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On tangent cones to Schubert varieties in type E

Mikhail V. Ignatyev, Aleksandr A. Shevchenko

Abstract. We consider tangent cones to Schubert subvarieties of the flag
variety G/B, where B is a Borel subgroup of a reductive complex algebraic
group G of type E6, E7 or E8. We prove that if w1 and w2 form a good pair
of involutions in the Weyl group W of G then the tangent cones Cw1 and
Cw2 to the corresponding Schubert subvarieties of G/B do not coincide as
subschemes of the tangent space to G/B at the neutral point.

1 Introduction and the main result
Let G be a complex reductive algebraic group, T a maximal torus in G, B a Borel
subgroup in G containing T , and U the unipotent radical of B. Let Φ be the root
system of G with respect to T , Φ+ the set of positive roots with respect to B, ∆
the set of simple roots, and W the Weyl group of Φ (see [4], [10] and [11] for basic
facts about algebraic groups and root systems).

Denote by F = G/B the flag variety and by Xw ⊆ F the Schubert subvariety
corresponding to an element w of the Weyl group W . Denote by O = Op,Xw the
local ring at the point p = eB ∈ Xw. Let m be the maximal ideal of O. The
decreasing sequence of ideals

O ⊇ m ⊇ m2 ⊇ . . .
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is a filtration on O. We define R to be the graded algebra

R = grO =
⊕
i≥0

mi/mi+1.

By definition, the tangent cone Cw to the Schubert variety Xw at the point p is
the spectrum of R: Cw = SpecR. Obviously, Cw is a subscheme of the tangent
space TpXw ⊆ TpF. A hard problem in studying geometry of Xw is to describe Cw
[5, Chapter 7].

In 2011, D.Yu. Eliseev and A.N. Panov computed tangent cones Cw for all
w ∈ W in the case G = SLn(C), n ≤ 5 [8]. Using their computations, A.N. Panov
formulated the following Conjecture.

Conjecture 1 (A.N. Panov, 2011). Let w1, w2 be involutions, i.e., w2
1 = w2

2 = id.
If w1 6= w2, then Cw1

6= Cw2
as subschemes of TpF.

One can easily check that it is enough to prove the Conjecture for irreducible
root systems (see Remark 2 below). In 2013, D.Yu. Eliseev and the first author
proved this Conjecture in types An, F4 and G2 [9]. In [3], M.A. Bochkarev and
the authors proved the Conjecture in types Bn and Cn. In [12], we proved that
the Conjecture is true if Φ is of type Dn and w1, w2 are so-called basic involutions.
In this paper, we prove that the Conjecture is true for so-called good pairs of
involutions (see Definition 4) for Φ = E6, E7 and E8. Precisely, our main result is
as follows.

Theorem 1. Assume that every irreducible component of Φ is of type E6, E7 or E8.
Let w1, w2 be a good pair of involutions in the Weyl group of Φ. Then the tangent
cones Cw1

and Cw2
do not coincide as subschemes of TpF.

Remark 1. One can also consider reduced tangent cones. Let A be the symmetric
algebra of the vector space m/m2, or, equivalently, the algebra of regular functions
on the tangent space TpXw. Since R is generated as C-algebra by m/m2, it is
a quotient ring R = A/I. By definition, the reduced tangent cone Cred

w to Xw

at the point p is the common zero locus in TpXw of the polynomials f ∈ I ⊆ A.
Clearly, if Cred

w1
6= Cred

w2
, then Cw1

6= Cw2
. It was proved in [3] that if Φ is of type

Bn or Cn and w1 and w2 are distinct involutions in W , then Cred
w1

and Cred
w2

do not
coincide as subvarieties of TpF. In [12], the similar result was obtained for basic
involutions in type Dn. For type E, this question still remains open even for good
pairs of involutions.

The paper is organized as follows. In Section 2, we introduce the main technical
tool used in the proof of Theorem 1. Namely, to each element w ∈ W one can
assign a polynomial dw in the algebra of regular functions on the Lie algebra of the
maximal torus T . These polynomials are called Kostant-Kumar polynomials [1],
[13], [14], [15]. In [15] S. Kumar showed that if w1 and w2 are arbitrary elements
of W and dw1

6= dw2
, then Cw1

6= Cw2
. We give three equivalent definitions of

Kostant-Kumar polynomials and formulate their properties needed for the sequel.
In Section 3, we recall basic definitions and facts about root systems of type E and
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prove the main technical fact about divisibility of Kostant-Kumar polynomials, see
Proposition 1. Finally, Section 4 contains the notion of a good pair of involutions
and the proof of our main result, Theorem 1, based on Proposition 1 and detailed
consideration of configurations of roots, see Proposition 2.

2 Kostant-Kumar polynomials
Let w be an element of the Weyl group W . Here we recall the precise definition
of the Kostant-Kumar polynomial dw, explain how to compute it in combinatorial
terms, and show that it depends only on the scheme structure of Cw, see [15] for
the details.

The torus T acts on the Schubert variety Xw by left multiplications (or, equiv-
alently, by conjugations). The point p is invariant under this action, hence there
is the structure of a T -module on the local ring O. The action of T on O preserves
the filtration by powers of the ideal m, so we obtain the structure of a T -module
on the algebra R = grO. By [15, Theorem 2.2], R can be decomposed into a direct
sum of its finite-dimensional weight subspaces:

R =
⊕

λ∈X(T )

Rλ .

Here h is the Lie algebra of the torus T , X(T ) ⊆ h∗ is the character lattice of T
and Rλ = {f ∈ R | t · f = λ(t)f} is the weight subspace of weight λ. Let Λ be
the Z-module consisting of all (possibly infinite) Z-linear combinations of linearly
independent elements eλ, λ ∈ X(T ). The formal character of R is an element of Λ
of the form

chR =
∑

λ∈X(T )

mλe
λ ,

where mλ = dimRλ.
Now, pick an element a =

∑
λ∈X(T ) nλe

λ ∈ Λ. Assume that there are finitely
many λ ∈ X(T ) such that nλ 6= 0. Given k ≥ 0, one can define the polynomial

[a]k =
∑

λ∈X(T )

nλ ·
λk

k!
∈ S = C[h] .

Denote [a] = [a]k0 , where k0 is minimal among all non-negative numbers k such
that [a]k 6= 0. For instance, if a = 1− eλ, then [a]0 = 0 and [a] = [a]1 = −λ (here
we denote 1 = e0).

Let A be the submodule of Λ consisting of all finite linear combinations. It is
a commutative ring with respect to the multiplication eλ · eµ = eλ+µ. In fact, it is
just the group ring of X(T ). Denote the field of fractions of the ring A by Q. To
each element of Q of the form q = a/b, a, b ∈ A, one can assign the element

[q] =
[a]

[b]
∈ C(h)

of the field of rational functions on h. Note that this element is well-defined [15].
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There exists an involution q 7→ q∗ on Q defined by

eλ 7→ (eλ)∗ = e−λ .

It turns out [15, Theorem 2.2] that the character chR belongs to Q, hence
(chR)∗ ∈ Q, too. (One can consider the field Q of rational functions as a subring
of the ring Λ.) Finally, we put

cw = [(chR)∗], dw = (−1)l(w) · cw ·
∏
α∈Φ+

α .

Here l(w) is the length of w in the Weyl group W with respect to the set of
simple roots ∆. Evidently, cw and dw belong to C(h); in fact, dw is a polynomial,
i.e., it belongs to the algebra S = C[h] of regular functions on h, see [14] and [5,
Theorem 7.2.6].

Definition 1. Let w be an element of the Weyl group W . The polynomial dw ∈ S
is called the Kostant-Kumar polynomial associated with w.

It follows from the definition that cw and dw depend only on the canonical
structure of a T -module on the algebra R of regular functions on the tangent cone
Cw. Thus, to prove that the tangent cones corresponding to elements w1, w2 of
the Weyl group are distinct, it is enough to check that cw1 6= cw2 , or, equivalently,
dw1 6= dw2 .

On the other hand, there is a purely combinatorial description of Kostant-
-Kumar polynomials. To give this description, we need some more notation. Let
w, v be elements of W . Fix a reduced decomposition of the element w = si1 . . . sil .
(Here α1, . . . , αn ∈ ∆ are simple roots and si = sαi is the simple reflection corre-
sponding to αi.) Put

cw,v = (−1)l(w) ·
∑ 1

sε1i1αi1
· 1

sε1i1 s
ε2
i2
αi2
· . . . · 1

sε1i1 . . . s
εl
il
αil

,

where the sum is taken over all sequences (ε1, . . . , εl) of zeroes and units such that
sε1i1 . . . s

εl
il

= v. Actually, the element cw,v ∈ C(h) depends only on w and v, not on
the choice of a reduced decomposition of w [15, Section 3].

Example 1. Let Φ = An. Put w = s1s2s1. To compute cw,id, we should take the
sum over two sequences, (0, 0, 0) and (1, 0, 1). Hence

cw,id = (−1)3 ·
(

1

α1α2α1
+

1

−α1(α1 + α2)α1

)
= − 1

α1α2(α1 + α2)
.

A remarkable fact is that cw,id = cw, hence to prove that the tangent cones to
Schubert varieties do not coincide as subschemes, we need only combinatorics of
the Weyl group. Note also that for classical Weyl groups, elements cw,v are closely
related to Schubert polynomials [1].

Finally, we will present an original definition of elements cw,v using so-called nil-
-Hecke ring (see [15] and [5, Section 7.1]). The group W naturally acts on C(h) by
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automorphisms. Denote byQW the vector space over C(h) with basis {δw, w ∈W}.
It is a ring with respect to the multiplication

fδv · gδw = fv(g)δvw .

This ring is called the nil-Hecke ring. To each i from 1 to n put

xi = α−1
i (δsi − δid) .

Let w ∈W and w = si1 . . . sil be a reduced decomposition of w. Then the element

xw = xi1 . . . xil

does not depend on the choice of a reduced decomposition of w [13, Proposition 2.1].
Moreover, it turns out that {xw, w ∈ W} is a C(h)-basis of QW [13, Proposi-

tion 2.2], and

xw =
∑

v∈W
cw,vδv .

Actually, if w, v ∈W , then

a) xv · xw =

{
xvw , if l(vw) = l(v) + l(w),

0 , otherwise,

b) cw,v = −v(αi)
−1(cwsi,v + cwsi,vsi), if l(wsi) = l(w)− 1,

c) cw,v = α−1
i (si(csiw,siv)− csiw,v), if l(siw) = l(w)− 1.

(1)

The first property is proved in [13, Proposition 2.2]. The second and the third
properties follow immediately from the first one and the definitions (see also the
proof of [15, Corollary 3.2]).

Remark 2. Suppose Φ is a union of its subsystems Φ1 and Φ2 contained in mutually
orthogonal subspaces. Let W1, W2 be the Weyl groups of Φ1, Φ2 respectively, so
W = W1 × W2. Denote ∆1 = ∆ ∩ Φ1 = {α1, . . . , αr} and ∆2 = ∆ ∩ Φ2 =
{β1, . . . , βs}, then

C[h] ∼= C[α1, . . . , αr, β1, . . . , βs] .

Given v ∈ Wi, i = 1, 2, denote by div its Kostant-Kumar polynomial. We can
consider d1

v (respectively, d2
v) as an element of C[h] depending only on α1, . . . , αr

(respectively, on β1, . . . , βs). We define civ ∈ C(h), i = 1, 2, by a similar way. Let
w ∈ W , w1 ∈ W1, w2 ∈ W2 and w = w1w2. Repeating literally the proof of [9,
Proposition 1.6], we obtain the following:

dw = d1
w1
d2
w2
, cw = c1w1

c2w2
.

Thus, to prove Theorem 1 it is enough to prove this theorem for irreducible root
systems of type E, because C[h] is a unique factorization domain.
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3 Divisibility in C[h]
Throughout this section, Φ denotes an irreducible root system of type E6, E7 or E8.
Below we briefly recall some facts about Φ. (We follow the notation from [4].) Let
ε1, . . . , εn be the standard basis of the Euclidean space Rn. As usual, we identify
the set Φ+ of positive roots with the following subset of Rn:

E+
6 = {(±εi + εj), 1 ≤ i < j ≤ 5}

∪

{
1

2

(
ε8 − ε7 − ε6 +

5∑
i=1

(−1)ν(i)εi

)
,

5∑
i=1

ν(i) is even

}
,

E+
7 = {(±εi + εj)1 ≤ i < j ≤ 6} ∪ {(ε7 − ε8)}

∪

{
1

2

(
ε7 − ε8 +

6∑
i=1

(−1)ν(i)εi

)
,

6∑
i=1

ν(i) is even

}
,

E+
8 = {±εi + εj1 ≤ i < j ≤ 8} ∪

{
1

2

8∑
i=1

(−1)ν(i)εi,

8∑
i=1

ν(i) is even

}
,

so W can be considered as a subgroup of the orthogonal group O(Rn).
The simple roots have the following form.

Φ = E6 : α1 =
1

2
(ε1 + ε8)− 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7) ,

α2 = ε1 + ε2 , α3 = ε2 − ε1 ,
α4 = ε3 − ε2 , α5 = ε4 − ε3 ,
α6 = ε5 − ε4 ;

Φ = E7 : α1 =
1

2
(ε1 + ε8)− 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7) ,

α2 = ε1 + ε2 , α3 = ε2 − ε1 ,
α4 = ε3 − ε2 , α5 = ε4 − ε3 ,
α6 = ε5 − ε4 , α7 = ε6 − ε5 .

Φ = E8 : α1 =
1

2
(ε1 + ε8)− 1

2
(ε2 + ε3 + ε4 + ε5 + ε6 + ε7) ,

α2 = ε1 + ε2 , α3 = ε2 − ε1 ,
α4 = ε3 − ε2 , α5 = ε4 − ε3 ,
α6 = ε5 − ε4 , α7 = ε6 − ε5 ,
α8 = ε7 − ε6 .

(2)

We say that v is less or equal to w with respect to the Bruhat order, written
v ≤ w, if some reduced decomposition for v is a subword of some reduced de-
composition for w. It is well-known that this order plays the crucial role in many
geometric aspects of theory of algebraic groups. For instance, the Bruhat order
encodes the incidences among Schubert varieties, i.e., Xv is contained in Xw if and
only if v ≤ w. It turns out that cw,v is non-zero if and only if v ≤ w [15, Corol-
lary 3.2]. For example, cw = cw,id is non-zero for any w, because id is the smallest
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element of W with respect to the Bruhat order. Note that given v, w ∈ W , there
exists gw,v ∈ S = C[h] such that

cw,v = gw,v ·
∏
α>0,
sαv≤w

α−1 , (3)

see [7] and [5, Theorem 7.1.11]
Since we fixed the order on the set of simple roots, one can consider the lexico-

graphic total order on the set of positive roots: given α =
∑
aiαi and β =

∑
biαi,

we write α ≺ β if there exists j such that ai = bi for all i < j and ai < bi. Let
w be an involution in the Weyl group W of Φ. Denote by sα the reflection in W
corresponding to a root α. Denote by β1 the maximal (with respect to the order �)
root among all roots β ∈ Φ+ for which w(β) = −β. Next, for i ≥ 1, denote by βi+1

the maximal root among all roots β ∈ Φ+ such that wi(β) = −β, where

wi = sβi ◦ sβi−1
◦ . . . ◦ sβ1

◦ w .

One can easily check that wk coincides with the identity element of W for certain k.

Definition 2. The set Supp(w) = {β1, . . . , βk} is called the support Supp(σ) of w.
It turns out that Supp(w) is an orthogonal subset of Φ+ [16, Theorem 5.4]. Note
that

w =
∏

β∈Supp(w)

sβ ,

where the product is taken in any fixed order.

Lemma 1. Let w1, w2 be involutions inW . If Supp(w1) ⊂ Supp(w2) then w1 ≤ w2.

Proof. The well-known Strong Exchange Condition (see, e.g., [6, Proposition 3.1 (ii)])
implies that, given w ∈ W and α ∈ Φ, one has l(wsα) > l(w) if and only if
wα ∈ Φ+. On the other hand (see, e.g., [2, Definition 2.1.1]), l(wsα) > l(w) if and
only if wsα > w. Hence, w(α) ∈ Φ+ if and only if wsα > w. Let

Supp(w2) \ Supp(w1) = {β1, . . . , βk} ,

then
w2 = w1 ·

∏
β∈Supp(w2)\Supp(w1)

sβ = w1sβ1 . . . sβk .

Next, denote vi = w1sβ1
. . . sβi−1 for 1 ≤ i ≤ k+1, so that v1 = w1 and vk+1 = w2.

Then, clearly, vi(βi) = βi ∈ Φ+, thus, w1 = v1 < v2 < . . . < vk+1 = w2, as
required. �

Definition 3. The subset C1 = {β ∈ Φ+ | α1 � β} is called the first column of Φ+.

We will essentially use the following standard fact about parabolic subgroups
of the Weil group W .
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Theorem 2. [11, Proposition 1.10 (c)] Let I be a subset of the set ∆ of simple roots.
Denote by WI the parabolic subgroup of W generated by the simple reflections sα,
α ∈ I. Put also

W I = {w ∈W | l(wsα) > l(w) for all α ∈ I} .

Given w ∈ W , there exist unique u ∈ W I and v ∈ WI such that w = uv. Their
lengths satisfy l(w) = l(u) + l(v).

The following proposition plays the crucial role in the proof of the main result
(cf. [9, Lemmas 2.4, 2.5], [3, Lemma 2.6] and [12, Lemma 2.7]).

Proposition 1. Let w ∈W be an involution. Assume that Supp(w)∩C1 = {β} and
the reflection sβ has a reduced decomposition of the form sβ = uβvβ for a certain

element vβ from the subgroup W̃ of W generated by the reflections si, i 6= 1, so
that uβ = v−1

β s1 and l(uβsi) = l(u) + 1 for all i 6= 1. Then β does not divide dw
in C[h].

Proof. Denote

W̃ 1 = {w ∈W | l(wsi) = l(w) + 1 for all i 6= 1}
= {w ∈W | w(αi) ∈ Φ+ for all i 6= 1} .

Applying Theorem 2 to the subset I = ∆ \ {α1}, we see that there exist unique
u ∈ W̃ 1 = W I and v ∈ W̃ = WI such that w = uv. We claim that in fact u = uβ .
Indeed, denote w′ =

∏
α∈Supp(w), α 6=β sα, then one can write

w =
∏

α∈Supp(w)

sα = sβw
′ = uβvβw

′.

But vβw′ ∈ W̃ , while uβ ∈ W̃ 1, which means that u = uβ and v = vβw
′.

We claim that

cw = −
cus1,g0g0(cv,g−1

0
)

β
−

∑
g≤u, g−1≤v,

g 6=g0

cus1,gg(cv,g−1)

g(α1)

= β−1 · g0(cv,g−1
0

) · K
L

+
M

N

(4)

Here g0 = us1 and K,L and M,N ∈ C[h] are pairs of coprime polynomials such
that the root β (considered as an element of C[h]) divides neither K nor N .

Indeed, one can prove (4) using (1) and arguing as in the proof of [9, Lemma 2.5].
Namely, since l(w) = l(u) + l(v), formula (1)a shows that

xw =
∑
s∈W

cw,sδs = xuxv =
∑

g,h∈W

cu,gδg · cv,hδh

=
∑

g,h∈W

cu,gg(cv,h)δgh =
∑
s∈W

∑
g∈W

cu,gg(cv,g−1s)

 δs .
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Thus, for any s ∈W , the coefficient of δs is equal to

cw,s =
∑
g∈W

cu,gg(cv,g−1s) ,

in particular,
cw = cw,id =

∑
g∈W

cu,gg(cv,g−1) .

Moreover, since cp,q 6= 0 if and only if p ≥ q, the sum in the right hand side is
taken over permutations g such that u ≥ g and v ≥ g−1. Denote the set of such
permutations by U . Note that g ∈ U implies that g is obtained from u = v−1

β s1 by
deleting s1 and, possibly, some other simple reflections. (If s1 is not deleted, then
the condition v ≥ g−1 does not hold.) Hence

cw = cw,id =
∑
g∈U

cu,gg(cv,g−1) .

Using (1)b) and the fact that l(us1) = l(u)− 1, we obtain

cu,g = −g(α1)−1(cus1,g + cus1,gs1) = −g(α1)−1cus1,g ,

because us1 6≥ gs1 and so cus1,gs1 = 0. Thus,

cw = −
∑
g∈U

cus1,gg(cv,g−1)

g(α1)
.

It is easy to check that there is at most one element g such that g(α1) = β and
g ∈ U , namely, the element g0 = us1 = v−1

β . Indeed,

sβ = v−1
β s1vβ = sv−1

β (α1) ,

hence v−1
β (α1) = ±β. But v−1

β belongs to W̃ , consequently,

v−1
β (α1) = α1 + . . . ∈ Φ+ .

We conclude that g0 = v−1
β sends α1 to β. On the other hand, if g(α1) = β for

some g 6= v−1
β from U , then sβ = v−1

β s1vβ is not a reduced decomposition of sβ ,
a contradiction.

Assume for a moment that g0 belongs to U , i.e., v ≥ g−1
0 . Then

cw = −
cus1,g0g0(cv,g−1

0
)

β
−
∑
g∈U,
g 6=g0

cus1,gg(cv,g−1)

g(α1)
. (5)

By S′ (resp. Q′) denote the subalgebra of S = C[h] (resp. the subfield of C(h))
generated by αi, i 6= 1, then cv,g−1

0
∈ Q′ because v, g−1

0 ∈ W̃ . Since g ∈ W̃ ,
g(cv,g−1

0
) ∈ Q′, too. In particular, if g(cv,g−1

0
) = G1/G2 and G1, G2 ∈ S′ are
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coprime, then β does not divide G1. On the other hand, cus1,g0 ∈ Q′, because both
us1 = g0 belongs to W̃ . We conclude that the first summand in (5) has the form
g0(cv,g−1

0
) ·K/βL for some coprime K,L ∈ C[h]. Finally, if g ∈ U and g 6= g0, then

g(cv,g−1) ∈ Q′. Again, since us1 and g belong to W̃ , one has cus1,g ∈ Q′. We see
that if the latter sum in (5) is equal to M/N , where M,N ∈ C[h] are coprime, then
β does not divide N .

To prove that β does not divide dw, it is enough to show that cv,g−1
0
6= 0, i.e.,

v ≥ g−1
0 (or, equivalently, v−1 ≥ g0). By Lemma 1, sβ ≤ w, According to [2,

Chapter 2, Exercise 21], this is equivalent to vβ ≤ v. Hence, g0 = v−1
β ≤ v−1,

which concludes the proof. �

4 Good pairs of involutions
In this section, we formulate and prove the main result of the paper, Theorem 1.
To do this, we need to introduce the notion of a good pair of involutions. Recall
the set of simple roots from (2). We will order the simple roots as follows.

Type of Φ Order of simple roots

E6 α1, α2, α3, α4, α5, α6 or
α2, α6, α3, α5, α4, α1

E7 α3, α7, α4, α6, α5, α2, α1

E8 α4, α8, α5, α7, α6, α3, α2, α1

Since the set of simple roots is ordered, the support of an involution and the first
column are well-defined.

Definition 4. Let w1, w2 be involutions in W . We say that they form a good pair
of involutions if Supp(wi) ∩ C1 = {βi} for i = 1, 2 such that β1 6= β2, both β1 and
β2 are not maximal in C1 for Φ = E8, and sβ1 � w2 or sβ2 � w1.

Now we are ready to prove our main result, Theorem 1, which claims that if
w1, w2 is a good pair of involutions then the corresponding tangent cones Cw1

and
Cw2 do not coincide. This follows immediately from the following proposition.

Proposition 2. Let w1, w2 be a good pair of involutions in W . Then dw1 6= dw2 .

Proof. Let β = β1 or β2, and sβ = uvβ be as in Proposition 1. In the tables below
we list the elements u for all possible β. The first (respectively, the second) column
of the table contains the sequence (c1, . . . , c8) (respectively, (b1, . . . , bn)) if

β =

8∑
i=1

ciεi =

n∑
i=1

αi, n = rk Φ .

The third column contains a reduced decomposition of u.
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Case Φ = E6 with the order α1, α2, α3, α4, α5, α6

(c1, . . . , c8) (b1, . . . , b6) Reduced decomposition of u

( 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 100000 s1

(− 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 101000 s3s1

(− 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 101100 s4s3s1

( 1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111100 s2s4s3s1

(− 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 101110 s5s4s3s1

(− 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 101111 s6s5s4s3s1

( 1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111110 s5s2s4s3s1

( 1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111210 s4s5s2s4s3s1

( 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111111 s6s5s2s4s3s1

(− 1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 112210 s3s4s5s2s4s3s1

( 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111211 s6s4s5s2s4s3s1

(− 1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 112211 s3s6s4s5s2s4s3s1

( 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111221 s5s6s4s5s2s4s3s1

(− 1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 112221 s3s5s6s4s5s2s4s3s1

(− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 112321 s4s3s5s6s4s5s2s4s3s1

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 122321 s2s4s3s5s6s4s5s2s4s3s1

Case Φ = E6 with the order α2, α6, α3, α5, α4, α1

(c1, . . . , c8) (b1, . . . , b6) Reduced decomposition of u

(0, 0, 0,−1, 1, 0, 0, 0) 000001 s6

(0, 0,−1, 0, 1, 0, 0, 0) 000011 s5s6

(0,−1, 0, 0, 1, 0, 0, 0) 000111 s4s5s6

(1, 0, 0, 0, 1, 0, 0, 0) 010111 s2s4s5s6

(−1, 0, 0, 0, 1, 0, 0, 0) 001111 s3s4s5s6

(− 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 101111 s1s3s4s5s6

(0, 1, 0, 0, 1, 0, 0, 0) 011111 s2s3s4s5s6

(0, 0, 1, 0, 1, 0, 0, 0) 011211 s4s2s3s4s5s6

( 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111111 s1s2s3s4s5s6

(0, 0, 0, 1, 1, 0, 0, 0) 011221 s5s4s2s3s4s5s6

( 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111211 s4s1s2s3s4s5s6

(− 1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 112211 s3s4s1s2s3s4s5s6
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( 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 111221 s5s4s1s2s3s4s5s6

(− 1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 112221 s3s5s4s1s2s3s4s5s6

(− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 112321 s4s3s5s4s1s2s3s4s5s6

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ) 122321 s2s4s3s5s4s1s2s3s4s5s6

Case Φ = E7 with the order α3, α7, α4, α6, α5, α2, α1

(c1, . . . , c8) (b1, . . . , b7) Reduced decomposition of u

(0, 0, 0, 0,−1, 1, 0, 0) 0000001 s7

(0, 0, 0,−1, 0, 1, 0, 0) 0000011 s6s7

(0, 0,−1, 0, 0, 1, 0, 0) 0000111 s5s6s7

(0,−1, 0, 0, 0, 1, 0, 0) 0001111 s4s5s6s7

(1, 0, 0, 0, 0, 1, 0, 0) 0101111 s2s4s5s6s7

(−1, 0, 0, 0, 0, 1, 0, 0) 0011111 s3s4s5s6s7

(0, 1, 0, 0, 0, 1, 0, 0) 0111111 s2s3s4s5s6s7

(− 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1011111 s1s3s4s5s6s7

( 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1111111 s2s1s3s4s5s6s7

(0, 0, 1, 0, 0, 1, 0, 0) 0112111 s4s2s3s4s5s6s7

( 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1112111 s1s4s2s3s4s5s6s7

(0, 0, 0, 1, 0, 1, 0, 0) 0112211 s5s4s2s3s4s5s6s7

( 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1112211 s5s1s4s2s3s4s5s6s7

(0, 0, 0, 0, 1, 1, 0, 0) 0112221 s6s5s4s2s3s4s5s6s7

(− 1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1122111 s3s1s4s2s3s4s5s6s7

( 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1112221 s6s5s1s4s2s3s4s5s6s7

(− 1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1122211 s3s5s1s4s2s3s4s5s6s7

(− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1123211 s4s3s5s1s4s2s3s4s5s6s7

(− 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1122221 s6s3s5s1s4s2s3s4s5s6s7

(− 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1123221 s4s3s5s1s4s2s3s4s5s6s7

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1223211 s2s4s3s5s1s4s2s3s4s5s6s7

(− 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1123321 s5s4s3s5s1s4s2s3s4s5s6s7

( 1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1223221 s6s2s4s3s5s1

s4s2s3s4s5s6s7

( 1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1223321 s5s6s2s4s3s5s1

s4s2s3s4s5s6s7
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( 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1224321 s4s5s6s2s4s3s5s1

s4s2s3s4s5s6s7

(− 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ) 1234321 s3s4s5s6s2s4s3s5s1

s4s2s3s4s5s6s7

(0, 0, 0, 0, 0, 0,−1, 1) 2234321 s1s3s4s5s6s2s4s3s5s1

s4s2s3s4s5s6s7

Case Φ = E8 with the order α4, α8, α5, α7, α6, α3, α1, α1

(c1, . . . , c8) (b1, . . . , b7) Reduced decomposition of u

(0, 0, 0, 0, 0,−1, 1, 0) 00000001 s8

(0, 0, 0, 0,−1, 0, 1, 0) 00000011 s7s8

(0, 0, 0,−1, 0, 0, 1, 0) 00000111 s6s7s8

(0, 0,−1, 0, 0, 0, 1, 0) 00001111 s5s6s7s8

(0,−1, 0, 0, 0, 0, 1, 0) 00011111 s4s5s6s7s8

(−1, 0, 0, 0, 0, 0, 1, 0) 00111111 s3s4s5s6s7s8

(1, 0, 0, 0, 0, 0, 1, 0) 01011111 s2s4s5s6s7s8

(− 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 10111111 s1s3s4s5s6s7s8

(0, 1, 0, 0, 0, 0, 1, 0) 01111111 s3s2s4s5s6s7s8

(0, 0, 1, 0, 0, 0, 1, 0) 01121111 s4s3s2s4s5s6s7s8

( 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11111111 s1s3s2s4s5s6s7s8

(0, 0, 0, 1, 0, 0, 1, 0) 01122111 s5s4s3s2s4s5s6s7s8

( 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11121111 s1s4s3s2s4s5s6s7s8

( 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11122111 s5s1s4s3s2s4s5s6s7s8

(− 1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11221111 s3s1s4s3s2s4s5s6s7s8

(0, 0, 0, 0, 1, 0, 1, 0) 01122211 s6s5s1s4s3s2s4s5s6s7s8

(− 1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11222111 s5s3s1s4s3s2s4s5s6s7s8

(0, 0, 0, 0, 0, 1, 1, 0) 01122221 s7s6s5s1s4s3s2s4s5s6s7s8

( 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11122211 s1s6s5s1s4s3s2

s4s5s6s7s8

( 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ) 11122221 s7s1s6s5s1s4s3

s2s4s5s6s7s8

(− 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11222211 s3s1s6s5s1s4s3

s2s4s5s6s7s8
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(− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11232111 s4s5s3s1s4s3

s2s4s5s6s7s8

(− 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11232211 s6s4s5s3s1s4

s3s2s4s5s6s7s8

(− 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ) 11222221 s7s3s1s6s5s1s4s3

s2s4s5s6s7s8

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 12232111 s2s4s5s3s1s4s3s2

s4s5s6s7s8

(− 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 11233211 s5s6s4s5s3s1s4s3

s2s4s5s6s7s8

( 1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 12232211 s6s2s4s5s3s1s4s3

s2s4s5s6s7s8

(− 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ) 11232221 s7s6s4s5s3s1s4s3

s2s4s5s6s7s8

( 1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 12233211 s5s6s2s4s5s3s1s4

s3s2s4s5s6s7s8

( 1
2 ,

1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12232221 s2s7s6s4s5s3s1s4

s3s2s4s5s6s7s8

(− 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ) 11233221 s7s5s6s4s5s3s1s4

s3s2s4s5s6s7s8

(− 1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 11233321 s6s7s5s6s4s5s3s1

s4s3s2s4s5s6s7s8

( 1
2 ,

1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12233221 s5s2s7s6s4s5s3s1

s4s3s2s4s5s6s7s8

( 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 12243211 s4s5s6s2s4s5s3s1

s4s3s2s4s5s6s7s8

(− 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ) 12343211 s3s4s5s6s2s4s5s3s1

s4s3s2s4s5s6s7s8

( 1
2 ,−

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12243221 s7s4s5s6s2s4s5s3s1

s4s3s2s4s5s6s7s8

( 1
2 ,

1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12233321 s6s5s2s7s6s4s5s3s1

s4s3s2s4s5s6s7s8

( 1
2 ,−

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12243321 s4s6s5s2s7s6s4s5s3

s1s4s3s2s4s5s6s7s8



On tangent cones to Schubert varieties in type E 193

(0, 0, 0, 0, 0,−1, 0, 1) 22343211 s1s3s4s5s6s2s4s5

s3s1s4s3s2s4s5s6s7s8

(− 1
2 ,

1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12343221 s7s3s4s5s6s2s4s5

s3s1s4s3s2s4s5s6s7s8

(0, 0, 0, 0,−1, 0, 0, 1) 22343221 s1s7s3s4s5s6s2s4s5

s3s1s4s3s2s4s5s6s7s8

( 1
2 ,−

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12244321 s5s4s6s5s2s7s6s4s5

s3s1s4s3s2s4s5s6s7s8

(− 1
2 ,

1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12343321 s6s7s3s4s5s6s2s4s5

s3s1s4s3s2s4s5s6s7s8

(0, 0, 0,−1, 0, 0, 0, 1) 22343321 s1s6s7s3s4s5s6s2s4s5

s3s1s4s3s2s4s5s6s7s8

(− 1
2 ,

1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12344321 s5s6s7s3s4s5s6s2s4s5

s3s1s4s3s2s4s5s6s7s8

(0, 0,−1, 0, 0, 0, 0, 1) 22344321 s1s5s6s7s3s4s5s6s2s4

s5s3s1s4s3s2s4s5s6s7s8

(− 1
2 ,−

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 12354321 s4s5s6s7s3s4s5s6s2s4

s5s3s1s4s3s2s4s5s6s7s8

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) 13354321 s2s4s5s6s7s3s4s5s6s2s4

s5s3s1s4s3s2s4s5s6s7s8

(0,−1, 0, 0, 0, 0, 0, 1) 22354321 s1s4s5s6s7s3s4s5s6s2s4

s5s3s1s4s3s2s4s5s6s7s8

(1, 0, 0, 0, 0, 0, 0, 1) 23354321 s2s1s4s5s6s7s3s4s5s6s2s4

s5s3s1s4s3s2s4s5s6s7s8

(−1, 0, 0, 0, 0, 0, 0, 1) 22454321 s3s1s4s5s6s7s3s4s5s6s2s4

s5s3s1s4s3s2s4s5s6s7s8

(0, 1, 0, 0, 0, 0, 0, 1) 23454321 s2s3s1s4s5s6s7s3s4s5s6s2s4

s5s3s1s4s3s2s4s5s6s7s8

(0, 0, 1, 0, 0, 0, 0, 1) 23464321 s4s2s3s1s4s5s6

s7s3s4s5s6s2s4s5

s3s1s4s3s2s4s5s6s7s8

(0, 0, 0, 1, 0, 0, 0, 1) 23465321 s5s4s2s3s1s4s5s6

s7s3s4s5s6s2s4

s5s3s1s4s3s2s4s5s6s7s8
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(0, 0, 0, 0, 1, 0, 0, 1) 23465421 s6s5s4s2s3s1s4s5

s6s7s3s4s5s6

s2s4s5s3s1s4s3s2s4s5s6s7s8

(0, 0, 0, 0, 0, 1, 0, 1) 23465431 s7s6s5s4s2s3s1s4

s5s6s7s3s4s5s6

s2s4s5s3s1s4s3s2s4s5s6s7s8

All these tables were generated using computer algebra system SAGE [17]; the
listing of the code can be found in the Appendix.

One can immediately check that sβ and u satisfy the conditions of Proposition 1.
Hence, according to this proposition, βi does not divide dwi in C[h] for i = 1, 2.
On the other hand, formula (3) implies that, given w ∈ W , there exists g ∈ C[h]
such that

dw = cw ·
∏
α∈Φ+

α = g ·
∏

α∈Φ+,
sα�w

α ,

hence if sα 6= w then α divides dw. But if, for example, sβ1
� w2 then β1 divides

dw2 . At the same time, β1 does not divide dw1 , thus, dw1 6= dw2 . The proof is
complete. �

Appendix
Below we present the listing of the code generating tables from the proof of Propo-
sition 2 using computer algebra system SAGE.

rank=8 # the rank of the root system
column_number=8 # the number of the first column
W=WeylGroup([’E’,rank],prefix=’s’, implementation=’permutation’)
ref=W.reflections()
s=W.simple_reflections()
R=RootSystem([’E’,rank]).ambient_space();
simple_roots=R.simple_roots()
phi_plus=W.positive_roots()
C1=[]
C1el=[]
for i in range(0,len(phi_plus)):
if phi_plus[i][column_number-1]!=0:
C1.append(phi_plus[i])
C1el.append(ref[i+1])

U=[s[column_number]]
Ulistver=[[column_number]]
for i in range(1,len(C1)):
u=copy(Ulistver[i-1])
index=-1
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difference=C1[i]-C1[i-1]
difference_abs=[abs(ele) for ele in difference]
if sum(difference_abs)!=1:
b=0
for j in range(i-2,1,-1):
difference1=C1[i]-C1[j]
difference_abs1=[abs(ele) for ele in difference1]
if sum(difference_abs1)==1 and b==0:
b=1
difference=C1[i]-C1[j]
difference_abs=[abs(ele) for ele in difference]
u=copy(Ulistver[j])

if sum(difference)==1:
for j in range(0,len(difference)):
if difference[j]==1:
index=j

u1=[]
u2=s[column_number]*s[column_number]
if index!=-1:
u1=[index+1]
u2=s[index+1]
for j in range(0,len(u)):
u1.append(u[j])
u2=u2*s[u[j]]

U.append(u2)
Ulistver.append(u1)

list_of_indexes=[]
for i in range(1,rank+1):
if i!=column_number:
list_of_indexes.append(i)

for u in U:
b=1
for i in list_of_indexes:
u1=u*s[i]
if u1.length()<u.length():
b=0

if b==0:
print(’false’)
print(u)

V=[s[column_number]*s[column_number]]
Vlistver=[[]]
for i in range(1,len(Ulistver)):
u=copy(Ulistver[i])
v1=[]
v2=s[column_number]*s[column_number]
for j in range(len(u)-2,-1,-1):
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v1.append(u[j])
v2=v2*s[u[j]]

V.append(v2)
Vlistver.append(v1)

C1roots=[R.simple_root(column_number)]
for i in range(1,len(Vlistver)):
root=R.simple_root(column_number)
for j in range(0,len(Vlistver[i])):
root=root+R.simple_root(Vlistver[i][j])

C1roots.append(root)
for i in range(0,len(U)):
u=U[i]
v=V[i]
r=C1el[i]
if (u*v!=r) or (u.length()+v.length()!=r.length()):
print(false)

for i in range(0,len(U)):
print(C1roots[i],C1[i],U[i])
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