily from the algebraic
properties of symplectic triple systems. Additionally, the reading of [2] and the
references therein have lead me to [12]. In this work, split 3-Sasakian manifolds
are introduced ([12, §3.3]). That concept seems to fit very well with the kind of
geometry we were looking for.

Summarizing, our paper introduces the symplectic triple systems as a remark-
able tool to construct and study homogeneous split 3-Sasakian manifolds which can
be interpreted as certain principal bundles on para-quaternionic Kähler manifolds.
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