10.2478/cm-2021-0001
https://cm.episciences.org/9520
Gubarev, Vsevolod
Vsevolod
Gubarev
0000-0002-7839-5714
Austrian Science Fund (FWF)
P 28079
Nil-affine crystallographic groups and algebraic structures
Rota-Baxter operators and Bernoulli polynomials
We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.
episciences.org
General Mathematics
[MATH]Mathematics [math]
Attribution-Non Commercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
2023-03-25
2021-04-30
2021-04-30
en
journal article
https://hal.science/hal-03665009v1
2336-1298
10.48550/arxiv.1810.05455
https://cm.episciences.org/9520/pdf
VoR
application/pdf
Communications in Mathematics
Volume 29 (2021), Issue 1 (Special Issue: Ostrava Mathematical Seminar)
Researchers
Students