

Communications in Mathematics 29 (2021) 431–442 DOI: 10.2478/cm-2020-0010 ©2021 Florian Luca, Sylvester Manganye This is an open access article licensed under the CC BY-NC-ND 3.0

On the gaps between q-binomial coefficients

Florian Luca, Sylvester Manganye

Abstract. In this note, we estimate the distance between two q-nomial coefficients $\binom{n}{k}_q - \binom{n'}{k'}_q$, where $(n,k) \neq (n',k')$ and $q \geq 2$ is an integer.

1 Introduction

In this paper, $q \geq 2$ is an integer and for $n > k \geq 1$,

$$\binom{n}{k}_q := \frac{(q^{n-k+1}-1)(q^{n-k+2}-1)\cdots(q^n-1)}{(q-1)(q^2-1)\cdots(q^k-1)}$$

is the q-binomial coefficient. We are interested in the distinct values of $\binom{n}{k}_q$. Since $\binom{n}{k}_q = \binom{n}{n-k}_q$, we assume that $n \geq 2k$. It was shown in [1] that under these conditions

$$\binom{n}{k}_q \neq \binom{n'}{k'}_q$$
 for $(n,k) \neq (n',k')$, $n \geq 2k$, $n' \geq 2k'$.

The proof is an easy application of the primitive divisor theorem for members of Lucas sequences. Thus, taking

$$\mathcal{B}_q := \left\{ \binom{n}{k}_q : n \ge 2k \ge 2 \right\},$$

2020 MSC: 11B65, 11B39

Key words: q-binomial coefficients

Affiliation:

Florian Luca – School of Mathematics, University of the Witwatersrand. 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa

Research Group Algebraic Structures and Applications. King Abdulaziz University, Jeddah, Saudi Arabia

Centro de Ciencias Matemáticas UNAM, Antigua Carretera a Pátzcuaro #8701, Col. Ex Hacienda San José de la Huerta, Morelia, Michoacán, México, C.P. 58089 E-mail: florian.luca@wits.ac.za

Sylvester Manganye - School of Mathematics, University of the Witwatersrand. 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa E-mail: manganye.so@gmail.com the elements from \mathcal{B}_q are distinct. Assume $\mathcal{B}_q = \{b_1, b_2, \ldots\}$, where the elements b_i are listed increasingly. We are interested in a lower bound for $b_{i+1} - b_i$. We have the following theorem:

Theorem 1. The inequality

$$b_{N+1} - b_N \ge \exp\left((\log b_N)^{1/3}\right)$$

holds for all $q \ge 2$ and all $N \ge 163{,}000$.

Corollary 1. The inequality $b_{N+1} - b_N > 100$ always holds except when $N \le 8$ for q = 2 or $N \le 4$ for $q \in \{3, 4, 5, 6, 7, 8, 9, 10\}$.

2 Some auxiliary results

We put m := k(n - k).

Lemma 1. We have

$$\frac{q^m}{4} < \binom{n}{k}_q < 4q^m$$

for all $q \geq 2$ and $n \geq 2k$.

Proof. We have

$$\binom{n}{k}_q = \frac{q^{n-(k-1)+n-(k-2)+\dots+n}}{q^{k+k-1+\dots+1}} \left(\prod_{1 \le j \le k} \left(1 - \frac{1}{q^{n-j+1}} \right) \right) \left(\prod_{j=1}^k \left(1 - \frac{1}{q^j} \right) \right)^{-1}.$$

The first factor in the right-hand side above is q^m . As for the others, the inequality

$$\frac{1}{4} < 0.288 < \prod_{j>1} \left(1 - \frac{1}{2^j} \right) \le \prod_{a \le j \le b} \left(1 - \frac{1}{q^j} \right) < 1$$

holds for all positive integers a < b and $q \ge 2$. Taking (a, b) = (n - k + 1, k), or (a, b) = (1, k), respectively, we get that

$$\frac{1}{4} < \left(\prod_{j=1}^{k} \left(1 - \frac{1}{q^{n-j+1}} \right) \right) \left(\prod_{j=1}^{k} \left(1 - \frac{1}{q^j} \right) \right)^{-1} < 4,$$

which finishes the proof.

From now on, $(n,k) \neq (n',k')$ are such that $n \geq 2k$, $n' \geq 2k'$. For a positive integer ℓ we write

$$\Phi_{\ell}(X) = \prod_{\substack{1 \le j \le \ell \\ \gcd(j,\ell,)=1}} (X - e^{2\pi i j/\ell}) \in \mathbb{Z}[X]$$

for the ℓ th cyclotomic polynomial.

Lemma 2. Assume that $[n-k+1,n] \cap [n'-k'+1,n'] \neq \emptyset$. Then

$$\left| \binom{n}{k}_q - \binom{n'}{k'}_q \right| \ge \Phi_\ell(q), \quad \text{where} \quad \ell \in [n-k+1,n] \cap [n'-k'+1,n'].$$

Proof. Since $q^{\ell} - 1 = \prod_{d|\ell} \Phi_d(q)$, it follows that

$$\binom{n}{k}_q = \prod_{d \in \mathcal{D}(n,k)} \Phi_d(q)^{\alpha(d,n,k)},$$

where

$$\mathcal{D}(n,k) = \bigcup_{j \in [1,k]} \{ d \ge 1 : d \mid n-j+1 \text{ or } d \mid j \},$$

and $\alpha(d,h,k)$ are some integers. Since $\binom{n}{k}_q$ is a rational function in q which is an integer for all $q \geq 2$, it follows that $\alpha(d,n,k) \geq 0$ for all $d \in \mathcal{D}(n,k)$. Further, it is easy to see that d=n-j+1 has $\alpha(d,n,k) \geq 1$ for all $j \in [1,k]$, since $\Phi_{n-j+1}(q) \mid q^{n-j+1}-1$ and $\Phi_{n-j+1}(q)$ is not a factor of $\prod_{i=1}^k (q^i-1)$ because $n-j+1 \geq n-k+1 > k$. Thus, if $\ell \in [n-k+1,n] \cap [n'-k'+1,n']$, then $\Phi_{\ell}(q)$ is a factor of both $\binom{n}{k}_q$ and $\binom{n'}{k'}_q$. Thus, their difference is nonzero and a multiple of $\Phi_{\ell}(q)$, which finishes the proof of the lemma.

Lemma 3. Assume that $[n-k+1,n] \cap [n'-k'+1,n'] = \emptyset$. Put again m := k(n-k), m' := k'(n-k'). Then:

(i) If m' < m, then

$$\left| \binom{n}{k}_q - \binom{n'}{k'}_q \right| \ge \frac{1}{7} \binom{n'}{k'}_q.$$

(ii) If m' = m and k' < k, then

$$\left| \binom{n}{k}_{q} - \binom{n'}{k'}_{q} \right| \ge \frac{2}{q^{n+1}} \binom{n'}{k'}_{q}.$$

Proof. From the arguments from the proof of Lemma 1, we have

$$\left| \binom{n}{k}_q - \binom{n'}{k'}_q \right| = \left| q^m \left(\frac{\prod_{j=1}^k (1 - 1/q^{n-j+1})}{\prod_{j=1}^k (1 - 1/q^j)} \right) - q^{m'} \left(\frac{\prod_{j=1}^{k'} (1 - 1/q^{n'-j+1})}{\prod_{j=1}^{k'} (1 - 1/q^j)} \right) \right|.$$

We analyze the two cases.

(i) In this case,

$$\begin{split} & \left| \binom{n}{k}_q - \binom{n'}{k'}_q \right| \\ & = \binom{n'}{k'}_q \left| q^{m-m'} \left(\frac{\prod_{j=1}^k (1 - 1/q^{n-j+1})}{\prod_{j=1}^k (1 - 1/q^j)} \right) \left(\frac{\prod_{j=1}^{k'} (1 - 1/q^{n'-j+1})}{\prod_{j=1}^{k'} (1 - 1/q^j)} \right)^{-1} - 1 \right|. \end{split}$$

In the right, the coefficient of $q^{m-m'}$ is (P/Q)(Q'/P'), where

$$P = \prod_{j=1}^{k} (1 - 1/q^{n-j+1}) \qquad Q = \prod_{j=1}^{k} (1 - 1/q^{j}),$$

and P', Q' are obtained from P, Q by changing (k, n) to (k', n'), respectively. All of P, Q, P', Q' are smaller than 1. We have the following lemma:

Lemma 4. The inequality

$$\prod_{j=a}^{b} (1 - 1/q^j) \ge q^{-1/3} \tag{1}$$

holds for all $q \geq 2$ and $a \geq 1$ and any $b \geq a$ except for possibly

$$(a,q) = (1,2), (1,3), (2,2), (3,2).$$

Proof. Taking logarithms, the desired inequality becomes

$$\sum_{j=a}^{b} \log \left(1 - \frac{1}{q^j} \right) > -\frac{\log q}{3}.$$

The inequality $\log(1-x) > -2x$ holds for all $x \in (0,1/2)$. So, using this with $x = 1/q^j$ for $j \in [a,b]$, it suffices to show that

$$-\sum_{i=a}^{b} \frac{2}{q^j} > -\frac{\log q}{3},$$

which is equivalent to

$$\sum_{i=a}^{b} \frac{1}{q^j} < \frac{\log q}{6}.$$

Taking the sum on the left to infinity, it is a geometrical progression whose sum is $1/(q^{a-1}(q-1))$. Thus, it suffices that

$$q^{a-1}(q-1) \ge \frac{6}{\log q}.$$

The above inequality holds for all $a \ge 1$ and $q \ge 5$. It also holds for $a \ge 5$ and any $q \ge 2$. So, it remains to check the given inequality for (a,q) with $a \in [1,4]$ and $q \in [2,4]$, and we get the list of exceptions.

To apply the above lemma, notice that $(P/Q)(P'/Q')^{-1} = PQ'(QP')^{-1}$, and $(QP')^{-1} > 1$. Furthermore, P is a product as the one appearing in (1) with $a = n - k + 1 \ge k + 1 \ge 2$, while Q' is a product like the one appearing in (1) but with a = 1. Thus, by Lemma 4, we have that the inequality

$$\min\{P,Q'\} \geq q^{-1/3}$$

holds unless $q \in \{2,3\}$. So, unless $q \in \{2,3\}$, we have that

$$|q^{m-m'}(P/Q)(P'/Q')^{-1} - 1| \ge |q^{m-m'-2/3} - 1| \ge |q^{1/3} - 1| \ge |2^{1/3} - 1| > 1/4.$$

Assume next that q = 2, 3. If q = 3, then

$$\min\{P, Q'\} \ge \prod_{j=1}^{\infty} (1 - 1/3^j) > 0.56, \quad \max\{P, Q'\} \ge \prod_{j\ge 2} (1 - 1/3^j) > 0.84,$$

so

$$|q^{m-m'}(P/Q)(P'/Q')^{-1} - 1| \ge |3 \times 0.56 \times 0.84 - 1| > 0.4 > 1/4.$$

It remains to treat the case q=2. If $k' \leq k$, then $P/Q(P'/Q')^{-1} = P(Q/Q')^{-1}P'^{-1}$ and both $Q/Q' \leq 1$, P' < 1. Furthermore, P is a product like in (1) starting at n-k+1. Thus, if $n-k+1 \geq 4$, then

$$|q^{m-m'}(P/Q)(P'/Q')^{-1} - 1| \ge |2^{m-m'-1/3} - 1| \ge |2^{2/3} - 1| > 1/2.$$

If $m - m' \ge 2$, then since

$$P \ge \prod_{j \ge 1} (1 - 1/2^j) > 0.288,$$

we get

$$|q^{m-m'}(P/Q)(P'/Q')^{-1} - 1| \ge |2^2 \times 0.288 - 1| > 1/7.$$

Thus, we only need to analyze the situation $n - k + 1 \le 3$ and m' = m - 1. Since $n - k \ge k$, this gives $k \le 2$ and then $n \le k + 2 \le 4$. Thus, (n, k) = (2, 1), (3, 1), (4, 1), (4, 2). Further, $m = nk - k^2 = k(n - k) \le 4$. Since m' < m, we get m' = k'(n' - k') < 4, so (n', k') = (2, 1), (3, 1), (4, 1). Now we compute

$$\left| \binom{n}{k}_q - \binom{n'}{k'}_q \right|$$

over all such possibilities (n, k, n', k') and q = 2, and conclude that the desired inequality holds in these cases as well.

This was if $k' \leq k$. Assume next that k' > k. Then

$$(P/Q)(P'/Q')^{-1} = P(Q'/Q)P'^{-1}$$

and Q'/Q is a product as in (1) starting at $a = k' + 1 \ge 3$. Thus, if $\min\{n - k + 1, k' + 1\} \ge 4$, then (1) holds and so

$$|q^{m-m'}P(Q'/Q)P'^{-1} - 1| \ge |2^{1/3} - 1| > 1/4.$$

Thus, we treat the case $\min\{n-k+1,k'+1\} \leq 3$. Since $n-k+1 \geq k+1$ and k'>k, it follows that

$$k+1 = \min\{k+1, k'+1\} \le \min\{n-k+1, k'+1\} \le 3$$

so $k \in \{1, 2\}$. Thus,

$$\min\{n-1, k'+1\} \le \min\{n-k+1, k'+1\} \le 3,$$

so either $n \leq 4$ or (k', k) = (2, 1). If $m - m' \geq 2$, then since

$$\prod_{j>2} (1 - 1/2^j) \ge 0.57,$$

it follows that

$$|q^{m-m'}P(Q'/P)P'^{-1} - 1| \ge |4 \times (0.57)^2 - 1| > 1/4.$$

Thus, it remains to treat the case m' = m - 1. If $n \le 4$, then

$$k'^2 \le k'(n'-k') = m' = m-1 = k(n-k)-1 \le 3$$

so k'=1, contradicting the fact that k'>k. Thus, (k',k)=(2,1) so Q'/Q is a product like in (1) starting at k'+1=3. If also $n-k+1\geq 3$, then since

$$\prod_{j>3} (1 - 1/2^j) > 0.77,$$

it follows that

$$|q^{m-m'}P(Q'/Q)P'^{-1} - 1| \ge |2 \times (0.77)^2 - 1| > 1/6.$$

Hence, it remains to treat the case when n - k + 1 = 2, so (n, k) = (2, 1), so m = 1 and then m' = m - 1 = 0, a contradiction. This takes care of (i).

(ii). In this case, since k(n-k) = k'(n'-k') and k' < k, it follows that n'-k' > n-k and since [n-k+1,n] and [n'-k'+1,n'] are disjoint, it follows that $n'-k' \ge n$. With the notations from part (i), we have

$$\left| \binom{n}{k}_q - \binom{n'}{k'}_q \right| = q^m |(P/Q) - (P'/Q')| = \binom{n'}{k'}_q |(P/(Q/Q')P'^{-1} - 1|.$$

Now

$$P/(Q/Q')P'^{-1} = \prod_{j=1}^{k'} \left(\frac{1 - 1/q^{n-k+j}}{1 - 1/q^{n'-k'+j}} \right) \prod_{j=k'}^{k-1} \left(\frac{1 - 1/q^{n-(k-j)+1}}{1 - 1/q^{j+1}} \right). \tag{2}$$

Let us notice the following order

$$k' + 1 \le \dots \le k < n - k + 1 \le \dots \le n < n' - k' + 1 < \dots < n'$$

Using the inequalities

$$1 - 1/q^{\ell} > \exp\left(-\frac{2}{q^{\ell}}\right)$$
 and $1 - 1/q^{\ell} < \exp\left(-\frac{1}{q^{\ell}}\right)$,

for ℓ an index participating in the numerator, respectively, denominator of the right-hand side of (2), we get to get that

$$P/(Q/Q')P'^{-1} > \exp\left(\frac{1}{q^{k'+1}} + \dots + \frac{1}{q^k} - \frac{2}{q^{n-k+1}} - \dots - \frac{2}{q^n} + \frac{1}{q^{n'-k'+1}} + \dots + \frac{1}{q^{n'}}\right).$$

Now

$$\frac{2}{q^{n-k+1}} + \dots + \frac{2}{q^n} < 2\left(\sum_{j \ge n-k+1} \frac{1}{q^j}\right) - \frac{2}{q^{n+1}} = \frac{2}{q^{n-k}(q-1)} - \frac{2}{q^{n+1}}.$$

Hence,

$$P/(Q/Q')P'^{-1}$$

$$> \exp\left(\frac{1}{q^{k'+1}} + \dots + \frac{1}{q^k} - \frac{2}{q^{n-k}(q-1)} + \frac{2}{q^{n+1}} + \frac{1}{q^{n'-k'+1}} + \dots + \frac{1}{q^{n'}}\right).$$
(3)

If $q \geq 3$, then since $n - k \geq k$, it follows that

$$\frac{1}{q^{k'+1}} + \dots + \frac{1}{q^k} - \frac{2}{q^{n-k}(q-1)} \ge \frac{1}{q^k} - \frac{1}{q^{n-k}} \ge 0,$$

so the amount under the exponential in the right-hand side of (3) is at least $2/q^{n+1}$. Since $e^x - 1 > x$ for positive x, it follows that in these cases

$$|P/(Q/Q')P'^{-1} - 1| > \frac{2}{q^{n+1}}.$$

The same conclusion holds if q = 2 and either k < n - k, or k' < k - 1. But if q = 2, k = n - k and k' = k - 1, then

$$m = k(n-k) = k^2 = m' = (k-1)(n'-(k-1)).$$

Thus, k-1 divides k^2 , which is possible only for k=2. Hence, (k,n)=(2,4), and then k'=1 and

$$4 = m = m' = n' - k' = n - 1$$
.

so n' = 5. In this case,

$$|P/(Q/Q')P'^{-1} - 1| = \left| \frac{(1 - 1/2^3)(1 - 1/2^4)}{(1 - 1/2^2)(1 - 1/2^5)} - 1 \right| > 0.12 > \frac{2}{q^{n+1}}.$$

Hence,

$$\left| \binom{n}{k}_q - \binom{n'}{k'}_q \right| > \frac{2}{q^{n+1}} \binom{n'}{k'}_q,$$

holds in all cases, which completes the proof of this lemma.

3 The proof of Theorem 1

We are now ready to do some estimates. We distinguish several cases.

3.1 The case of Lemma 3 (i)

In this case, putting $b_{N'} = \binom{n'}{m'}_q$, we need to decide when the inequality

$$\frac{1}{7}b_{N'} \ge \exp((\log b_{N'})^{1/3})$$

holds. This is equivalent to

$$\log b_{N'} \ge \log 7 + (\log b_{N'})^{1/3}.$$

Using also Lemma 1, it is enough to show that

$$m' \log q - \log 4 > \log 7 + (m' \log q + \log 4)^{1/3}$$
.

Dividing by $\log q$ and using the fact that $q \geq 2$, it is enough that

$$m' \ge \frac{\log 28}{\log 2} + \left(\frac{m'}{(\log 2)^2} + \frac{\log 4}{(\log 2)^3}\right)^{1/3},$$

an inequality which holds for all $m' \geq 8$.

3.2 The case of Lemma 3 (ii)

In this case, m' = m and we want that

$$\log b_{N'} + \log 2 - (n+1)\log q \ge (\log b_{N'})^{1/3}.$$

Using again Lemma 1, it suffices that

$$m' \log q - \log 4 + \log 2 \ge (n+1) \log q + (m' \log q + \log 4)^{1/3}$$
.

We have k(n-k)=m', so n+1=m'/k+k+1 and k>k'. Thus, $k\in[2,\sqrt{m'}]$. The function $x\mapsto m'/x+x+1$ in the interval $[2,\sqrt{m'}]$ since its derivative is $-m'/x^2+1\leq 0$. Thus, $n+1\leq m'/2+3$. Hence, it suffices that the inequality

$$m' \log q \ge \log 2 + (m'/2 + 3) \log q + (m' \log q + \log 4)^{1/3}$$

holds. Dividing by $\log q$ and using the fact that $q \geq 2$, it suffices that

$$\frac{m'}{2} - 3 \ge 1 + \left(\frac{m'}{(\log 2)^2} + \frac{\log 4}{(\log 2)^3}\right)^{1/3},$$

an inequality which holds for all $m' \geq 15$.

3.3 The case of Lemma 2 and $q \geq 3$

We assume $\ell \geq 3$. In this case,

$$\Phi_{\ell}(q) = \prod_{\substack{1 \le j \le \ell \\ \gcd(j,\ell) = 1}} |q - e^{2\pi i j/\ell}| \ge (q-1)^{\phi(\ell)} = \exp(\phi(\ell)\log(q-1)). \tag{4}$$

So, we need to show that

$$\phi(\ell)\log(q-1) \ge (\log b_{N'})^{1/3}$$

or, using again Lemma 1, that

$$\phi(\ell)\log(q-1) \ge (m'\log q + \log 4)^{1/3}.$$

By Theorem 15 in [2], we have

$$\phi(\ell) > \frac{\ell}{1.8 \log \log \ell + 2.6/\log \ell} \qquad \text{for all} \qquad \ell \geq 3.$$

Thus, dividing also by $\log(q-1)$, it suffices to show that

$$\frac{\ell}{1.8\log\log\ell + 2.6/\log\ell} \ge \left(\frac{m'\log q}{(\log(q-1))^3} + \frac{\log 4}{(\log(q-1))^3}\right)^{1/3}.$$

The functions

$$x \mapsto \frac{x}{1.8 \log \log x + 2.6/\log x} \qquad \text{and} \qquad x \mapsto \frac{\log x}{(\log (x-1))^3}$$

have the property that the first one is increasing and the second one is decreasing for $x \ge 3$, as it can be confirmed by computing their derivatives. Since $\ell \ge n' - k' + 1 \ge \sqrt{m'} + 1$, it suffices that

$$\frac{\sqrt{m'}+1}{1.8\log\log(\sqrt{m'}+1)+2.6/\log(\sqrt{m'}+1)} \geq \left(\frac{m'\log 3}{(\log 2)^3} + \frac{\log 4}{(\log 2)^3}\right)^{1/3},$$

an inequality which holds for $m' > 15{,}300$.

3.4 The case of Lemma 2 and q=2

Here, q-1=1, so inequality (4) is useless. Instead we use the formula

$$\Phi_{\ell}(2) = \prod_{d|n} (2^{n/d} - 1)^{\mu(d)},$$

where μ is the Möbius function. Factoring out the "main" terms, we get

$$\Phi_{\ell}(2) \ge 2^{\sum_{d|\ell} \mu(d)\ell/d} \prod_{j\ge 1} (1 - 1/2^j) > 2^{\phi(\ell)-2}.$$

Thus, we get that

$$\Phi_{\ell}(2) \ge \exp((\phi(\ell) - 2) \log 2).$$

Thus, in order to prove the desired inequality it suffices, again via Lemma 1, to show that

$$\phi(\ell) - 2 \ge \left(\frac{m'}{(\log 2)^2} + \frac{\log 4}{(\log 2)^3}\right)$$

for some $\ell \in [n'-k'+1, n']$. The argument from Subsection 3.3 shows that this inequality holds provided that

$$\frac{\sqrt{m'}+1}{1.8\log\log(\sqrt{m'}+1)+2.6/\log(\sqrt{m'}+1)}-2 \geq \left(\frac{m'}{(\log 2)^2}+\frac{\log 4}{(\log 2)^3}\right)^{1/3},$$

an inequality which holds for m' > 8100.

To summarize, we proved:

Lemma 5. If $m \ge m' \ge 15{,}300$, then

$$\left| \binom{n}{k}_q - \binom{n'}{k'}_q \right| \ge \exp\left(\left(\log \binom{n'}{k'}_q \right)^{1/3} \right).$$

Thus, the inequality in the theorem may fail only if $b_{N'} = \binom{n'}{k'}_q$ for some $m' \leq M' := 15{,}300$. Since m' = k'(n' - k'), it follows that for a fixed m', the number of pairs (n', k') with m' = k'(n' - k') is at most $\tau(m')$, where $\tau(s)$ is the number of divisors of s (in fact, it is smaller than that since $k' \leq n' - k'$, but we will not get into such details). Thus, those N' can be at most the first

$$\sum_{m' \le M'} \tau(m') = \sum_{m' \le M'} \sum_{d' \mid m'} 1 \le \sum_{d' \le M'} \sum_{\substack{m' \le M' \\ m' \equiv 0 \pmod{d'}}} 1$$

$$= \sum_{d' \le M'} \left\lfloor \frac{M'}{d'} \right\rfloor \le M' \sum_{d' \le M'} \frac{1}{d'}$$

$$\le M' \left(1 + \int_1^{M'} \frac{dt}{t} \right) \le M' (1 + \log M') < 163,000,$$

which finishes the proof.

4 The proof of the Corollary 1

We follow the previous steps of the proof of Theorem 1. For the situation treated in Subsection 3.1, we need $b_{N'} > 700$. By Lemma 1, this gives $q^{m'} > 700$, which is satisfied for $m' \geq 9$. Since $m' = k'(n' - k') \geq n'/2$, it follows that the last inequality is satisfied for $n' \geq 18$. Thus, it remains to study the case n' < 17. In this case, $m' \leq (n'/2)^2$, so $m' \leq 72$. If $m \geq 83$, then $m - m' \geq 11$, so by Lemma 1, we have

$$\binom{n}{k}_q \geq \frac{q^m}{4} \geq 2^7 (4q^{m'}) > 2^7 \binom{n'}{k'}_q,$$

so

$$\binom{n}{k}_q - \binom{n'}{k'}_q \ge (2^7 - 1) \binom{n'}{k'}_q > 100.$$

Thus, it suffices to consider the case $m \leq 82$, leading to $n/2 \leq k(n-k) \leq m$, so $n \leq 164$. Thus, for Subsection 3.1, it suffices to check in the range $\max\{n,n'\} \leq 164$. A similar argument works for the situation treated in Subsection 3.2. Namely, here we need that $2b_{N'}/q^{n+1} > 100$. Together with Lemma 1, this is satisfied for $q^{m'-n-1} > 200$, which in turn holds if $m'-n \geq 9$. Now m'=k(n-k), where k > k' so either k = 2, or $k \geq 3$. When k = 2, we have

$$9 < m' - n = 2(n-2) - n = n - 4$$

so the desired inequality is satisfied for $n \geq 13$. When $k \geq 3$, we have that

$$m' - n = k(n - k) - n \ge 3n/2 - n = n/2$$

and so the desired inequality holds for $n \geq 18$. Thus, it suffices to assume that $n \leq 17$, leading to $m \leq (17/)^2$, so $m \leq 72$. Since in this case we have m = m', we get that $n'/2 \le m' = m \le 72$, so $n' \le 144$. Thus, in this case it suffices to check in the range $\max\{n, n'\} < 144$. For Subsection 3.3, all we need is that $2^{\phi(\ell)} \ge 100$, so $\phi(\ell) > 6$ for some $\ell \in [n-k+1, n] \cap [n'-k'+1, n']$. Now $\phi(\ell) > 6$ for $\ell > 18$, so the desired inequality is satisfied provided that $n - k + 1 \ge 19$. Since $n-k \ge n/2$, the last inequality holds for $n \ge 36$. Thus, it suffices to check it for $n \leq 35$ and since [n'-k'+1,n'] intersects nontrivially [n-k+1,n], we get that $n' - k' + 1 \le n \le 35$. Thus, $n'/2 \le n' - k' \le 34$, so $n' \le 68$. Thus, in this case it suffices check the range $\max\{n, n'\} \le 68$. Finally, for Subsection 3.4, we want $\Phi_n(2) > 100$ and we checked that this is so for all $n \geq 19$. To do so, we use a consequence of the Primitive Divisor Theorem to the effect that $\Phi_n(2)$ is divisible by a prime $p \equiv 1 \pmod{n}$ for all n > 6 (this is a primitive prime factor of $2^n - 1$). In particular, $\Phi_n(2) > 100$ if n > 100, so we only needed to check the values of $\Phi_n(2)$ for $n \leq 100$ and got that the largest n with $\Phi_n(2) \leq 100$ is n = 18. Thus, it suffices to consider the case $n \le 18$, and since $n' - k' + 1 \le n \le 18$, we get that $n' \le 34$. Thus, in all cases $\max\{n, n'\} \leq 200$. Putting everything together, we conclude that $b_{N+1} - b_N > 100$ unless both b_N , b_{N+1} correspond to q-nomial coefficients $\binom{n}{k}_q$ or $\binom{n'}{k'}_q$ with $\max\{n,n'\} \leq 200$. Further, unless q=2, we are in the cases from Subsections 3.1, 3.2, 3.3, respectively, and in these there cases, invoking Lemma 1, the lower bounds on $b_{N+1} - b_N$ are $q^m/28$, $q^{m-(n+1)}/2$, $(q-1)^{\phi(\ell)}$, respectively. In the first case we have the exponent $m \geq 2$, while in the other two cases the exponents are $m-(n+1)\geq 1, \ \phi(\ell)\geq 1$. Thus, the inequality $b_{N+1}-b_N>100$ is satisfied if q > 201 independently on (n, k, n', k'). Hence, we only need to check the situations $q \leq 201$ and $\max\{n, n'\} \leq 200$. A computation in this range finishes the job.

Acknowledgments

The first author supported in part by grant CPRR160325161141 from the NRF of South Africa and the Focus Area Number Theory grant RTNUM19 from CoEMaSS Wits.

References

- [1] F. Luca, D. Marques, P. Stănică: On the spacings between C-nomial coefficients. J. Number Theory (130) (2010) 82–100.
- [2] J. B. Rosser, L. Schoenfeld: Approximate formulas for some functions of prime numbers. Illinois J. Math. (6) (1962) 64–94.

Received: 7 July 2019

Accepted for publication: 27 July 2019

Communicated by: Yuri Bilu