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On the gaps between q-binomial coefficients

Florian Luca, Sylvester Manganye

Abstract. In this note, we estimate the distance between two q-nomial
coefficients

∣∣(n
k

)
q
−

(
n′

k′

)
q

∣∣, where (n, k) 6= (n′, k′) and q ≥ 2 is an integer.

1 Introduction
In this paper, q ≥ 2 is an integer and for n > k ≥ 1,(

n

k

)
q

:=
(qn−k+1 − 1)(qn−k+2 − 1) · · · (qn − 1)

(q − 1)(q2 − 1) · · · (qk − 1)

is the q-binomial coefficient. We are interested in the distinct values of
(
n
k

)
q
. Since(

n
k

)
q

=
(
n

n−k
)
q
, we assume that n ≥ 2k. It was shown in [1] that under these

conditions (
n

k

)
q

6=
(
n′

k′

)
q

for (n, k) 6= (n′, k′), n ≥ 2k, n′ ≥ 2k′.

The proof is an easy application of the primitive divisor theorem for members of
Lucas sequences. Thus, taking

Bq :=

{(
n

k

)
q

: n ≥ 2k ≥ 2

}
,
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the elements from Bq are distinct. Assume Bq = {b1, b2, . . .}, where the elements bi
are listed increasingly. We are interested in a lower bound for bi+1 − bi. We have
the following theorem:

Theorem 1. The inequality

bN+1 − bN ≥ exp
(

(log bN )1/3
)

holds for all q ≥ 2 and all N ≥ 163,000.

Corollary 1. The inequality bN+1 − bN > 100 always holds except when N ≤ 8 for
q = 2 or N ≤ 4 for q ∈ {3, 4, 5, 6, 7, 8, 9, 10}.

2 Some auxiliary results
We put m := k(n− k).

Lemma 1. We have
qm

4
<

(
n

k

)
q

< 4qm

for all q ≥ 2 and n ≥ 2k.

Proof. We have(
n

k

)
q

=
qn−(k−1)+n−(k−2)+···+n

qk+k−1+···+1

 ∏
1≤j≤k

(
1− 1

qn−j+1

) k∏
j=1

(
1− 1

qj

)−1 .
The first factor in the right–hand side above is qm. As for the others, the inequality

1

4
< 0.288 <

∏
j≥1

(
1− 1

2j

)
≤

∏
a≤j≤b

(
1− 1

qj

)
< 1

holds for all positive integers a < b and q ≥ 2. Taking (a, b) = (n − k + 1, k), or
(a, b) = (1, k), respectively, we get that

1

4
<

 k∏
j=1

(
1− 1

qn−j+1

) k∏
j=1

(
1− 1

qj

)−1 < 4,

which finishes the proof. �

From now on, (n, k) 6= (n′, k′) are such that n ≥ 2k, n′ ≥ 2k′. For a positive
integer ` we write

Φ`(X) =
∏

1≤j≤`
gcd(j,`,)=1

(X − e2πij/`) ∈ Z[X]

for the `th cyclotomic polynomial.
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Lemma 2. Assume that [n− k + 1, n] ∩ [n′ − k′ + 1, n′] 6= ∅. Then∣∣∣∣∣
(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣ ≥ Φ`(q), where ` ∈ [n− k + 1, n] ∩ [n′ − k′ + 1, n′].

Proof. Since q` − 1 =
∏
d|` Φd(q), it follows that(

n

k

)
q

=
∏

d∈D(n,k)

Φd(q)
α(d,n,k),

where
D(n, k) =

⋃
j∈[1,k]

{d ≥ 1 : d | n− j + 1 or d | j},

and α(d, h, k) are some integers. Since
(
n
k

)
q

is a rational function in q which is an
integer for all q ≥ 2, it follows that α(d, n, k) ≥ 0 for all d ∈ D(n, k). Further,
it is easy to see that d = n − j + 1 has α(d, n, k) ≥ 1 for all j ∈ [1, k], since
Φn−j+1(q) | qn−j+1 − 1 and Φn−j+1(q) is not a factor of

∏k
i=1(qi − 1) because

n− j + 1 ≥ n− k + 1 > k. Thus, if ` ∈ [n− k + 1, n] ∩ [n′ − k′ + 1, n′], then Φ`(q)

is a factor of both
(
n
k

)
q

and
(
n′

k′

)
q
. Thus, their difference is nonzero and a multiple

of Φ`(q), which finishes the proof of the lemma. �

Lemma 3. Assume that [n − k + 1, n] ∩ [n′ − k′ + 1, n′] = ∅. Put again m :=
k(n− k), m′ := k′(n− k′). Then:

(i) If m′ < m, then ∣∣∣∣∣
(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣ ≥ 1

7

(
n′

k′

)
q

.

(ii) If m′ = m and k′ < k, then∣∣∣∣∣
(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣ ≥ 2

qn+1

(
n′

k′

)
q

.

Proof. From the arguments from the proof of Lemma 1, we have∣∣∣∣∣
(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣ =

∣∣∣∣∣qm
(∏k

j=1(1− 1/qn−j+1)∏k
j=1(1− 1/qj)

)
− qm

′

(∏k′

j=1(1− 1/qn
′−j+1)∏k′

j=1(1− 1/qj)

)∣∣∣∣∣ .
We analyze the two cases.

(i) In this case,∣∣∣∣∣
(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣
=

(
n′

k′

)
q

∣∣∣∣∣∣qm−m′
(∏k

j=1(1− 1/qn−j+1)∏k
j=1(1− 1/qj)

)(∏k′

j=1(1− 1/qn
′−j+1)∏k′

j=1(1− 1/qj)

)−1
− 1

∣∣∣∣∣∣ .
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In the right, the coefficient of qm−m
′

is (P/Q)(Q′/P ′), where

P =

k∏
j=1

(1− 1/qn−j+1) Q =

k∏
j=1

(1− 1/qj),

and P ′, Q′ are obtained from P,Q by changing (k, n) to (k′, n′), respectively. All
of P,Q, P ′, Q′ are smaller than 1. We have the following lemma:

Lemma 4. The inequality

b∏
j=a

(1− 1/qj) ≥ q−1/3 (1)

holds for all q ≥ 2 and a ≥ 1 and any b ≥ a except for possibly

(a, q) = (1, 2), (1, 3), (2, 2), (3, 2).

Proof. Taking logarithms, the desired inequality becomes

b∑
j=a

log

(
1− 1

qj

)
> − log q

3
.

The inequality log(1 − x) > −2x holds for all x ∈ (0, 1/2). So, using this with
x = 1/qj for j ∈ [a, b], it suffices to show that

−
b∑

j=a

2

qj
> − log q

3
,

which is equivalent to
b∑

j=a

1

qj
<

log q

6
.

Taking the sum on the left to infinity, it is a geometrical progression whose sum is
1/(qa−1(q − 1)). Thus, it suffices that

qa−1(q − 1) ≥ 6

log q
.

The above inequality holds for all a ≥ 1 and q ≥ 5. It also holds for a ≥ 5 and any
q ≥ 2. So, it remains to check the given inequality for (a, q) with a ∈ [1, 4] and
q ∈ [2, 4], and we get the list of exceptions. �

To apply the above lemma, notice that (P/Q)(P ′/Q′)−1 = PQ′(QP ′)−1, and
(QP ′)−1 > 1. Furthermore, P is a product as the one appearing in (1) with
a = n− k + 1 ≥ k + 1 ≥ 2, while Q′ is a product like the one appearing in (1) but
with a = 1. Thus, by Lemma 4, we have that the inequality

min{P,Q′} ≥ q−1/3
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holds unless q ∈ {2, 3}. So, unless q ∈ {2, 3}, we have that

|qm−m
′
(P/Q)(P ′/Q′)−1 − 1| ≥ |qm−m

′−2/3 − 1| ≥ |q1/3 − 1| ≥ |21/3 − 1| > 1/4.

Assume next that q = 2, 3. If q = 3, then

min{P,Q′} ≥
∞∏
j=1

(1− 1/3j) > 0.56, max{P,Q′} ≥
∏
j≥2

(1− 1/3j) > 0.84,

so
|qm−m

′
(P/Q)(P ′/Q′)−1 − 1| ≥ |3× 0.56× 0.84− 1| > 0.4 > 1/4.

It remains to treat the case q = 2. If k′ ≤ k, then P/Q(P ′/Q′)
−1

= P (Q/Q′)
−1

P ′
−1

and both Q/Q′ ≤ 1, P ′ < 1. Furthermore, P is a product like in (1) starting at
n− k + 1. Thus, if n− k + 1 ≥ 4, then

|qm−m
′
(P/Q)(P ′/Q′)−1 − 1| ≥ |2m−m

′−1/3 − 1| ≥ |22/3 − 1| > 1/2.

If m−m′ ≥ 2, then since

P ≥
∏
j≥1

(1− 1/2j) > 0.288,

we get
|qm−m

′
(P/Q)(P ′/Q′)−1 − 1| ≥ |22 × 0.288− 1| > 1/7.

Thus, we only need to analyze the situation n − k + 1 ≤ 3 and m′ = m − 1.
Since n − k ≥ k, this gives k ≤ 2 and then n ≤ k + 2 ≤ 4. Thus, (n, k) =
(2, 1), (3, 1), (4, 1), (4, 2). Further, m = nk − k2 = k(n − k) ≤ 4. Since m′ < m,
we get m′ = k′(n′ − k′) < 4, so (n′, k′) = (2, 1), (3, 1), (4, 1). Now we compute∣∣∣∣∣

(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣
over all such possibilities (n, k, n′, k′) and q = 2, and conclude that the desired
inequality holds in these cases as well.

This was if k′ ≤ k. Assume next that k′ > k. Then

(P/Q)(P ′/Q′)−1 = P (Q′/Q)P ′−1

and Q′/Q is a product as in (1) starting at a = k′+ 1 ≥ 3. Thus, if min{n− k+ 1,
k′ + 1} ≥ 4, then (1) holds and so

|qm−m
′
P (Q′/Q)P ′−1 − 1| ≥ |21/3 − 1| > 1/4.

Thus, we treat the case min{n − k + 1, k′ + 1} ≤ 3. Since n − k + 1 ≥ k + 1 and
k′ > k, it follows that

k + 1 = min{k + 1, k′ + 1} ≤ min{n− k + 1, k′ + 1} ≤ 3 ,
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so k ∈ {1, 2}. Thus,

min{n− 1, k′ + 1} ≤ min{n− k + 1, k′ + 1} ≤ 3 ,

so either n ≤ 4 or (k′, k) = (2, 1). If m−m′ ≥ 2, then since∏
j≥2

(1− 1/2j) ≥ 0.57,

it follows that

|qm−m
′
P (Q′/P )P ′−1 − 1| ≥ |4× (0.57)2 − 1| > 1/4.

Thus, it remains to treat the case m′ = m− 1. If n ≤ 4, then

k′2 ≤ k′(n′ − k′) = m′ = m− 1 = k(n− k)− 1 ≤ 3 ,

so k′ = 1, contradicting the fact that k′ > k. Thus, (k′, k) = (2, 1) so Q′/Q is a
product like in (1) starting at k′ + 1 = 3. If also n− k + 1 ≥ 3, then since∏

j≥3

(1− 1/2j) > 0.77,

it follows that

|qm−m
′
P (Q′/Q)P ′−1 − 1| ≥ |2× (0.77)2 − 1| > 1/6.

Hence, it remains to treat the case when n− k+ 1 = 2, so (n, k) = (2, 1), so m = 1
and then m′ = m− 1 = 0, a contradiction. This takes care of (i).

(ii). In this case, since k(n − k) = k′(n′ − k′) and k′ < k, it follows that
n′ − k′ > n− k and since [n− k + 1, n] and [n′ − k′ + 1, n′] are disjoint, it follows
that n′ − k′ ≥ n. With the notations from part (i), we have∣∣∣∣∣

(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣ = qm|(P/Q)− (P ′/Q′)| =
(
n′

k′

)
q

|(P/(Q/Q′)P ′−1 − 1|.

Now

P/(Q/Q′)P ′−1 =

k′∏
j=1

(
1− 1/qn−k+j

1− 1/qn′−k′+j

) k−1∏
j=k′

(
1− 1/qn−(k−j)+1

1− 1/qj+1

)
. (2)

Let us notice the following order

k′ + 1 ≤ · · · ≤ k < n− k + 1 ≤ · · · ≤ n < n′ − k′ + 1 < · · · < n′.

Using the inequalities

1− 1/q` > exp

(
− 2

q`

)
and 1− 1/q` < exp

(
− 1

q`

)
,
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for ` an index participating in the numerator, respectively, denominator of the
right–hand side of (2), we get to get that

P/(Q/Q′)P ′−1

> exp

(
1

qk′+1
+ · · ·+ 1

qk
− 2

qn−k+1
− · · · − 2

qn
+

1

qn′−k′+1
+ · · ·+ 1

qn′

)
.

Now

2

qn−k+1
+ · · ·+ 2

qn
< 2

 ∑
j≥n−k+1

1

qj

− 2

qn+1
=

2

qn−k(q − 1)
− 2

qn+1
.

Hence,

P/(Q/Q′)P ′−1 (3)

> exp

(
1

qk′+1
+ · · ·+ 1

qk
− 2

qn−k(q − 1)
+

2

qn+1
+

1

qn′−k′+1
+ · · ·+ 1

qn′

)
.

If q ≥ 3, then since n− k ≥ k, it follows that

1

qk′+1
+ · · ·+ 1

qk
− 2

qn−k(q − 1)
≥ 1

qk
− 1

qn−k
≥ 0,

so the amount under the exponential in the right–hand side of (3) is at least 2/qn+1.
Since ex − 1 > x for positive x, it follows that in these cases

|P/(Q/Q′)P ′−1 − 1| > 2

qn+1
.

The same conclusion holds if q = 2 and either k < n − k, or k′ < k − 1. But if
q = 2, k = n− k and k′ = k − 1, then

m = k(n− k) = k2 = m′ = (k − 1)(n′ − (k − 1)) .

Thus, k− 1 divides k2, which is possible only for k = 2. Hence, (k, n) = (2, 4), and
then k′ = 1 and

4 = m = m′ = n′ − k′ = n− 1 ,

so n′ = 5. In this case,

|P/(Q/Q′)P ′−1 − 1| =
∣∣∣∣ (1− 1/23)(1− 1/24)

(1− 1/22)(1− 1/25)
− 1

∣∣∣∣ > 0.12 >
2

qn+1
.

Hence, ∣∣∣∣∣
(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣ > 2

qn+1

(
n′

k′

)
q

,

holds in all cases, which completes the proof of this lemma. �
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3 The proof of Theorem 1
We are now ready to do some estimates. We distinguish several cases.

3.1 The case of Lemma 3 (i)

In this case, putting bN ′ =
(
n′

m′

)
q
, we need to decide when the inequality

1

7
bN ′ ≥ exp((log bN ′)

1/3)

holds. This is equivalent to

log bN ′ ≥ log 7 + (log bN ′)
1/3.

Using also Lemma 1, it is enough to show that

m′ log q − log 4 ≥ log 7 + (m′ log q + log 4)
1/3

.

Dividing by log q and using the fact that q ≥ 2, it is enough that

m′ ≥ log 28

log 2
+

(
m′

(log 2)2
+

log 4

(log 2)3

)1/3

,

an inequality which holds for all m′ ≥ 8.

3.2 The case of Lemma 3 (ii)

In this case, m′ = m and we want that

log bN ′ + log 2− (n+ 1) log q ≥ (log bN ′)
1/3.

Using again Lemma 1, it suffices that

m′ log q − log 4 + log 2 ≥ (n+ 1) log q + (m′ log q + log 4)
1/3

.

We have k(n− k) = m′, so n+ 1 = m′/k + k + 1 and k > k′. Thus, k ∈ [2,
√
m′].

The function x 7→ m′/x + x + 1 in the interval [2,
√
m′] since its derivative is

−m′/x2 + 1 ≤ 0. Thus, n+ 1 ≤ m′/2 + 3. Hence, it suffices that the inequality

m′ log q ≥ log 2 + (m′/2 + 3) log q + (m′ log q + log 4)1/3

holds. Dividing by log q and using the fact that q ≥ 2, it suffices that

m′

2
− 3 ≥ 1 +

(
m′

(log 2)2
+

log 4

(log 2)3

)1/3

,

an inequality which holds for all m′ ≥ 15.
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3.3 The case of Lemma 2 and q ≥ 3

We assume ` ≥ 3. In this case,

Φ`(q) =
∏

1≤j≤`
gcd(j,`)=1

|q − e2πij/`| ≥ (q − 1)φ(`) = exp(φ(`) log(q − 1)). (4)

So, we need to show that

φ(`) log(q − 1) ≥ (log bN ′)
1/3,

or, using again Lemma 1, that

φ(`) log(q − 1) ≥ (m′ log q + log 4)1/3.

By Theorem 15 in [2], we have

φ(`) >
`

1.8 log log `+ 2.6/log `
for all ` ≥ 3.

Thus, dividing also by log(q − 1), it suffices to show that

`

1.8 log log `+ 2.6/log `
≥
(

m′ log q

(log(q − 1))3
+

log 4

(log(q − 1))3

)1/3

.

The functions

x 7→ x

1.8 log log x+ 2.6/log x
and x 7→ log x

(log(x− 1))3

have the property that the first one is increasing and the second one is decreasing for
x ≥ 3, as it can be confirmed by computing their derivatives. Since ` ≥ n′−k′+1 ≥√
m′ + 1, it suffices that

√
m′ + 1

1.8 log log(
√
m′ + 1) + 2.6/log(

√
m′ + 1)

≥
(
m′ log 3

(log 2)3
+

log 4

(log 2)3

)1/3

,

an inequality which holds for m′ > 15,300.

3.4 The case of Lemma 2 and q = 2

Here, q − 1 = 1, so inequality (4) is useless. Instead we use the formula

Φ`(2) =
∏
d|n

(2n/d − 1)µ(d),

where µ is the Möbius function. Factoring out the “main” terms, we get

Φ`(2) ≥ 2
∑

d|` µ(d)`/d
∏
j≥1

(1− 1/2j) > 2φ(`)−2.
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Thus, we get that
Φ`(2) ≥ exp((φ(`)− 2) log 2).

Thus, in order to prove the desired inequality it suffices, again via Lemma 1, to
show that

φ(`)− 2 ≥
(

m′

(log 2)2
+

log 4

(log 2)3

)
for some ` ∈ [n′ − k′ + 1, n′]. The argument from Subsection 3.3 shows that this
inequality holds provided that

√
m′ + 1

1.8 log log(
√
m′ + 1) + 2.6/log(

√
m′ + 1)

− 2 ≥
(

m′

(log 2)2
+

log 4

(log 2)3

)1/3

,

an inequality which holds for m′ > 8100.
To summarize, we proved:

Lemma 5. If m ≥ m′ ≥ 15,300, then∣∣∣∣∣
(
n

k

)
q

−
(
n′

k′

)
q

∣∣∣∣∣ ≥ exp

(log

(
n′

k′

)
q

)1/3
 .

Thus, the inequality in the theorem may fail only if bN ′ =
(
n′

k′

)
q

for some
m′ ≤ M ′ := 15,300. Since m′ = k′(n′ − k′), it follows that for a fixed m′, the
number of pairs (n′, k′) with m′ = k′(n′ − k′) is at most τ(m′), where τ(s) is the
number of divisors of s (in fact, it is smaller than that since k′ ≤ n′ − k′, but we
will not get into such details). Thus, those N ′ can be at most the first∑

m′≤M ′
τ(m′) =

∑
m′≤M ′

∑
d′|m′

1 ≤
∑
d′≤M ′

∑
m′≤M ′

m′≡0 (mod d)′

1

=
∑
d′≤M ′

⌊
M ′

d′

⌋
≤M ′

∑
d′≤M ′

1

d′

≤M ′
(

1 +

∫ M ′

1

dt

t

)
≤M ′(1 + logM ′) < 163,000,

which finishes the proof.

4 The proof of the Corollary 1
We follow the previous steps of the proof of Theorem 1. For the situation treated
in Subsection 3.1, we need bN ′ > 700. By Lemma 1, this gives qm

′
> 700, which

is satisfied for m′ ≥ 9. Since m′ = k′(n′ − k′) ≥ n′/2, it follows that the last
inequality is satisfied for n′ ≥ 18. Thus, it remains to study the case n′ < 17. In
this case, m′ ≤ (n′/2)2, so m′ ≤ 72. If m ≥ 83, then m −m′ ≥ 11, so by Lemma
1, we have (

n

k

)
q

≥ qm

4
≥ 27(4qm

′
) > 27

(
n′

k′

)
q

,
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so (
n

k

)
q

−
(
n′

k′

)
q

≥ (27 − 1)

(
n′

k′

)
q

> 100.

Thus, it suffices to consider the case m ≤ 82, leading to n/2 ≤ k(n − k) ≤ m, so
n ≤ 164. Thus, for Subsection 3.1, it suffices to check in the range max{n, n′} ≤ 164.
A similar argument works for the situation treated in Subsection 3.2. Namely, here
we need that 2bN ′/q

n+1 > 100. Together with Lemma 1, this is satisfied for
qm
′−n−1 > 200, which in turn holds if m′ − n ≥ 9. Now m′ = k(n − k), where

k > k′ so either k = 2, or k ≥ 3. When k = 2, we have

9 ≤ m′ − n = 2(n− 2)− n = n− 4

so the desired inequality is satisfied for n ≥ 13. When k ≥ 3, we have that

m′ − n = k(n− k)− n ≥ 3n/2− n = n/2

and so the desired inequality holds for n ≥ 18. Thus, it suffices to assume that
n ≤ 17, leading to m ≤ (17/)2, so m ≤ 72. Since in this case we have m = m′,
we get that n′/2 ≤ m′ = m ≤ 72, so n′ ≤ 144. Thus, in this case it suffices
to check in the range max{n, n′} ≤ 144. For Subsection 3.3, all we need is that
2φ(`) ≥ 100, so φ(`) > 6 for some ` ∈ [n− k+ 1, n]∩ [n′ − k′ + 1, n′]. Now φ(`) > 6
for ` > 18, so the desired inequality is satisfied provided that n− k+ 1 ≥ 19. Since
n − k ≥ n/2, the last inequality holds for n ≥ 36. Thus, it suffices to check it for
n ≤ 35 and since [n′ − k′ + 1, n′] intersects nontrivially [n− k + 1, n], we get that
n′ − k′ + 1 ≤ n ≤ 35. Thus, n′/2 ≤ n′ − k′ ≤ 34, so n′ ≤ 68. Thus, in this case
it suffices check the range max{n, n′} ≤ 68. Finally, for Subsection 3.4, we want
Φn(2) > 100 and we checked that this is so for all n ≥ 19. To do so, we use a
consequence of the Primitive Divisor Theorem to the effect that Φn(2) is divisible
by a prime p ≡ 1 (mod n) for all n > 6 (this is a primitive prime factor of 2n−1). In
particular, Φn(2) > 100 if n > 100, so we only needed to check the values of Φn(2)
for n ≤ 100 and got that the largest n with Φn(2) ≤ 100 is n = 18. Thus, it suffices
to consider the case n ≤ 18, and since n′ − k′ + 1 ≤ n ≤ 18, we get that n′ ≤ 34.
Thus, in all cases max{n, n′} ≤ 200. Putting everything together, we conclude that
bN+1 − bN > 100 unless both bN , bN+1 correspond to q-nomial coefficients

(
n
k

)
q

or
(
n′

k′

)
q

with max{n, n′} ≤ 200. Further, unless q = 2, we are in the cases from
Subsections 3.1, 3.2, 3.3, respectively, and in these there cases, invoking Lemma 1,
the lower bounds on bN+1 − bN are qm/28, qm−(n+1)/2, (q − 1)φ(`), respectively.
In the first case we have the exponent m ≥ 2, while in the other two cases the
exponents are m − (n + 1) ≥ 1, φ(`) ≥ 1. Thus, the inequality bN+1 − bN > 100
is satisfied if q > 201 independently on (n, k, n′, k′). Hence, we only need to check
the situations q ≤ 201 and max{n, n′} ≤ 200. A computation in this range finishes
the job.
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