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Deformations of Metrics and Biharmonic Maps

Aicha Benkartab, Ahmed Mohammed Cherif

Abstract. We construct biharmonic non-harmonic maps between Rieman-
nian manifolds (M, g) and (N, h) by first making the ansatz that ¢: (M, g) —
(N, h) be a harmonic map and then deforming the metric on N by
ho = ah+ (1 —a)df ® df

to render ¢ biharmonic, where f is a smooth function with gradient of
constant norm on (N,h) and a € (0,1). We construct new examples of
biharmonic non-harmonic maps, and we characterize the biharmonicity of
some curves on Riemannian manifolds.

1 Introduction

Let (M, g) and (N, h) be two Riemannian manifolds. The energy functional of a
map ¢ € C*°(M, N) is defined by

B(e) =5 [ lgPor, )

where |d¢| is the Hilbert-Schmidt norm of the differential dp and v9 is the volume
element on (M, g). A map ¢ € C*°(M, N) is called harmonic if it is a critical point
of the energy functional, that is, if it is a solution of the Euler Lagrange equation
associated to (1)

7(p) = trace Vdp = V¢ dp(e;) — d@(eri) =0, (2)

where {e;}™; is an orthonormal frame on (M, g), m = dim M, VM is the Levi-
-Civita connection of (M, g), and V¥ denote the pull-back connection on ¢~ 'TN.
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Harmonic maps are solutions of a second order nonlinear elliptic system and they
play a very important role in many branches of mathematics and physics where
they may serve as a model for liquid crystal (see [9]). One can refer to [6], [7], [8]
for background on harmonic maps. A natural generalization of harmonic maps is
given by integrating the square of the norm of the tension field. More precisely,
the bi-energy functional of a map ¢ € C*°(M, N) is defined by

Bae) =5 [ Ir(e)Por. Q

A map ¢ € C°(M, N) is called biharmonic if it is a critical point of the bi-energy
functional, that is, if it is a solution of the Euler Lagrange equation associated to

3)
— trace RN (7(¢), dp)dy — trace(V¥)27(p)
= —RY(r(¢), dp(e:)dp(es) = VEVET(0) + Viu, 7(0) =0, (4)

2(p)

where RY is the curvature tensor of (N, h) (see [5], [12]). Clearly, harmonic maps
are biharmonic. G.Y. Jiang [12] proved that if M is compact without boundary
and the sectional curvature of (N, h) is negative, then any biharmonic map ¢ €
C* (M, N) is harmonic. So it is interesting to construct biharmonic non-harmonic
maps. We refer the reader to [2], [5], [10], [11] for other examples and different
approaches to their construction.

In this paper, we deform the codomain metric by hq = ah+(1—a)df@df, where

€ (0,1) and f € C°°(N), in order to render a map biharmonic non-harmonic
with respect to the new metric, we give a necessary and sufficient condition on f
and a such that ¢: (M, g) = (N, hg) is biharmonic non-harmonic. So by suitable
choices of f, we are able to give new examples of biharmonic non-harmonic maps.

2 Deformations of Metrics

Let M be a Riemannian manifold equipped with Riemannian metric g, and f
a smooth function on M. We define on M a Riemannian metric, denoted g,, by

Jo=ag+ (1 —a)dfdf,

for some constant o € (0,1). In the seminal work [4], we obtain the following
results.

Theorem 1. Let (M, g) be a Riemannian manifold and V denote the Levi-Civita
connection of (M, o). Then

(1 —a)Hess;(X,Y)
o+ (1 — )] grad f]

VxY =VxY + grad f,

where V is the Levi-Civita connection of (M, g), Hessy (resp. grad f) is the Hessian
(resp. the gradient vector) of f with respect to g, and

| grad f||> = g(grad f,grad f).
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Proof. Let X,Y,Z € T(TM). From the Koszul formula (see [13]), we have

25(VxY, Z) = 209(VxY, Z) + (1 - ){ X(Y () Z(1) + Y (Z(N)X(/))
= Z(X(NY () + 2K, YI) + Y ()2, X]()
- X(NY.Z)(h) - (5)

Let {e;}7, be a geodesic frame on (M, g) at x € M (see [3]), where m = dim M.
By (5) we obtain

2a(VxYse:) = 2a9(VxYse)) + (1= ) { X(V (f)gles, grad ))
+ Y(X(f)g(es, grad f)) — ei(g(X, grad f)g(Y, grad f))
+a(NIX Y + Y (N X)) + XUDTe)D ] (6)
from equation (6), and the definition of Hessian (see [13]), we get

§a(§XY, e;) =ag(VxY,e;) + (1 —a)g(VxY,grad f)g(e;, grad f)
+ (1 — a) Hess; (X, Y)g(e;, grad f), (7)

from equation (7), we obtain

3a(VxY,Z) = ag(VxY, Z) + (1 — a)g(VxY, grad f)g(Z, grad f)
+ (1 — o) Hess¢(X,Y)g(Z, grad f), (8)

by the definition of the Riemannian metric g,, and (8) we find that
Go(VXY, Z) = §a(VxY, Z) + (1 — ) Hess (X, Y) Z(f) . )

Hence Theorem 1 follows from (9), with the following

1
Z(H =7 (1 — a)| grad f]]

59a(Z, grad ). O
Now consider the curvature tensor R of (M, go), writing R for the curvature

tensor of (M, g). We have the following result:

Theorem 2. For all X,Y,Z € I'(T' M), we have

(1 - a)g(R(X,Y) grad f, Z)

RXY)Z = ROX,Y)Z 4 = 2 S grad f
e — a)? Hess (X, grad f) Hess¢ (Y, Z) erad f
(a+ (1 —a)l grad f[|?)?
(1 — a)? Hessy (Y, grad f) Hess¢ (X, Z)
R ] ety

(1 —a)Hess; (Y, Z)
ot (- )l grad /|
(1 —a)Hessf(X,Z)
a+ (1 —a)| grad f]|?

Vx grad f

Vy grad f.
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Proof. By the definition of the curvature tensor R,
R(X,Y)Z =VxVyZ - VyVxZ ~VixyZ,

and Theorem 1 we obtain

(1 —a)Hessy(Y,Z2)

at (- gead 2 &2/ )
(1 —a)Hessy(X, Z)

ot (1 —a)gad 72 0 )

(1 —a)Hess;([X,Y],Z) J

ot (1— o) grad /] f)’

R(X,Y)Z =Vx (VYZ +

— %Y (VXer

the first term of (10) is given by

(1 —a)Hesss (Y, 2)

d
a1 ) aead 77 5
(1 —a)Hess¢(Y, Z)

d
ot (1 o) arad 7 &1

1—a) Hess; (Y, 2

(1 — o) Hessy (X7 VyZ + % gradf)

a+ (1 —a)lgrad f|]?

%X (VyZ +

=Vx <VyZ +

" grad f, (1)

by equation (11), and the definition of Hessian, we obtain

(1 —a)Hessy (Y, Z)

2= ad 777 =)

(1-a)g(VxVygrad f, 2)
a+ (1 —a)| grad f[]?

(1 —a)Hessy(Y,VxZ)

ot (1 a)fgrad I &

(1 — o) Hess (X, grad f) Hess (Y, Z)

T @O feearpr o
(1 — «)Hessy (Y, Z)
a+ (1 —a)l grad f[|?
(1 —a)Hess;(X,VyZ)
a+ (1 —a)| grad f|]?

Vx (vyz n

=VxVyZ+

grad f

+

Vx grad f

grad f . (12)
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Using the similar method, the second term of (10) is given by
(1 — «) Hessy (X, Z)
1)
o+ (1 ) grad 72 57
(1-a)g(VyVxgrad f, Z)

—Vy (VXZ +

= — Z—
VT g oY
(1 —a)Hessf(X,VyZ)
— d
ot (1) grad ]2 5
_ 2 @ 1Q
(1 — a)?Hesss (Y, grad f) Hess; (X, Z) grad f

(a4 (1 — )| grad f?)

(1 — a)Hessy(X, Z)
— d
ot (A —a)erad fJ7 ¥ &84/

(1 —a)Hessy(Y,VxZ)
T ot —o)grad e £ (13)

Theorem 2 follows from equations (10), (12) and (13). O

3 The biharmonicity of ¢: (M, g) — (N, h,)
We now consider the effects of a deformation of the codomain metric, as regards
harmonic and biharmonic mappings.

Theorem 3. Let ¢: (M,g) — (N, h) be a harmonic map between two Riemannian
manifolds and let the Riemannian metric he, = ah+(1—a)df@df, where o € (0,1)
and f € C*°(N). We suppose that || grad f|| = 1. If the function A(f o) is a non-
-null constant on M, then the map ¢: (M, g) — (N, hy) is proper biharmonic if
and only if the gradient vector of f is Jacobi field along ¢, i.e. (grad f)op € ker J,,
where J,, is a Jacobi operator corresponding to .

Proof. Let {e;}~, be a normal orthonormal frame on (M, g) at 2, where m = dim M.
Then the map ¢: (M, g) — (N, hy) is biharmonic if and only if

a(p) = RN (7(¢), dy(es))dp(e;) — VEVEF(p) =0, (14)

where R" is the Riemannian curvature with respect to ha, 7(¢) denotes the tension
field of the map ¢ with respect to hq, and V¥ is the pull-back connection with
respect to the metric h,. First, we compute the tension field 7(y),

7(p) = VEdp(e;) = VA, . do(e:)

(1~ ) Hessy(dp(er). dp(ei)) 0o
ot (I—a)[grad[Pop Edflev

= (1 — a) Hessy(dyp(e;), dp(e;))(grad f) o ¢,

since A(f o) = df(7(p)) + trace Hesss(dy, dy) (see [3]), and 7(¢) = 0, we have
7(p) = Mgrad f) o p, with A = (1 — @)A(f o ¢) is a non-null constant. Now, we

=7(p) +
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compute the first term of (14), from Theorem 2, we have

RN (#(¢), de(e;))dep(e:)
= )\{RN(grad f.de(e;))de(e;)

(1 — a)h(R" (grad f,dyp(e;)) grad f, dp(e;))
! o+ (1) grad [ gracf
(1 — «)? Hessy (grad f, grad f) Hessf(dp(e;), dp(e;))
(a+ (1 —a)l grad f|[?)?
)

n (1 — a)? Hess ¢ (dg(e;), grad f) Hess(grad f, de(e;)) .
2

(a+ (1 —a)| grad f[?

(1 — a) Hessy(dp(ei), dp(ei))
o+ (1—a)| grad f|]

(1 — ) Hessy(grad f, do(e;))

= vy as}
a+ (1 —a)grad f[|? dsten 8104S 09,

Vévrad s grad f

since ||grad f|| = 1, is constant on N, we obtain
1
Hessy(grad f, X) =0, Vgadf grad f = 3 grad||grad f||* = 0,
for all X € T'(T'N), the equation (15) becomes

RN (7(¢), dp(e;))de(e;)
= )\{RN(grad fidep(e:))de(e;)

4 (1— a)R(RN (grad f,dy(e;)) grad f, dy(e;)) grad f} .

The second term of (14) is given by
VEVET(p) = AVEVE (grad f) o o
= )‘@fl (?(Jivcp(ei) grad f) oy
= AV¢ {(vg{p(ei) grad ) o ¢

(1 — a)Hessy(dp(e;), (grad f) o )
a+ (1 —a)lgrad fl? o ¢

from equations (16) and (18), we find that

VEVE7(p) = AVEV?E (grad f) o ¢

+ (1 — a)AHessf(dp(ei), VE (grad f) o p)(grad f) o ¢,

and note that

(grad f) o o}

rad f

rad f

Hessy(dg(e;), VE (grad f) o ¢) = —h((grad f) o ¢, VE V?Z (grad f) o ¢) .

(15)

(18)

(19)
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So, the map ¢: (M, g) — (N, fza) is biharmonic if and only if
Jo((grad f) o ) — (1 — a)h(J,((grad f) o ¢), (grad f) o ¢)(grad f) o = 0. (20)
Note that, the equation (20) is equivalent to J,,((grad f) o ¢) = 0. O

Example 1. Let M = R? and N = H? = {(y1,y2) € R?|ys > 0}. We consider the

harmonic map ¢: (M,dz? + dz3) 1—) (N, y3(dy? + dy3)), (z1,22) — (21, /73 + 1),

and let the function f(y1,y2) = iyg. A straightforward calculation shows that

Jrad | =1, Af o0) = 1 (grad f) o p = (0. 7o) and Jo((grad o) =0
Thus, with respect to metric h, = y3(ady? + dy3), the map ¢ is biharmonic non-

harmonic, with 7(¢) = (0, 1-a

\/x§+1 :

Remark 1. e Let ¢: (M,g) — (N,h) be a harmonic map between two Rie-
mannian manifolds and h, = ah + (1 — a)df ® df, where o € (0,1) and
f € C=(N) such that ||grad f|| = 1. Then the map ¢: (M, g) — (N, hy) is

harmonic if and only if f o ¢ is harmonic on (M, g).

e Let (M, g) be a Riemannian manifold, and let f be a smooth function on M
such that |lgrad f|| = 1 and Af = k, where k € R. Then, the identity map
from (M, g) to (M, g,) is biharmonic if and only if it is harmonic. Indeed;
from Theorem 3 the identity map from (M, g) to (M, gs) is a biharmonic
map if and only if Ricci(grad f) = 0, and by Bochner-Weitzenbock formula
for smooth functions (see [14])

1 .
§A(||grad f||2) = ||Hessf||2 + g(grad f, grad(Af)) + Ric(grad f, grad f),

we obtain ||Hesss|| = 0, so that Af = 0, that is the identity map from (M, g)
to (M, §o) is harmonic map.
4 The biharmonicity of the identity map (M, g.) — (M, gp)
Let (M, g) be a Riemannian manifold, f € C*°(M), a, 8 € (0,1), and denote by
fa,B: (M7§a) — (Mag,@) 5
T
the identity map, where §o = ag+ (1 —a)df ® df and gg = Sg+ (1 — f)df @ df.

Theorem 4. If o # 3, and ||grad f|| = 1. Then the identity map faﬂ is a proper
biharmonic if and only if the function f is non-harmonic on M, and satisfying the
following

1
2A f Ricci(grad f) = —BAQf grad f — 2Vgaaayrgrad f — Afgrad Af

11—«

B

l-«o
g
where Af is the Laplacian of f with respect to g, and A%2f = A(Af).

+ Afg(grad f,grad Af) grad f

+ Hessay(grad f, grad f) grad f,
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Proof. Let {e;}"; be an orthonormal frame on M with respect to the metric g,
such that e; = grad f, it is easy to prove that {61, ﬁei}:n:é is a orthonormal frame
on M with respect to the metric g,, where m = dim M. Let v (resp. %B) the
Levi-Civita connection of (M, §,) (resp. of (M, §g)), then the tension field of I, s
is given by
N . N N _ 1 m _ _ _ N
r(Lop) = Ver Al pler) = dLup(Veer) + = 3 { Ve dls(er) - dlo p(Veer) |
i=2
V. \VA°) 1 - V. e
= Vflel — Ve e + a Z {Vfiei — Veiei} s

1
=2

using Theorem 1, with ||grad f|| = 1, we have

T(fa,ﬁ) =2 ; g

Z Hessy(e;, €;) grad f, (21)
i=2

since Hessy(e1, e1) = 0, the equation (21) becomes

T(Iap) = %Af grad f .

Note that faﬁ is harmonic if and only if Af = 0, i.e. the function f is harmonic
on (M, g). We compute the bitension field of the identity I, g, for alli =1,...,m
we have

a—p

Ra(7(In,5), dla.p(e;))dIa p(ei) = Tﬁféﬁ(grad freiei, (22)

where Eg is the curvature tensor of V2. From Theorem 2, and equation (22) with
|lgrad f|| = 1, Hesss(grad f, X) = 0, for all X € I'(T'M), and Vgyaa s grad f = 0,
we obtain the following

Ry(1(In,5), dlu p(e:))dIa 5(e:)
a—f

=— Af{R(grad frei)ei + (1 — B)g(R(grad f,e;) grad f, e;) grad f} , (23)

from (23) and the definition of Ricci curvature, we get

R(r (Lo ). Al p(e0) T p(er) + = > R(r(Tus), Al p(e0) Al s(e:)

=25 Af{Ricci(grad £)

— (1 — B)Ric(grad f, grad f) grad f} . (24)
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Let ¢ =1,...,m, we compute

sl i
Le .8 Ve *BT(I%@)—V%;QT(IWB)
- O‘—_ﬁ{%fﬁgAfgradf v Afgradf}
« P Ve e
@]

{6fiV6iAf grad f — V@mveiAf grad f}

_° - b {VeiVeZAfgradf ~ V.. Af grad f
+ (1 — B) Hessy(e;, Ve, Af grad f) grad f
— (1 — a)Hessy(e;, €;)Vgraa fAf grad f} ) (25)

a straightforward calculation shows that

V.V Afgrad f - Ve, . Af grad f
=e;(e;(Af)) grad f + 2e;(Af)V,, grad f
+ AfV. V., grad f — (V. e;)(Af)grad f
—AfVy, e grad f, (26)

(1 — ) Hess¢(es, Ve, Af grad f) grad f
= —(1-pB)Afg(grad f, Ve, V., grad f) grad f, (27)

and

— (1 — a) Hessy(e;, €;)Vgrad fA f grad f
= —(1 — o) Hessys(e;, e;)(grad f)(Af) grad f, (28)

by equations (25)—(28), with | grad f|| = 1, we find that

~ ~ ~ . 1 m ~ ~ ~ ~ —
Ve Ve Tag) = Ve, THas) + o 3 AV Ve rTg) =V, map))
« P e; €i

v
v61€1

= aa_zﬁ {(a — 1) Hessaf(grad f, grad f) grad f + A?fgrad f

+ 2Vgrad af grad f + Af trace VZgrad f
— (1= B)Afg(grad f, trace V2 grad f)erad f

~ (1 - a)Afg(grad f,grad Af) grad f | (29)
from equations (24), (29), and the following (see [1])

trace VZ grad f = Ricci(grad f) + grad(Af),
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the identity map I, «,3 is a proper biharmonic map if and only if

2A f Ricci(grad f) — 2(1 — B)Af Ric(grad f, grad f) grad f
+ Agf gfad f + 2vgrad Af grad f + Af grad Af

—(2—a—pB)Afg(grad f,grad Af) grad f
+ (v — 1) Hessas(grad f,grad f) grad f =0, (30)

with « # 8 and Af # 0, taking its inner product with grad f, we have

—2(1 — B)Af Ric(grad f,grad f)

= %AQJ‘ - u_ﬁ)él_a)HessAf(grad fygrad f)
i 6)(167 @ =) A fglgrad f,grad AF) . (31)
Theorem 4 follows from (30) and (31). O

Corollary 1. If o # 8, ||grad f|| = 1, Af = F(f), where F is a non-null function
on I C R, and Ricci(grad f) = Agrad f, for some smooth function X\ on M. Then

the identity map I, g is a proper biharmonic if and only if the function f satisfying
the following

2BAF(f) + (a+ B)F(f)F'(f) +aF"(f) =0.
According to Corollary 1, we have the following example.
Example 2. Let M = (0,00) x R™ equipped with the Riemannian metric

da? + -+ da?

=dt? + ,
g t

we set f(t,z) =t, for all (t,7) € M. We have grad f = 0;, |lgrad f|| = 1, Af = —5;

and Ricci(grad f) = —24%0,, so that F(s) = —4%, for all s € I = (0,00) and
AMt,z) = *Z’TE for all (¢,2) € M. Using the Corollary 1, Then the identity map
fa’ﬁ is proper biharmonic if and only if n # 4 and o = %.

5 Biharmonic curve in (M, g,,)

Let v: I C R — (M, g), t — ~(t) be a harmonic curve in a Riemannian manifold
(M, g), such that g(4,4) = 1, and let f be a smooth function on M. In this section
we suppose that the gradient vector of f at y(¢) is parallel to the tangent vector
4(t). Thus, (grad f) ) = p(t)¥(t), with p(t) = (f oy)'(t), for all t € I. Since v is
harmonic we get the following formula

(Vs grad f), = p(O)3(8), Veel. (32)

We set o = ag + (1 — a)df ® df, where a € (0,1). We have the following result:
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Theorem 5. The curve v: I — (M, §o) is biharmonic if and only if the function f
satisfying the following

F(y(t) = i/ \/(atQ + bt +¢)? — %dt,

where a, b, c € R, such that (at®> + bt + ¢)? > 72, forallt € I.

Proof. By Theorem 1, we have

=) — 1 (1 — a)Hesss(%,%) . .
7(y) = (7)+a+(1_a)”gradf|‘2w(g df)ory, (33)

from the harmonicity condition of -, and equations (32), (33), we obtain 7(v) = A¥,

where i Vo
—a)pp

A= ——F——. 34

o+ (- )P e

Now, the curve v: I — (M, g, ) is biharmonic if and only if

R(%@),d%i))dy(i) +V, V7, 7(7) =0, (35)

by the property of the curvature tensor, the first term on the left-hand side of (35)
is

~(_ d d ~ .

R<T(v), d’y(dt)>d’y(dt) = AR(Y,%)¥ = 0.

For the second term on the left-hand side of (35), we compute

V7)) =V
dt dt
= X4+ AV 44
=N+ A7, (36)
with the same method of (36), we find that
Vi VL) = VL OV +X)3
dt dt dt
= (W +20N)5 + (V + M)V
= (V3N + 2375,
So, the curve v: I — (M, j,) is biharmonic if and only if \” + 3\ + A* = 0, that
is the function \ is the form (2at + b)/(at® + bt + ¢), where a,b,c € R, such that

at®> + bt + ¢ # 0, for all t € I. Thus, from (34) with (at® + bt + ¢)* > 1%, for all
t € I, we obtain

p(t)z:t\/(atz—i-bt—i—c)z—la, Vi el (37)

Theorem 5 follows from equation (37), with p = (f o~)". O
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Remark 2. The curve v: I — (M, g,) is proper biharmonic if and only if there
exists a, b, ¢ € R such that a® + b2 > 0, and for all i = 1,...,m (m = dim M), and
in any local coordinates (x;) on M, such that

m 6f a d’yi
U (y(t)) =L =+,/(at?2 + bt +¢c)2 — —1|, Vvtel
ooz, Jlar b or - 2o
Using Theorem 5 and the previous Remark, we can construct many examples
for proper biharmonic curves.

Example 3. Let M = R" equipped with the Riemannian metric g = do?+- - -+da?,

n

f@) = %Zu 422} Vo= (zn....7m) € M.
i=1

n

T the curve

For o =

t

%,..., "

vl = (M, ga), te(

);

=

is proper biharmonic.
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