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Reconciliation of discrete and continuous versions of
some dynamic inequalities synthesized on time scale
calculus

Muhammad Jibril Shahab Sahir

Abstract. The aim of this paper is to synthesize discrete and contin-
uous versions of some dynamic inequalities such as Radon’s Inequality,
Bergström’s Inequality, Schlömilch’s Inequality and Rogers-Hölder’s Inequal-
ity on time scales in comprehensive form.

1 Introduction
We present discrete versions of some classical inequalities. The inequality from (1)
is called Bergström’s Inequality, Titu Andreescu’s Inequality or Engel’s Inequality
in literature as given in [4], [5], [6], [15].

Theorem 1. If n ∈ N, xk ∈ R and yk > 0, k ∈ {1, 2, . . . , n}, then(
n∑
k=1

xk

)2

n∑
k=1

yk

≤
n∑
k=1

x2
k

yk
, (1)

with equality if and only if x1

y1
= x2

y2
= . . . = xn

yn
.

The upcoming result is called Radon’s Inequality as given in [16].
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Theorem 2. If n ∈ N, xk ≥ 0, yk > 0, k ∈ {1, 2, . . . , n} and β ≥ 0, then(
n∑
k=1

xk

)β+1

(
n∑
k=1

yk

)β ≤
n∑
k=1

xβ+1
k

yβk
. (2)

Inequality (2) is widely studied by many authors because it is used in practical
applications.

The following inequality is generalized Radon’s Inequality as given in [9].

Theorem 3. If n ∈ N, xk ≥ 0, yk > 0, k ∈ {1, 2, . . . , n}, β ≥ 0 and γ ≥ 1, then(
n∑
k=1

xky
γ−1
k

)β+γ

(
n∑
k=1

yγk

)β+γ−1
≤

n∑
k=1

xβ+γ
k

yβk
, (3)

with equality if and only if x1

y1
= x2

y2
= . . . = xn

yn
.

The following inequality is a refinement of Radon’s Inequality as given in [11].

Theorem 4. If m,n ∈ N, n > m, xk ≥ 0, yk > 0, k ∈ {1, 2, . . . , n}, β ≥ 0 and
γ ≥ 1, then (

n∑
k=1

xky
γ−1
k

)β+γ

(
n∑
k=1

yγk

)β+γ−1
≤

(
m∑
k=1

xky
γ−1
k

)β+γ

(
m∑
k=1

yγk

)β+γ−1
+

n∑
k=m+1

xβ+γ
k

yβk
. (4)

We shall prove these results on time scales. The calculus of time scales was
initiated by Stefan Hilger as given in [13]. A time scale is an arbitrary nonempty
closed subset of the real numbers. The theory of time scales was introduced in order
to unify continuous and discrete analysis and to combine them in one comprehensive
form. In the calculus of time scales, results are extended. This is studied as delta
calculus, nabla calculus and diamond-α calculus. The three most popular examples
of calculus on time scales are differential calculus, difference calculus, and quantum
calculus, i.e., when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. This
hybrid theory is also widely applied on dynamic inequalities (see [1], [2], [7], [17],
[18]). The basic work on dynamic inequalities is done by Agarwal, Anastassiou,
Bohner, Peterson, O’Regan, Saker and many other authors.

In this paper, it is assumed that all considerable integrals exist and are finite and
T is a time scale, a, b ∈ T with a < b and an interval [a, b]T means the intersection
of a real interval with the given time scale.



Reconciliation of versions of dynamic inequalities on time scales 279

2 Preliminaries
We need here basic concepts of delta calculus. The results of delta calculus are
adopted from monographs [7], [8].

For t ∈ T, the forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t} .

The mapping µ : T→ R+
0 = [0,+∞) such that µ(t) := σ(t)− t is called the forward

graininess function. The backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t} .

The mapping ν : T→ R+
0 = [0,+∞) such that ν(t) := t−ρ(t) is called the backward

graininess function. If σ(t) > t, we say that t is right-scattered, while if ρ(t) < t,
we say that t is left-scattered. Also, if t < supT and σ(t) = t, then t is called
right-dense, and if t > inf T and ρ(t) = t, then t is called left-dense. If T has a
left-scattered maximum M , then Tk = T− {M}, otherwise Tk = T.

For a function f : T→ R, the delta derivative f∆ is defined as follows:
Let t ∈ Tk. If there exists f∆(t) ∈ R such that for all ε > 0, there is a

neighborhood U of t, such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| ,

for all s ∈ U , then f is said to be delta differentiable at t, and f∆(t) is called the
delta derivative of f at t.

A function f : T → R is said to be right-dense continuous (rd-continuous), if
it is continuous at each right-dense point and there exists a finite left-sided limit
at every left-dense point. The set of all rd-continuous functions is denoted by
Crd(T,R).

The next definition is given in [7], [8].

Definition 1. A function F : T → R is called a delta antiderivative of f : T → R,
provided that F∆(t) = f(t) holds for all t ∈ Tk. Then the delta integral of f is
defined by ∫ b

a

f(t)∆t = F (b)− F (a) .

The following results of nabla calculus are taken from [3], [7], [8].
If T has a right-scattered minimum m, then Tk = T− {m}, otherwise Tk = T.

A function f : Tk → R is called nabla differentiable at t ∈ Tk, with nabla derivative
f∇(t), if there exists f∇(t) ∈ R such that given any ε > 0, there is a neighborhood
V of t, such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s| ,

for all s ∈ V .
A function f : T → R is said to be left-dense continuous (ld-continuous), pro-

vided it is continuous at all left-dense points in T and its right-sided limits exist
(finite) at all right-dense points in T. The set of all ld-continuous functions is
denoted by Cld(T,R).

The next definition is given in [3], [7], [8].
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Definition 2. A function G : T → R is called a nabla antiderivative of g : T → R,
provided that G∇(t) = g(t) holds for all t ∈ Tk. Then the nabla integral of g is
defined by ∫ b

a

g(t)∇t = G(b)−G(a) .

Now we present short introduction of diamond-α derivative as given in [1], [19].
Let T be a time scale and f(t) be differentiable on T in the ∆ and ∇ senses. For

t ∈ Tkk, where Tkk = Tk ∩ Tk, the diamond-α dynamic derivative f�α(t) is defined
by

f�α(t) = αf∆(t) + (1− α)f∇(t) , 0 ≤ α ≤ 1.

Thus f is diamond-α differentiable if and only if f is ∆ and ∇ differentiable.
The diamond-α derivative reduces to the standard ∆-derivative for α = 1, or

the standard ∇-derivative for α = 0. It represents a weighted dynamic derivative
for α ∈ (0, 1).

Theorem 5 ([19]). Let f, g : T → R be diamond-α differentiable at t ∈ T and we
write fσ(t) = f(σ(t)), gσ(t) = g(σ(t)), fρ(t) = f(ρ(t)) and gρ(t) = g(ρ(t)). Then

(i) f ± g : T→ R is diamond-α differentiable at t ∈ T, with

(f ± g)�α(t) = f�α(t)± g�α(t) .

(ii) fg : T→ R is diamond-α differentiable at t ∈ T, with

(fg)�α(t) = f�α(t)g(t) + αfσ(t)g∆(t) + (1− α)fρ(t)g∇(t) .

(iii) For g(t)gσ(t)gρ(t) 6= 0, f
g : T→ R is diamond-α differentiable at t ∈ T, with(

f

g

)�α
(t) =

f�α(t)gσ(t)gρ(t)− αfσ(t)gρ(t)g∆(t)− (1− α)fρ(t)gσ(t)g∇(t)

g(t)gσ(t)gρ(t)
.

Definition 3 ([19]). Let a, t ∈ T and h : T → R. Then the diamond-α integral
from a to t of h is defined by∫ t

a

h(s) �α s = α

∫ t

a

h(s)∆s+ (1− α)

∫ t

a

h(s)∇s , 0 ≤ α ≤ 1,

provided that there exist delta and nabla integrals of h on T.

Theorem 6 ([19]). Let a, b, t ∈ T, c ∈ R. Assume that f(s) and g(s) are �α-inte-
grable functions on [a, b]T. Then

(i)
∫ t
a
[f(s)± g(s)] �α s =

∫ t
a
f(s) �α s±

∫ t
a
g(s) �α s,

(ii)
∫ t
a
cf(s) �α s = c

∫ t
a
f(s) �α s,

(iii)
∫ t
a
f(s) �α s = −

∫ a
t
f(s) �α s,
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(iv)
∫ t
a
f(s) �α s =

∫ b
a
f(s) �α s+

∫ t
b
f(s) �α s,

(v)
∫ a
a
f(s) �α s = 0.

We need the following result.

Theorem 7 ([17]). Let w, f, g ∈ C ([a, b]T,R) be �α-integrable functions, where
w(x), g(x) 6= 0, ∀x ∈ [a, b]T. If β ≥ 0 and γ ≥ 1, then(∫ b

a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ b
a
|w(x)||g(x)|γ �α x

)β+γ−1
≤
∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β
�α x . (5)

The sign of equality holds in (5) if and only if f(x) = cg(x), where c is a real
constant.

3 Main Results
In order to present our main results, first we give an extension of dynamic Radon’s
Inequality on time scales.

Theorem 8. Let w, f, g ∈ C ([a, b]T,R) be �α-integrable functions, where w(x),
g(x) 6= 0, ∀x ∈ [a, b]T and a < c < b, where c ∈ [a, b]T. If β ≥ 0 and γ ≥ 1, then

(∫ b
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ b
a
|w(x)||g(x)|γ �α x

)β+γ−1

≤
(∫ c
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ(∫ c
a
|w(x)||g(x)|γ �α x

)β+γ−1
+

∫ b

c

|w(x)||f(x)|β+γ

|g(x)|β
�α x . (6)

Proof. From the generalized Radon’s Inequality (5), we have that(∫ b
c
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ b
c
|w(x)||g(x)|γ �α x

)β+γ−1
≤
∫ b

c

|w(x)||f(x)|β+γ

|g(x)|β
�α x . (7)

By adding
(
∫ c
a
|w(x)||f(x)||g(x)|γ−1�αx)

β+γ

(
∫ c
a
|w(x)||g(x)|γ�αx)

β+γ−1 in both sides of (7), we can write

(∫ c
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ(∫ c
a
|w(x)||g(x)|γ �α x

)β+γ−1
+

(∫ b
c
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ b
c
|w(x)||g(x)|γ �α x

)β+γ−1

≤
(∫ c
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ(∫ c
a
|w(x)||g(x)|γ �α x

)β+γ−1
+

∫ b

c

|w(x)||f(x)|β+γ

|g(x)|β
�α x . (8)
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By applying the classical Radon’s Inequality on the left-hand side of (8), we get

(∫ c
a
|w(x)||f(x)||g(x)|γ−1 �α x+

∫ b
c
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ c
a
|w(x)||g(x)|γ �α x+

∫ b
c
|w(x)||g(x)|γ �α x

)β+γ−1

≤
(∫ c
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ(∫ c
a
|w(x)||g(x)|γ �α x

)β+γ−1
+

∫ b

c

|w(x)||f(x)|β+γ

|g(x)|β
�α x , (9)

we have the desired inequality from (9) and hence, the proof is complete. �

Remark 1. If we take α = 1, T = Z, a = 1, c = m + 1, b = n + 1, w ≡ 1,
f(k) = xk ∈ R, g(k) = yk ∈ (0,+∞), k ∈ {1, 2, . . . , n}, m,n ∈ N, β = 1 and γ = 1,
then (6) reduces to (

n∑
k=1

xk

)2

n∑
k=1

yk

≤

(
m∑
k=1

xk

)2

m∑
k=1

yk

+

n∑
k=m+1

x2
k

yk
. (10)

If m = 1, then (10) reduces to (1).

Remark 2. If we set α = 1, T = Z, a = 1, c = m + 1, b = n + 1, w ≡ 1,
f(k) = xk ∈ [0,+∞), g(k) = yk ∈ (0,+∞), k ∈ {1, 2, . . . , n}, m,n ∈ N and γ = 1,
then (6) takes the form(

n∑
k=1

xk

)β+1

(
n∑
k=1

yk

)β ≤

(
m∑
k=1

xk

)β+1

(
m∑
k=1

yk

)β +

n∑
k=m+1

xβ+1
k

yβk
. (11)

If m = 1, then (11) reduces to (2).

Remark 3. If we set α = 1, T = Z, a = 1, c = m + 1, b = n + 1, w ≡ 1,
f(k) = xk ∈ [0,+∞) and g(k) = yk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}, m,n ∈ N, then
(6) reduces to (4). If m = 1, then (4) reduces to (3).

Corollary 1. Let w, f, g ∈ C ([a, b]T,R− {0}) be �α-integrable functions and a <
c < b, where c ∈ [a, b]T. If β ≥ 0 and γ ≥ 1, then

(∫ b
a
|w(x)||f(x)|γ |g(x)|γ−1 �α x

)β+γ

(∫ b
a
|w(x)||f(x)g(x)|γ �α x

)β+γ−1

≤
(∫ c
a
|w(x)||f(x)|γ |g(x)|γ−1 �α x

)β+γ(∫ c
a
|w(x)||f(x)g(x)|γ �α x

)β+γ−1
+

∫ b

c

|w(x)||f(x)|γ

|g(x)|β
�α x . (12)
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Proof. Letting |g(x)| be replaced by |f(x)g(x)| in (6), we get our claim. �

Remark 4. If we set α = 1, T = Z, a = 1, c = m + 1, b = n + 1, w ≡ 1,
f(k) = xk ∈ (0,+∞) and g(k) = yk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}, m,n ∈ N, then
(12) takes the form(

n∑
k=1

xγky
γ−1
k

)β+γ

(
n∑
k=1

xγky
γ
k

)β+γ−1
≤

(
m∑
k=1

xγky
γ−1
k

)β+γ

(
m∑
k=1

xγky
γ
k

)β+γ−1
+

n∑
k=m+1

xγk
yβk

. (13)

If m = 1, then (13) takes the form(
n∑
k=1

xγky
γ−1
k

)β+γ

(
n∑
k=1

xγky
γ
k

)β+γ−1
≤

n∑
k=1

xγk
yβk

, (14)

as given in [10].

Corollary 2. Let w, f ∈ C ([a, b]T,R) be �α-integrable functions, w(x) 6= 0 with∫ b
a
|w(x)| �α x = 1 and a < c < b, where c ∈ [a, b]T. If η2 ≥ η1 > 0, then(∫ b

a

|w(x)||f(x)|η1 �α x

) 1
η1

≤

(∫ ca |w(x)||f(x)|η1 �α x
) η2
η1(∫ c

a
|w(x)| �α x

) η2
η1
−1

+

∫ b

c

|w(x)||f(x)|η2 �α x

 1
η2

. (15)

Proof. Putting β + γ = η2
η1
≥ 1 and g ≡ 1 in (6), we have that

(∫ b
a
|w(x)||f(x)| �α x

) η2
η1(∫ b

a
|w(x)| �α x

) η2
η1
−1

≤
(∫ c
a
|w(x)||f(x)| �α x

) η2
η1(∫ c

a
|w(x)| �α x

) η2
η1
−1

+

∫ b

c

|w(x)||f(x)|
η2
η1 �α x . (16)

Using the fact that
∫ b
a
|w(x)| �α x = 1, the inequality (16) becomes(∫ b

a

|w(x)||f(x)| �α x

) η2
η1

≤
(∫ c
a
|w(x)||f(x)| �α x

) η2
η1(∫ c

a
|w(x)| �α x

) η2
η1
−1

+

∫ b

c

|w(x)||f(x)|
η2
η1 �α x . (17)
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Letting |f(x)| be replaced by |f(x)|η1 and taking power 1
η2

on both sides of (17),
we get our desired result. �

Remark 5. If we set α = 1, T = Z, a = 1, c = 2, b = n + 1, w ≡ 1
n , f(k) = xk ∈

[0,+∞) for k ∈ {1, 2, . . . , n}, n ∈ N and η1 < η2, then inequality (15) takes the
form (

1

n

n∑
k=1

xη1k

) 1
η1

<

(
1

n

n∑
k=1

xη2k

) 1
η2

, (18)

unless the xk for k ∈ N are all equal.
The inequality from (18) is called Schlömilch’s Inequality in literature as given

in [12].

Corollary 3. Let w, f, g ∈ C ([a, b]T,R) be �α-integrable functions, neither w ≡ 0
nor g ≡ 0, and a < c < b, where c ∈ [a, b]T. If p > 1, q > 1 with 1

p + 1
q = 1, then

∫ b
a
|w(x)||f(x)||g(x)| �α x(∫ b
a
|w(x)||g(x)|q �α x

) 1
q

≤


∫ c
a
|w(x)||f(x)||g(x)| �α x(∫ c
a
|w(x)||g(x)|q �α x

) 1
q


p

+

∫ b

c

|w(x)||f(x)|p �α x


1
p

. (19)

Proof. If β > 0, γ = 1 and β + 1 = p > 1, then (6) takes the form

(∫ b
a
|w(x)||f(x)| �α x

)p
(∫ b

a
|w(x)||g(x)| �α x

)p−1

≤
(∫ c
a
|w(x)||f(x)| �α x

)p(∫ c
a
|w(x)||g(x)| �α x

)p−1 +

∫ b

c

|w(x)||f(x)|p

|g(x)|p−1
�α x . (20)

Replacing |w(x)| by |w(x)||g(x)|p−1 in (20), we get

(∫ b
a
|w(x)||f(x)||g(x)|p−1 �α x

)p
(∫ b

a
|w(x)||g(x)|p �α x

)p−1

≤
(∫ c
a
|w(x)||f(x)||g(x)|p−1 �α x

)p(∫ c
a
|w(x)||g(x)|p �α x

)p−1 +

∫ b

c

|w(x)||f(x)|p �α x . (21)

Replacing |g(x)| by |g(x)|
q
p , taking power 1

p > 0 and using the fact that 1
p + 1

q = 1,
we obtain the desired result. �
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Remark 6. Let α = 1, T = Z, a = 1, c = 2, b = n + 1 and w ≡ 1. If f(k) = xk ∈
(0,+∞) and g(k) = yk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}, n ∈ N, then (19) takes the
form

n∑
k=1

xkyk ≤

(
n∑
k=1

xpk

) 1
p
(

n∑
k=1

yqk

) 1
q

. (22)

The inequality from (22) is called Rogers-Hölder’s Inequality in literature as
given in [14].

Theorem 9. Let w, f, g ∈ C ([a, b]T,R) be �α-integrable functions, where w(x),
g(x) 6= 0, ∀x ∈ [a, b]T and a < c < b, where c ∈ [a, b]T. If β ≥ 0 and γ ≥ 1, then
the following inequality holds true:

Λ(c, a) ≤ Λ(b, a), (23)

where

Λ(t, s) =

∫ t

s

|w(x)||f(x)|β+γ

|g(x)|β
�α x−

(∫ t
s
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ t
s
|w(x)||g(x)|γ �α x

)β+γ−1
,

∀s, t ∈ [a, b]T.

Proof. Adding
∫ c
a
|w(x)||f(x)|β+γ
|g(x)|β �α x in both sides of (6), we obtain

(∫ b
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ b
a
|w(x)||g(x)|γ �α x

)β+γ−1
+

∫ c

a

|w(x)||f(x)|β+γ

|g(x)|β
�α x

≤
(∫ c
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ(∫ c
a
|w(x)||g(x)|γ �α x

)β+γ−1
+

∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β
�α x . (24)

Therefore∫ c

a

|w(x)||f(x)|β+γ

|g(x)|β
�α x−

(∫ c
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ(∫ c
a
|w(x)||g(x)|γ �α x

)β+γ−1

≤
∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β
�α x−

(∫ b
a
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ b
a
|w(x)||g(x)|γ �α x

)β+γ−1
. (25)

Thus, the proof of Theorem 9 is complete. �

Remark 7. If we set α = 1, T = Z, a = 1, c = m + 1, b = n + 1, w ≡ 1,
f(k) = xk ∈ [0,+∞) and g(k) = yk ∈ (0,+∞) for k ∈ {1, 2, . . . , n}, m,n ∈ N, then
(23) takes the form

Λm ≤ Λn , (26)
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where

Λi =

i∑
k=1

xβ+γ
k

yβk
−

(
i∑

k=1

xky
γ−1
k

)β+γ

(
i∑

k=1

yγk

)β+γ−1
, i ∈ N, i ≤ n.

Thus, we conclude that

0 = Λ1 ≤ Λ2 ≤ · · · ≤ Λn−1 ≤ Λn . (27)

Inequalities (26) and (27) are proved in [11].
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