

Communications in Mathematics 28 (2020) 301–305 DOI: 10.2478/cm-2020-0024 ©2020 Askold M. Perelomov This is an open access article licensed under the CC BY-NC-ND 3.0

A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra

Askold M. Perelomov

Abstract. For every simple finite-dimensional complex Lie algebra, I give a simple construction of all (except for the Pfaffian) basic polynomials invariant under the Weyl group. The answer is given in terms of the two basic polynomials of smallest degree.

1 Basics

For necessary information on Lie algebras and Lie groups, see [5]. Recall the notation: let $\mathfrak g$ be a simple finite-dimensional complex Lie algebra of rank l, let R_+ (resp. R_-) be the set of its positive (resp. negative) roots, and $\{\alpha_1,\ldots,\alpha_l\}$ the set of simple roots. Let the Weyl group $W_{\mathfrak g}$ of the root system R act in the space $V=\mathbb R^l$, let (-,-) be the non-degenerate $W_{\mathfrak g}$ -invariant bilinear form on V, such that $(x,y)=\sum_{j=1}^l x_jy_j$ for any $x,y\in V$; let h be the Coxeter number; $\delta=\sum_{j=1}^l b_j\alpha_j$ the highest root; $b=\max b_j$.

As is known (by abuse of notation we denote the Lie algebra $\mathfrak{sl}(n+1)$ by the symbol of its root system A_n in Cartan's notation, and similarly for the other

2020 MSC: 11F22

Key words: Weyl group, invariant polynomial

Affiliation:

Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya ul. 25,

117259, Moscow, Russia E-mail: aperelomo@gmail.com

simple Lie algebras),

$$b = \begin{cases} 1 & \text{for } A_l, \\ 2 & \text{for } B_l, C_l \text{ and } D_l, \\ 3 & \text{for } G_2 \text{ and } E_6, \\ 4 & \text{for } F_4 \text{ and } E_7, \\ 6 & \text{for } E_8; \end{cases} \qquad h = \begin{cases} l+1 & \text{for } A_l, \\ 2l & \text{for } B_l, \text{ and } C_l, \\ 2l-2 & \text{for } D_l, \\ 12 & \text{for } E_6 \text{ and } F_4, \\ 18 & \text{for } E_7, \\ 30 & \text{for } E_8, \\ 6 & \text{for } G_2. \end{cases}$$
(1)

If $\alpha = \sum_{j=1}^l n_j \alpha_j \in R_+$, then we define the height of α to be $ht(\alpha) = \sum_{j=1}^l n_j$. As it was shown in [1], the algebra of invariant polynomials is generated by l basic homogeneous polynomials of degrees d_j for $j=1,\ldots,l$ such that $d_1=2,$ $d_j \leq d_{j+1}, d_l=h$.

Note that

$$d_j = \begin{cases} j+1 & \text{for } A_l \\ 2j & \text{for } B_l \text{ and } C_l, \end{cases}$$
 (2)

$$\{d_i \mid j = 1, \dots, l - 1, l\} = \{2, 4, \dots, 2(l - 1), l\},$$
 as ordered sets, for D_l . (3)

For the exceptional simple Lie algebras, the d_j were first found in [6] using results of [7]:

$$\{d_1, \dots, d_l\} = \begin{cases} \{2, 6\} & \text{for } G_2; \\ \{2, 6, 8, 12\} & \text{for } F_4; \\ \{2, 5, 6, 8, 9, 12\} & \text{for } E_6; \\ \{2, 6, 8, 10, 12, 14, 18\} & \text{for } E_7; \\ \{2, 8, 12, 14, 18, 20, 24, 30\} & \text{for } E_8. \end{cases}$$
(4)

Note that the degrees satisfy duality relations

$$d_i + d_{l+1-i} = h + 2. (5)$$

Denote by I_j the invariant polynomial of degree d_j in eq. (2), (3), and (4).

2 Degrees and exponents

Let us remind a characterization of exponents, i.e., numbers $m_j := d_j - 1$, given in [2]. Let n_k be the number of roots of height k. Then $n_k - n_{k+1}$ is the number of times k occurs as an exponent of \mathfrak{g} .

Note that $d_1=2$ for all simple Lie algebras. Recall the values of b, see (1). The values of d_2 , d_3 and d_4 are given by

Theorem 1. We have

$$d_2 = b + 2$$
 for all \mathfrak{g} , except G_2 ,
 $d_3 = 2b$ for all exceptional \mathfrak{g} , except G_2 ,
 $d_4 = 2b + 2$ for E_6 , E_7 and E_8 .

The other quantities d_i can be obtained from duality.

The proof follows easily from Table (4) and duality eq. (5) borrowed from any sufficiently thick book (e.g., [5]) and papers [6], [7]. Below we give an independent proof.

Proof. We give the proof only for the most complicated case $\mathfrak{g}=E_8$. For all other cases the proof is analogous.

We enumerate the simple roots of E_8 first along the Dynkin diagram, starting from the longest end of the branch, as the simple roots of A_7 , and set

$$(\alpha_8, \alpha_5) = -1,$$

$$(\alpha_8, \alpha_k) = 0 for k \neq 5, 8,$$

$$(\alpha_j, \alpha_j) = 2 for j = 1, \dots, 8.$$

Then, as it is well-known [5], the highest root δ satisfies the conditions:

$$(\alpha_1, \delta) = 1,$$

 $(\alpha_j, \delta) = 0$ for $j = 2, \dots, 8,$

and hence it has the form

$$\delta = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 5\alpha_4 + 6\alpha_5 + 4\alpha_6 + 2\alpha_7 + 3\alpha_8, \qquad ht(\delta) = 29 = h - 1.$$

Let us consider the set of positive roots decreasing in height. We denote

$$\beta_i := \alpha_1 + \alpha_2 + \dots + \alpha_i$$
 for $j = 1, 2, \dots, 8$.

Then we see that

(1) One root for the each height in the interval [h-1, h-b]=[29, 24], namely,

$$\delta$$
, $\delta - \beta_1$, $\delta - \beta_2$, $\delta - \beta_3$, $\delta - \beta_4$, and $\delta - \beta_5$.

(2) Two roots for the each height in the interval $[h-b-1,h-2\,b+2]=[23,20]$, namely,

$$\begin{array}{ll} \delta-\beta_6\,, & \delta-(\beta_5+\alpha_8)\,; \\ \delta-\beta_7\,, & \delta-(\beta_6+\alpha_8)\,; \\ \delta-\beta_8\,, & \delta-(\beta_6+\alpha_5+\alpha_8)\,; \\ \delta-(\beta_8+\alpha_5)\,, & \delta-(\beta_6+\alpha_4+\alpha_5+\alpha_8)\,. \end{array}$$

Note that this is due to the fact that node 5 in the Dynkin diagram for E_8 is the branch node, and b = 6.

(3) Three roots for height h - 2b + 1 = 19, namely,

$$\delta - (\beta_8 + \alpha_5 + \alpha_6), \quad \delta - (\beta_8 + \alpha_4 + \alpha_5), \quad \delta - (\beta_6 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_8).$$

Hence, from Kostant's characterization of exponents [2] we have

$$m_7 = h - 1 - b = 23$$
, $m_6 = h - 2b + 1 = 19$,

and from the duality we have

$$m_2 = b + 1 = 7$$
, $m_3 = 2b - 1 = 11$.

Note that $m_1 = 1$ and $m_8 = 29 = h - 1$. So,

$$d_2 = m_2 + 1 = b + 2 = 8$$
, $d_3 = m_3 + 1 = 2b = 12$.

We analogously obtain $d_4 = 2b + 2 = 14$.

3 Main Theorem

For an explicit construction of $W_{\mathfrak{g}}$ -invariant polynomials, see the papers by Mehta [4] and by Macdonald [3].

Let $\Delta = \sum \frac{\partial^2}{\partial x_i^2}$, and $AI = (\nabla I_2, \nabla I)$ for any polynomial I, where

$$\nabla := (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_l});$$

clearly, $\deg AI = \deg I + b$.

Theorem 2. All basic $W_{\mathfrak{g}}$ -invariant polynomials for all algebras \mathfrak{g} , except for D_l and G_2 , can be obtained by applying A^k for some k to polynomials I_1 and I_3 , where $I_3 = \Delta(AI_2)$.

More precisely, for the root systems A_l , B_l , C_l , and D_l , we have

$$I_{j+1} = \begin{cases} A^j I_1 & \text{for } j = 0, \dots, l-1 \\ A^j I_1 & \text{for } j = 0, \dots, l-2 \end{cases}$$
 for the root systems A_l , B_l , and C_l ,

and we obtain all basic polynomials, except for the Pfaffian for D_l .

For the root systems F_4 , E_6 , E_7 and E_8 the basic invariant polynomials have the form: A^jI_1 and A^kI_3 , where

$$\begin{array}{lll} j=0,1 & \text{ and } k=0,1 & \text{ for } F_4; \\ j=0,1,2 & \text{ and } k=0,1,2 & \text{ for } E_6; \\ j=0,1,2,3,4 & \text{ and } k=0,1 & \text{ for } E_7; \\ j=0,1,2,3 & \text{ and } k=0,1,2,3 & \text{ for } E_8. \end{array}$$

Proof. Consider the set of polynomials A^jI_1 and A^kI_3 for fixed Lie algebra $\mathfrak g$ of rank l from the list of Theorem 2. We obtain all l first $W_{\mathfrak g}$ -invariant polynomials I_l , except for the Pfaffian for D_l . The explicit formulas in the paper [4] imply that these l polynomials are algebraically independent. So we may take these polynomials, and the Pfaffian for a basis of $W_{\mathfrak g}$ -invariant polynomials. \square

4 Acknowledgments

I am thankful to D. Leites for useful remarks; he also improved my English in this paper.

References

- C. Chevalley: Invariants of finite groups generated by reflections. American Journal of Mathematics 77 (4) (1955) 778–782.
- [2] B. Kostant: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. American Journal of Mathematics 81 (1959) 973–1032.
- [3] I.G. Macdonald: Orthogonal polynomials associated with root systems. Séminaire Lotharingien de Combinatoire 45 (2000) B45a.
- [4] M.L. Mehta: Basic sets of invariant polynomials for finite reflection groups. Communications in Algebra 16 (5) (1988) 1083–1098.
- [5] A.L. Onishchik, E.B. Vinberg: Lie groups and algebraic groups. Springer (1990).
- [6] G. Racah: Sulla caratterizzazione delle rappresentazioni irriducibili dei gruppi semisemplici di Lie. *Lincei-Rend. Sc. fis. mat. e nat 8* (1950) 108–112.
- [7] E. Witt: Spiegelungsgruppen und aufzählung halbeinfacher liescher Ringe. Abhandlungen aus dem mathematischen Seminar der Universität Hamburg 14 (1) (1941) 289–322.

Received: 22 June 2019

Accepted for publication: 2 July 2019 Communicated by: Pasha Zusmanovich