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Jets and the variational calculus

David J. Saunders

Abstract. We review the approach to the calculus of variations using
Ehresmann’s theory of jets. We describe different types of jet manifold,
different types of variational problem and different cohomological structures
associated with such problems.

1 Introduction
Given any suitably differentiable map f between two differentiable manifolds M
and N , where f might be defined only on an open subset U ⊂M , a jet of f is an
equivalence class of maps between M and N , again perhaps defined only on open
subsets of M , such that all the maps in the equivalence class have the same value
and derivatives (perhaps only up to some given order k) at some specific point
p ∈ U . We would typically denote such a jet by jkpf .

Jets were introduced by Charles Ehresmann in a series of papers in Comptes
Rendus in 1951–52 [9]–[13], and expositions of the properties of manifolds of jets
may be found in [16], [30]. One of the significant applications of this theory has
been to the calculus of variations: this is not surprising, given that in the simplest
Euler–Lagrange equation for the extremals of a Lagrangian,

∂L

∂x
=

d

dt

∂L

∂ẋ
,

the derivative ẋ is effectively regarded as a coordinate on a manifold, in this case
a tangent manifold, one of the simplest types of manifold of jets.

In this paper I review an approach to the calculus of variations using jets,
along the lines of some talks given to the Ostrava Seminar. Instead of concentrat-
ing directly on a single theme, I have taken the opportunity to describe different
approaches to the problem involving jets of sections (finite jets v. infinite jets),
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different types of problem (parametric v. non-parametric problems), and indeed
mentioning different approaches to the construction of jets themselves (geometric
v. algebraic). Although there are many similarities, there are also occasional dif-
ferences, and this seems to me to be of interest. Some of the material in this paper
has been considered in greater depth in [32].

I should like to express my thanks to the University of Ostrava, where I have
held a visiting position for some years, and in particular to the late Olga Rossi,
formerly Head of the Department of Mathematics, and to Pasha Zusmanovich, who
has organised the Ostrava Seminars and who invited me to offer this contribution.

2 Jets
2.1 Tangent vectors
The most elementary type of jet is a tangent vector: a ‘vector’ attached to a point of
a differentiable manifold. The original concept of a tangent vector did not, though,
involve the idea of a jet, and indeed tensor calculus, based upon vector spaces of
tangent vectors and their duals and tensor products, predated the theory of jets
by several decades.

The concept of a tangent vector was originally based upon the idea of a list of
numbers ‘transforming as a vector’ under a change of coordinates. If the tangent
vector v was represented by the numbers vi with respect to the coordinates xi, and
by the numbers v̂j with respect to the coordinates x̂j , then the transformation rule
would be given by the formula

v̂j =
∂x̂j

∂xi
vi

(here and subsequently we adopt the convention of an implied sum over repeated
lower-case indices). Formally, given a manifold N of class Ck where k ≥ 1 and
with dimN = n, a tangent vector v at p ∈ N is an equivalence class

v =
[(

(vi), x
)]
∈ TpN

where (vi) ∈ Rn is a list of numbers, (U, x) is a coordinate chart on N with p ∈ U ,
and the equivalence relation is given by

(
(v̂j), x̂

)
∼
(
(vi), x

)
if v̂j =

∂x̂j

∂xi

∣∣∣∣
p

vi .

We say that TpN is the tangent space to N at p.
Ehresmann’s jet approach to a tangent vector starts, instead, with a curve

γ : R → N with γ(0) = p. In this approach, a tangent vector is an equivalence
class [γ] where γ̃ ∼ γ if

γ̃(0) = γ(0) = p

and
(f ◦ γ̃)′(0) = (f ◦ γ)′(0) (1)

for every f ∈ C1(N). A tangent vector defined in this way may be identified with
a tangent vector defined as a list of numbers transforming as a vector, by fixing a



Jets and the variational calculus 93

coordinate chart (U, xi) and setting ξi = (γi)′(0); this is independent of the choice
of chart by virtue of the chain rule. Each curve in the equivalence class specifies
the ‘direction’ of the tangent vector.

At around the same time as Ehresmann’s work on jets, André Weil was devel-
oping an algebraic approach to these problems using the idea of ‘near points’ [39].
For a tangent vector, this would use the algebra R(ε), ε2 = 0, of ‘dual numbers’
(that is, the quotient of the polynomial algebra R[x] by the ideal generated by x2).
In the case of a C∞ manifold N , an ‘algebraic tangent vector’ ξ at p ∈ N would
then be an algebra homomorphism C∞(N)→ R(ε) satisfying

ξ(f) = f(p) mod ε (f ∈ C∞(N))

so that the map δξ : C∞(N)→ R given by

δξf · ε = ξ(f)− f(p)

is a derivation: δξ(fg) = g(p)δξf + f(p)δξ(g). Our specification that N be of class
C∞ is significant, for in that case it is possible to identify such algebra homomor-
phisms with tangent vectors as defined earlier, whereas in the Ck case with k finite
there are algebraic tangent vectors, and hence derivations, which do not correspond
to tangent vectors defined by jets. From now on we shall assume that all manifolds
and maps are of class C∞, and that the equivalence relation defining each jet (such
as equation (1) above) uses functions of class C∞.

In this paper we concentrate on Ehresmann’s jet approach, and consider ob-
jects more general than tangent vectors, involving maps with higher-dimensional
domains and equivalence relations involving higher-order derivatives. We should,
though, mention that the algebraic approach can provide a further generalisation,
to Weil bundles (see [18] for a survey of these ideas).

2.2 Manifolds of jets
From now on we shall denote the typical codomain of maps giving rise to jets by
E rather than N ; E will either be a stand-alone manifold, or else the total space
of a fibred manifold π : E →M .

A tangent vector to the manifold E is an example of a first-order velocity ; for
each q ∈ E the tangent space TqE of tangent vectors at q is a vector space, and
the disjoint union of all the tangent spaces forms the tangent bundle TE → E, a
vector bundle.

More general first-order velocities are given by jets of maps γ : B → E where
B ⊂ Rm is an open ball around the origin of some positive radius ε. We write j1

0γ
for the equivalence class containing γ, where γ̃ ∼ γ if

γ̃(0) = γ(0) = q

and
(f ◦ γ̃)′(0) = (f ◦ γ)′(0)

for every f ∈ C∞(E). We put T 1
m|qE for the set of all such velocities at q; then

T 1
m|qE is a vector space which we may consider either as the direct sum

⊕m
TqE,



94 David J. Saunders

or else as the tensor product TqE⊗Rm∗. We call the disjoint union T 1
mE of all the

spaces T 1
m|qE the bundle of m-dimensional 1-velocities on E; it is, again, a vector

bundle over E, and we write τmE : T 1
mE → E for the projection map.

We say that a velocity is regular if it is the jet of an immersion γ : B → E; any
equivalent map γ̃ ∼ γ is also an immersion in some neighbourhood of zero. We
write

o

T 1
mE ⊂ T 1

mE for the open submanifold of regular m-dimensional 1-velocities
on E.

Related to these vector bundles of velocities are bundles of contact elements
and bundles of jets of sections.

Let κ : Rm → Rm be a diffeomorphism satisfying the condition κ(0) = 0. We
write j1

0κ for the equivalence class containing κ, where κ̃ ∼ κ if Dκ̃|0 = Dκ|0, and
we write L1

m for the set of all such equivalence classes. It is clear that we may
identify j1

0κ with the m×m matrix Dκ|0 and that L1
m may be identified with the

general linear group GL(m), where the group product is given by (j1
0κ1)(j1

0κ2) =
j1
0(κ1 ◦ κ2). We call L1

m a first-order jet group; it has a subgroup L1+
m called an

oriented jet group, containing those j1
0κ satisfying detDκ|0 > 0.

There is a natural right action of L1
m on

o

T 1
m|qE given by

(j1
0γ, j

1
0κ) 7→ j1

0(γ ◦ κ) ,

and this induces a smooth right action of L1
m on the regular velocity manifold

o

T 1
mE. The quotient by this action is a smooth (Hausdorff) manifold J1

mE, known
variously as the manifold of contact elements, the manifold of jets of immersions,
the manifold of jets of submanifolds, or the Grassmannian manifold; it is a bundle
over E. These names suggest that there might also be different ways of constructing
J1
mE, by taking as elements

• equivalence classes of immersed m-dimensional submanifolds;

• m-dimensional subspaces of tangent spaces; or

• equivalence classes of nonzero decomposable tangent m-vectors.

There is also an oriented version of the construction using the action of the subgroup
L1+
m on

o

T 1
mE, giving the manifold J1+

m E of oriented contact elements. Caution—it
need not be the case that the manifold of oriented contact elements is an orientable
manifold.

The basic example of a manifold of contact elements arises when m = 1; the
bundle J1

1E is just the projective tangent bundle of E.
In the case of both velocities and contact elements, we start with a manifold

E without further structure. If instead we start with a manifold E which is fibred
over another manifold M by a projection π, we may also consider jets of local
sections of π. If p ∈M and φ is a local section with p in its domain then we write
j1
pφ for the equivalence class containing φ, where φ̃ ∼ φ if

φ̃(p) = φ(p)

and
(f ◦ φ̃ ◦ γ)′(0) = (f ◦ φ ◦ γ)′(0)
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for every f ∈ C∞(E) and every smooth curve γ in M with γ(0) = p. If q ∈ E
with π(q) = p we put J1

q π for the set of all such jets obtained by considering local
sections φ satisfying φ(p) = q; then J1

q π is an affine space, modelled on the vector
space Vqπ⊗T ∗pM , where Vqπ is the vector space of tangent vectors to E at q which
are vertical over π. We call the disjoint union J1π of all the spaces J1

q π the first
order jet manifold of π; it is an affine bundle over E with projection π1,0 : J1π → E
called the target map. We also put π1 = π ◦ π1,0 : J1π →M and call it the source
map.

There is a local relationship between J1π and T 1
mE. If B ⊂ Rm is an open

ball around the origin, a chart (x−1(B);x) on M defines, for each local section φ :
x−1(B)→ E, a map γ = φ◦x−1 : B → E, so that we obtain a local correspondence
j1
pφ 7→ j1

0γ. This depends on the choice of chart, but by acting with the jet group on
o

T 1
mE to give J1

mE we may glue together the projected local correspondences to give
a global injection J1π ⊂ J1

mE as an open submanifold. This global correspondence
regards j1

pφ ∈ J1π as the jet of the submanifold imφ ⊂ E at φ(p).
All three constructions correspond to covariant functors, on the category of

manifolds and smooth maps in the first two cases, and on the category of fibred
manifolds and fibred maps projecting to diffeomorphisms in the third case. In the
case of velocities and a map f : E → F we have T 1

mf : T 1
mE → T 1

mF given by
T 1
m(f)(j1

0γ) = j1
0(f ◦ γ), and this map passes to the quotient to induce a map of

contact elements J1
mf : J1

mE → J1
mF . In the case of fibred manifolds π : E → M

and ρ : F → N with a fibred map f : E → F projecting to the diffeomorphism
f̄ : M → N we have J1f : J1π → J1ρ with J1f(j1

pφ) = j1
f̄(p)

(f ◦ φ ◦ f̄−1).

We frequently carry out calculations in local coordinates. Given a chart (U ;ua)
on E, we put uai (j1

0γ) = Di(u
a ◦ γ) and then, putting U1 = τ−1

m (U), we obtain
a chart (U1;ua, uai ) on T 1

mE. If instead π : E → M is a fibred manifold and
(U ;xi, uα) is a fibred chart on E, we put

uαi (j1
pφ) =

∂φα

∂xi

∣∣∣∣
p

where φ(p) ∈ U . Now putting U1 = π−1
1,0(U) we obtain a chart (U1;xi, uα, uαi ) on

J1π. It is worth noting that the subscript of the coordinate uαi on J1π depends on
the choice of coordinates xi on M , whereas the subscript of the coordinate uai on
T 1
mE is just a number, corresponding to a particular component of Rm. In order to

obtain a chart on J1
mE in a neighbourhood of a given contact element, we pretend

that locally E is fibred over Rm transversely to the submanifold generating the
contact element, and choose a fibred chart (U ;ui, uα) (often called called a split
chart) corresponding to this fibration; we then construct the chart (U1;ui, uα, uαi )
as in the fibred manifold case.

Most of the time, we shall concentrate on the case of jets of local sections of
fibred manifolds. The other two case are similar, but there are sometimes subtle
differences.

2.3 Repeated jets and higher-order jets
It is clear that if π : E →M is a fibred manifold then so is π1 : J1π →M ; indeed
fibred manifolds are characterised by admitting local sections through each point
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of the total space, and one local section of π1 through an arbitrary point j1
pφ ∈ J1π

is the prolongation j1φ, defined by j1φ(p̃) = j1
p̃φ. We may therefore consider the

repeated jet manifold J1π1. (Some authors label jet manifolds by the total space of
the original fibred manifold rather than by the projection map, so that they would
write J1E instead of J1π, and J1J1E instead of J1π1.)

There is, however, a distinguished submanifold of J1π1, arising because, as
simple examples show, not every local section of π1 is a prolongation j1φ. If
ψ is a general local section of π1 with coordinate expression (ψα, ψαi ) then ψ is a
prolongation if, and only if, the coordinates ψαi are the derivatives of the coordinates
ψα, and in that case ψ is the prolongation of π1,0 ◦ ψ. Caution—the equivalence
class j1

pψ of local sections of π1 might contain a prolongation j1φ, where φ is a
local section of π, even if ψ itself is not a prolongation.

If we put J2π ⊂ J1π1 for the submanifold of jets of prolongations then the
elements of J2π may be written as j1

p(j1φ) where φ is a local section of π. In this
way we may identify elements of J2π with 2-jets j2

pφ of local sections φ, where two
such local sections are 2-equivalent if their values, first and second derivatives are
equal at p. We say that J2π is the holonomic submanifold of J1π1; the term was
introduced by Ehresmann as an analogy with holonomic mechanics (see [27]).

We may see the distinction in local coordinates. The coordinates on J1π are
(xi, uα, uαi ), so that the fibre coordinates (as a fibred manifold over M) are (uα, uαi ).
The coordinates on J1π1 are therefore (xi, uα, uαi , u

α
·;j , u

α
ij) where

uα·;j(j
1
pψ) =

∂ψα

∂xj

∣∣∣∣
p

, uαij(j
1
pψ) =

∂ψαi
∂xj

∣∣∣∣
p

.

If ψ = j1φ is a prolongation then ψα = φα so that

uα·;j(j
1
p(j1φ)) = uαj (j1

p(j1φ)) ,

and in addition
uαij(j

1
p(j1φ)) = uαji(j

1
p(j1φ))

because (j1φ)αi = ∂φα/∂xi and partial derivatives commute. We may therefore use
coordinates (xi, uα, uαi , u

α
ij) on the second jet manifold J2π, where now the second

derivative coordinates uαij are symmetric in their lower indices.
The two different constraints uα·;j = uαj and uαij = uαji describing the holonomic

submanifold J2π ⊂ J1π1 suggest that there might be an intermediate submanifold,
and this is indeed the case. Recall that if the local section ψ of π1 is a prolongation
then ψαi = ∂ψα/∂xi throughout the domain of ψ; if instead this condition holds
at a point p in the domain of ψ (so that ψ(p) = j1

p(π1,0 ◦ ψ), whereas this need
not be the case for other points p̃ 6= p) then we say that ψ is adapted at p, and we
say that j1

pψ ∈ J1π1 is a semiholonomic jet. This property is well-defined, and the

set of all semiholonomic jets forms a submanifold Ĵ2π ⊂ J1π1 satisfying the first
coordinate constraint uα·;j = uαj but not necessarily the second constraint uαij = uαji.

We may also describe Ĵ2π as the submanifold of J1π1 where the two maps

(π1)1,0 : J1π1 → J1π , J1π1,0 : J1π1 → J1π



Jets and the variational calculus 97

are equal, where (π1)1,0 is the source map corresponding to π1, and J1π1,0 arises by
considering π1,0 as a fibred map over the identity between the two fibred manifolds
π1 and π.

We therefore have J2π ⊂ Ĵ2π ⊂ J1π1, and indeed each of these manifolds
is the total space of an affine bundle over J1π. Note that there are no canonical
projections J1π1 → J2π or J1π1 → Ĵ2π; but there is a canonical projection Ĵ2π →
J2π; in fact

Ĵ2π = J2π ⊕J1π

(
V π ⊗

∧2
T ∗M

)
(2)

so that any semiholonomic jet may be written as the sum of a holonomic jet and a
vector-valued 2-form expressing its curvature.

All this may be extended to higher orders. For instance J1π1, Ĵ2π and J2π
are all fibred manifolds over M , and so we may consider their first jet manifolds
and various holonomic and semiholonomic submanifolds; further details may be
found in [26]. The most important such manifolds are the higher-order holonomic
jet manifolds Jkπ, whose elements are k-jets jkpφ of local sections φ of π, with
equivalence of values and derivatives of order up to k at p ∈M , and with target map
πk : Jkπ →M ; and the resulting first-order jet manifolds J1πk with submanifolds
Jk+1π ⊂ Ĵk+1π ⊂ J1πk.

The use of coordinates on these higher-order jet manifolds gives rise to some
complications. This can already be seen in the case of J2π; the symmetry of the
second derivative coordinates uαij means that, with the usual summation convention
for repeated lower-case indices, we must write the formula for the differential of a
function f on J2π as

df =
∂f

∂xi
dxi +

∂f

∂uα
duα +

∂f

∂uαi
duα +

1

#(ij)

∂f

∂uαij
duαij

where

#(ij) =

{
1 (i = j)

2 (i 6= j) .

There are similar complications with higher-order jets, and so three options are
commonly used to deal with the problem:

• use numerical coefficients with the summation convention, as above;

• use non-decreasing indices and explicit sums; or

• use vector multi-indices uαI with I ∈ NdimM , and with I(i) denoting the i-th
component of the multi-index I.

The present author prefers the third option, using vector multi-indices, and we
shall note later that this option permits a geometric proof of an interesting result
in the calculus of variations. Using that notation, we write |I| =

∑m
i=1 I(i) for the

length of the multi-index I, and I! =
∏m
i=1 I(i)! for its factorial. We put 1j for the

multi-index with 1 in position j and zero everywhere else, and a symbol such as
I + 1j is just the ordinary addition of vectors of natural numbers. We do not use a



98 David J. Saunders

summation convention with multi-indices (always indicated by upper-case letters);
sums over repeated multi-indices will be shown explicitly.

This description of the construction of manifolds of repeated or higher-order
jets of sections may be applied in much the same way to construct repeated or
higher-order velocity manifolds. For instance we may consider T 1

mT
1
mE, whose

elements are j1
0ζ where ζ : B → T 1

mE, B ⊂ Rm. This has submanifolds T 2
mE ⊂

T̂ 2
mE ⊂ T 1

mT
1
mE. We need to use a slightly different version of a prolongation in

this case, for if γ : B → E then we define ̄1γ : B → T 1
mE by ̄1γ(t) = j1

0(γ ◦ tt)
where tt : Rm → Rm is the translation map tt(s) = s + t. Then T 2

mE is the
holonomic submanifold of 1-jets of prolongations j1

0(̄1γ), which we identify with
2-jets j2

0γ, and T̂ 2
mE is the semiholonomic submanifold of 1-jets of adapted maps

ζ : B → T 1
mE, where ζ is adapted if ζ(0) = ̄1(τmE ◦ ζ). Just as in the case of jets

of sections, we find that T̂ 2
mE is the submanifold where the two maps

τm,T 1
mE

: T 1
mT

1
mE → T 1

mE , T 1
mτmE : T 1

mT
1
mE → T 1

mE

are equal. There is now also an ‘exchange map’ e : T 1
mT

1
mE → T 1

mT
1
mE which

generalises the canonical involution of the double tangent manifold TTE, and
T 2
mE ⊂ T 1

mT
1
mE is the fixed point set of e.

The construction of higher-order contact manifolds JkmE is straightforward, but
the relationship with repeated velocities and repeated contact manifolds is rather
more complicated; see, for example, [19], [35].

For the rest of this paper we shall consider only the holonomic structures,
typically Jkπ, but sometimes also T kE. The semiholonomic and nonholonomic
structures are, nevertheless, important. As an example, we can define a general
k-th order differential equation to be a closed fibred submanifold R ⊂ Jkπ. Such
an equation may fail to have solutions (local sections φ of π whose prolongations
jkφ take values in R) because integrability conditions are not satisfied, where these
integrability conditions arise from repeatedly ‘differentiating’ the equation. Letting
πR : R→M be the restriction of πk : Jkπ →M , a single such differentiation gives
a submanifold J1πR ⊂ J1πk, and a first set of integrability conditions would arise
if J1πR ∩ Jk+1π did not project surjectively to Jkπ.

In the general case, repeated differentiations may be necessary to obtain a
(potentially infinite) family of integrability conditions, and sophisticated tools such
as Spencer coholomogy may then be needed to test whether all such integrability
conditions are satisfied: that is to say, whether there is a formal Taylor series
solution at any point of M . There are, however, special cases where only a single
differentiation is needed, and one such special case arises when the fibred manifold
R ⊂ J1π is the image of a connection, a section Γ of the affine bundle π1,0 : J1π →
E. Regarding Γ : E → J1π as a fibred map projecting to the identity on M , we
obtain J1Γ : J1π → J1π1, and we find that the image of the composite map J1Γ◦Γ
is just J1πΓ(E), and that this is in fact a submanifold of the semiholonomic manifold

Ĵ2π ⊂ J1π1. We may therefore define the curvature of the connection Γ to be the
component of J1Γ ◦ Γ in V π ⊗

∧2
T ∗M (see equation (2) above). If the curvature

vanishes then, as J1Γ◦Γ is injective, J1πΓ(E)∩J2π projects surjectively to E, and
we may deduce from Frobenius’ Theorem that there are no further integrability



Jets and the variational calculus 99

conditions. In coordinates, if Γαi = uαi ◦ Γ then

(j1Γ)αi = Γαi , (j1Γ)α·;j = uαj , (j1Γ)αij =
∂Γαi
∂xj

+ (j1Γ)β·;j
∂Γαi
∂uβ

so that (j1Γ ◦ Γ)α·;j = (j1Γ ◦ Γ)αj = Γαj , and then

(j1Γ ◦ Γ)αij − (j1Γ ◦ Γ)αji =
∂Γαi
∂xj

−
∂Γαj
∂xi

+ Γβj
∂Γαi
∂uβ

− Γβi
∂Γαj
∂uβ

is the classic expression for curvature.

2.4 Infinite jets
We sometimes need to use ‘infinite jets’: these are equivalence classes of maps where
the value and all the derivatives (rather than those up to some given maximal order)
are equal at a specified point.

In the case of a fibred manifold π : E → M , the set of infinite jets j∞p φ of
local sections φ is denoted J∞π, with projections to the various finite-dimensional
manifolds being denoted π∞,k : J∞π → Jkπ and π∞ : J∞π →M . It may be shown
that J∞π is an infinite-dimensional Fréchet manifold, modelled on the topological
vector space R∞ of infinite sequences, the inverse limit of the sequence

· · · → Rl → Rl−1 → · · · → R2 → R→ 0

in the category of topological vector spaces and continuous linear maps (see [30]).
In order to confirm this, we need to be sure that every infinite sequence describes
the Taylor polynomial of some smooth function (which need not be convergent
anywhere away from the origin); but this is Borel’s Theorem (see [4] for the original
result, applicable to functions of a single variable, and [20] for a general proof).

The topological dual of R∞ is R(∞), the space of infinite sequences with finitely
many terms nonzero. Thus a tangent vector on J∞π may have infinitely many
nonzero components, whereas a contangent vector can have only finitely many.

3 Vector fields and differential forms on jet manifolds
3.1 Contact forms
We continue with a fibred manifold π : E →M .

On any such manifold E there is a distinguished class of vector fields, the
vertical (over M) vector fields, which are tangent to the fibres of π. There is
correspondingly a distinguished class of differential 1-forms, the horizontal 1-forms,
which are annihilated by the vertical vector fields. In fact these are pointwise
concepts: at any point q ∈ E the tangent space TqE has a distinguished subspace
of vertical vectors, and the cotangent space T ∗q E has a distinguished subspace of
horizontal covectors.

In general there are no complementary concepts of horizontal vector fields and
vertical 1-forms, and indeed the existence of these complementary structures arises
when there is a connection (in the classical sense) defined on π. In the previous
section we defined a connection on π in a different way, as a section

Γ : E → J1π
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of π1,0, and we can see how this is equivalent to the classical formulation by intro-
ducing contact forms.

A contact form on the jet manifold J1π is a differential r-form θ satisfying the
condition that if φ is any local section of π then the pullback (j1φ)∗θ vanishes on
M . (Of course this definition has content only when r ≤ m.) As with horizontal
forms, this is a pointwise concept; we can, for example, describe a cotangent vector
η ∈ T ∗aJ

1π as contact if, for any prolongation j1φ such that j1
pφ = a (where

p = π1(a)), we have T ∗(j1φ)(η) = 0 ∈ T ∗pM . In coordinates (xi, uα, uαi ) on J1π, a
local basis for contact 1-forms is given by θα = duα − uαi dxi.

If Γ is a connection and θ is a contact 1-form on J1π then Γ∗θ is a 1-form on
E. In terms of the local basis contact forms we see that Γ∗θα = duα−Γαi dx

i where
Γαi = uαi ◦Γ is the coordinate expression of Γ, showing that the forms Γ∗θα are the
vertical forms on E defining a connection in the classical sense. Indeed, given a
general 1-form ω on E, its pullback π∗1,0ω on J1π may be expressed as the sum of
two components π∗1,0ω = ωh+ωc where ωh is horizontal over M and ωc is a contact
form: in coordinates, if ω = ωidx

i + ωαdu
α then

π∗1,0ω = (ωi + ωαu
α
i )dxi + ωαθ

α .

More generally, an r-form on J1π is said to be at least s-contact for 2 ≤ s ≤ r
if its contraction with any vector field on J1π is at least (s − 1)-contact, where a
contact form as defined above is said to be at least 1-contact.

We can also say when an r-form on J1π horizontal over E is ‘exactly’ s-contact,
as well as ‘at least’ s-contact. We say that it is exactly 1-contact if it is at least
1-contact, and its contraction with any vector field on J1π vertical over M is
horizontal over M . We say that it is exactly s-contact for 2 ≤ s ≤ r if it is at
least s-contact, and its contraction with any vector field on J1π vertical over M is
exactly (s− 1)-contact. For example, the 3-forms θα ∧ θβ ∧ dxi and θα ∧ θβ ∧ duγ
are both at least 2-contact; they are both horizontal over E; but the first is exactly
2-contact whereas the second is not.

Where there is no possibility of confusion, we often say simply that the form is
s-contact to mean that it is exactly s-contact.

We have described contact forms on J1π, but a similar definition applies to
forms on Jkπ: we say that a differential r-form θ on Jkπ is a contact form if,
whenever φ is a local section of π, then the pullback (jkφ)∗θ vanishes on M . We
use coordinates (xi, uαI ) on Jkπ, where the length of the multi-index I ranges from
zero (giving the coordiates uα) to k, and then a local basis for the contact 1-forms
is given by θαJ = duαJ − uαJ+1i

dxi for 0 ≤ |J | ≤ k − 1. If ω is a general 1-form on
Jk−1π then now π∗k,k−1ω = ωh + ωc, where πk,k−1 : Jkπ → Jk−1π is the natural
map sending jkpφ to jk−1

p φ, and where ωh is horizontal over M and ωc is a contact

form. If ω = ωidx
i +
∑k−1
|J|=0 ω

J
αdu

α
J then

π∗k,k−1ω =

(
ωi +

k−1∑
|J|=0

ωJαu
α
J+1i

)
dxi +

k−1∑
|J|=0

ωJαθ
α
J .

More generally, if ω is an r-form on Jk−1π with r ≤ m then π∗k,k−1ω may be
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expressed uniquely as a sum

π∗k,k−1ω = ω0 + ω1 + · · ·+ ωr

of r-forms on Jkπ, where ω0 is horizontal over M , ω1 is exactly 1-contact, and so
on, so that ω is a contact form when ω0 = 0. If r > m then we may similarly write

π∗k,k−1ω = ωr−m + ωr−m+1 + · · ·+ ωr ;

in this case we say that ω is strongly contact if ωr−m = 0.
The ideal of differential forms generated by the contact 1-forms on Jkπ is not

differentially closed. The local 1-form

θαI = duαI − uαI+1dx
i , |I| = k − 1

is a contact form, but dθαI = −duαI+1i
∧ dxi is a local contact 2-form which is not

a linear combination of the contact 1-forms. We may see a similar phenomenon
for global contact forms by using bump functions. Nevertheless it can be shown
that if θ is an arbitrary contact r-form on Jkπ then θ may be expressed as a linear
combination of contact 1-forms and their exterior derivatives; locally we may write
θ as

k−1∑
|J|=0

ξJα ∧ θαJ +

k−1∑
|J|=0

ζJα ∧ dθαJ

where ξJα are local (r − 1)-forms and ζJα are local (r − 2)-forms [24].
The situation is slightly simpler in the infinite-order case. If ω is an r-form on

J∞π with r ≤ m then ω itself (without any pullback) may be expressed uniquely
as a sum

ω = ω0 + ω1 + · · ·+ ωr (3)

of r-forms on J∞π, where as before ω0 is horizontal over M , ω1 is exactly 1-contact,
and so on. It is also the case that, on J∞π, any contact form can be expressed
as a linear combination of contact 1-forms, without the need to use their exterior
derivatives; in this case the ideal generated by the contact 1-forms is differentially
closed.

Although we have concentrated on jets of fibred manifolds, there are also contact
forms on manifolds of contact elements, and on velocity manifolds. On T kmE an
r-form θ is said to be a contact form if (̄kγ)∗θ = 0, just as in the case of fibred
manifolds. As an example, on

o

T 1
mE (it is convenient for technical reasons to restrict

attention to regular velocities) we find that the contact 1-forms are spanned locally
by forms given by determinant expressions∣∣∣∣∣∣∣∣∣∣∣

ua11 ua21 · · · u
am+1

1

ua12 ua22 · · · u
am+1

2
...

...
...

ua1m ua2m · · · u
am+1
m

dua1 dua2 · · · duam+1

∣∣∣∣∣∣∣∣∣∣∣
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so that the coordinate expressions for contact forms on velocity manifolds look
very different from the coordinate expressions for such forms on manifolds of jets
of sections.

As we do not assume that E is fibred over some other manifold, there is no base
manifold over which a form on a velocity manifold can be ‘horizontal’, and there is
therefore no decomposition of lifted forms into horizontal and contact components.
Nor is there a concept of a form being exactly s-contact, as there is similarly no
base manifold over which vector fields can be vertical. We can, though, still say
that a form is at least s-contact.

Surprisingly, perhaps, it is not true that contact r-forms on T 1
mE are linear

combinations of contact 1-forms and their exterior derivatives. To see an example
of this, take E = R3 with coordinates (u, v, w) and consider the manifold of regular
first-order 2-velocities on E with coordinates

(u, v, w;u1, v1, w1;u2, v2, w2) .

On this manifold the contact 1-forms are multiples of

θ = (u1v2 − u2v1)dw + (v1w2 − v2w1)du+ (w1u2 − w2u1)dv ;

but
ω = (u1dv − v1du) ∧ dw2 − (u2dv − v2du) ∧ dw1

is a contact 2-form because (̄1γ)∗ω = 0 for every map γ : B → E, but ω is clearly
not a linear combination of θ and dθ. It is, however, the case that if we restrict θ
and ω to the affine submanifold A ⊂

o

T 1
mE given by u1 = v2 = 1, u2 = v1 = 0 (so

that we are pretending that E is a fibred manifold over R2 with A is its first jet
manifold) then

θ|A = dw − w1du− w2dv , ω|A = dθ|A .

For essentially this reason the contact forms on manifolds of contact elements have
the same coordinate expressions, in split charts, as they do on manifolds of jets of
sections.

3.2 Vector fields

We return to the case of a fibred manifold π : E →M and its first jet manifold. In
this case, dual to the contact 1-forms are the total derivatives. These are vector
fields along a map rather than on a manifold, and, as with contact forms, may be
defined pointwise. If v ∈ TpM is a tangent vector and φ is a local section of π with
p in its domain then Tφ(v) is a tangent vector at φ(p) ∈ E. If φ̃ is another such
local section then T φ̃(v) = Tφ(v) if j1

p φ̃ = j1
pφ. Thus, given a vector field X on

M , we obtain a map X1 from J1π to TE satisfying τE ◦ X1 = π1,0, so that X1

is a vector field along the source projection π1,0. The local coordinate vector field
∂/∂xi gives, in this way, the local total derivative

d

dxi
=

∂

∂xi
+ uαi

∂

∂uα
.
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Given a connection Γ : E → J1π, a total derivative X1 becomes a horizontal vector
field X1 ◦ Γ on E; locally

d

dxi
◦ Γ =

∂

∂xi
+ Γαi

∂

∂uα
.

It is evident that the contraction of a contact 1-form (necessarily horizontal over
E, and so taking its values in T ∗E) and a total derivative (taking its values in TE)
must vanish.

In the same way, a vector field X on M determines a vector field Xk along
πk,k−1 : Jkπ → Jk−1π; locally now ∂/∂xi gives rise to

d

dxi
=

∂

∂xi
+

k−1∑
|J|=0

uαJ+1i

∂

∂uαJ

and again the contraction of such a vector field Xk with a contact 1-form on
Jkπ (necessarily horizontal over Jk−1π) must vanish. It is not the case, though,
that every vector field on Jkπ having a vanishing contraction with contact forms
must be a linear combination of total derivatives, because vector fields vertical
over Jk−1π also satisfy this condition. The distribution on Jkπ annihilated by
the contact forms and spanned by both classes of vector fields together is called
the contact distribution (or also the Cartan distribution); it is not an integrable
distribution, for the same reason that the ideal generated by the contact 1-forms
is not differentially closed.

Once again, the situation is slightly simpler in the infinite-order case. The vector
field X∞ is a genuine vector field on the manifold J∞π, rather than a vector field
along a map (although it need not have a flow: there is no guarantee that vector
fields on Fréchet manifolds possess flows). In this case the rank of the contact
distribution (the distribution annihilated by the contact forms) is dimM , and the
distribution is spanned by the total derivatives alone.

We return to the finite-dimensional case. A fibred map g : Jkπ → Jkπ will
be called a contact transformation if it maps the contact distribution to itself, or
equivalently if the pullback g∗θ of any contact form θ on Jkπ is again a contact
form. Similarly a vector field Z on Jkπ will be called an infinitesimal contact
transformation if its Lie bracket with any vector field taking values in the contact
distribution (a total derivative, or a vector field vertical over Jk−1π) again takes
values in the contact distribution; in terms of contact forms we require that the
Lie derivative dZθ is again a contact form. .

We may obtain contact transformations, or infinitesimal contact transforma-
tions, by prolongation. We mentioned earlier that the operation of taking jets of
local sections is functorial; in particular, if π : E → M is a fibred manifold and
f : E → E is a fibred map whose projection f̄ : M →M is a diffeomorphism then
Jkf : Jkπ → Jkπ is another fibred map, its prolongation. Each such prolongation
is a contact transformation.

If Y is a projectable vector field on E (that is to say projectable to a vector
field Ȳ on M) then its flow ψt is, locally, a family of fibred maps on E projecting
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to the local flow ψ̄t of Ȳ . We may use the definition

Jkψt(j
k
pφ) = jkψ̄t(p)(ψt ◦ φ ◦ ψ̄−t)

to specify a family of local fibred maps giving the flow prolongation Y k on Jkπ.
This is again a vector field projectable to Ȳ , and in coordinates if

Y = Y i
∂

∂xi
+ Y α

∂

∂uα

then

Y k = Y i
∂

∂xi
+

k∑
|I|=0

(
d|I|Y α

dxI
−

∑
J+K=I
J 6=0

I!

J !K!

∂|J|Y j

∂xJ
uαK+1j

)
∂

∂uαI
. (4)

In fact Y need not be projectable in order for a prolongation Y k to exist. We
construct a prolongation for a general vector field on E by first noticing that there
is an exchange map ek between V πk, the vectors on Jkπ vertical over M , and the
k-jets of local sections of the composite fibred manifold νπ : V π → E → M . If
Y is a vertical vector field on E, so that it is a fibred map E → V π projecting
to the identity on M , then its prolongation JkY : Jkπ → Jkνπ is such that
ek ◦ JkY : Jkπ → V πk is just Y k, the prolonged vector field. We then note that a
similar construction may be used for a vertical vector field along the map π1,0 to
give a prolonged vector field along πk+1,k. Finally, we observe that for an arbitrary
vector field on Y we may obtain a related vertical vector field Yv along π1,0 by
subtracting a suitable total derivative X1, and if we then prolong to obtain Y kv as a
vector field along πk+1,k, we may obtain a prolongation Y v as a vector field on Jkπ
by adding the total derivative Xk+1 (see [30] for details of this procedure). The
coordinate formula for such a general prolongation of Y differs from that given in
equation (4) only in that the partial derivatives ∂|J|Y j/∂xJ are replaced by total
derivatives d|J|Y j/dxJ , because the functions Y j need no longer be projectable
to M .

Any such prolongation Y k is an infinitesimal contact transformation. The Lie–
Backlund Theorem asserts that if the fibre dimension of the fibred manifold π :
E → M is greater than one then prolongations (of fibred maps E → E, or of
vector fields on E) are the only contact transformations (or infinitesimal contact
transformations).

In the case where the fibre dimension equals one then there are contact trans-
formations which are not projectable to E; for example if M = Rm and E = Rm+1

then the hodograph transformation, given by (xi, u, ui) 7→ (ui, x
iui − u, xi), is a

contact transformation on J1π which does not project to E. Nevertheless, even in
the case where the fibre dimension is one, a contact transformation (or infinitesimal
contact transformation) on Jkπ will be projectable to J1π.

Similar constructions may be performed on velocity manifolds and on manifolds
of contact elements, but the technicalities are perhaps a little easier. For instance,
although the coordinate description of contact forms on velocity manifolds involves
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multilinear operations, the coordinate description of total derivatives is essentially
the same as on manifolds of jets of sections:

d

dti
=

k−1∑
|J|=0

uaJ+1i

∂

∂uaJ
compared to

d

dxi
=

∂

∂xi
+

k−1∑
|J|=0

uαJ+1i

∂

∂uαJ
.

In addition the prolongation operation, for both maps and vector fields, is more
straightforward, because there is no need to worry about projectability. The pro-
longation of a map f : E → E is simply the map T kmf : T kmE → T kmE, and the
prolongation of an arbitrary vector field on E is just its flow prolongation. The
same approach may be used for prolongations to manifolds of contact elements.

3.3 Vertical and horizontal differentials
On the infinite jet manifold J∞π we noted above that any 1-form ω can be written
as the sum of horizontal and contact components ω = ωh + ωc. The map ω 7→ ωh
is a pointwise linear operation, and may be considered as a vector-valued 1-form
h on J∞π. The commutator of this operator with the exterior derivative d gives a
derivation dh of the exterior algebra Ω∗ = Ω∗J∞π (see [14]) called the horizontal
differential; we write dv for the complement d−dh and call it the vertical differential.
In particular, for a function f on J∞π we have dhf = (df)h and dvf = (df)c.

More generally we may extend the decomposition given in equation (3) to write
the exterior algebra Ω∗ as a direct sum of components Ωr,s, where if ω ∈ Ωr,s then
ω is an (r+ s)-form on J∞π which is exactly s-contact. Thus Ωr,s is generated by
forms with local coordinate expressions

dxi1 ∧ dxi2 ∧ · · · ∧ dxir ∧ θα1

I1
∧ θα2

I2
∧ · · · ∧ θαsIs .

We see that dh : Ωr,s → Ωr+1,s and dv : Ωr,s → Ωr,s+1, and these maps may be
combined to give a construction known as the variational bicomplex. (See Figure 1
below; the horizontal differentials are shown vertically, and the vertical differentials
horizontally, purely for typographical convenience.) In this bicomplex Φs denotes
the quotient module Ωm,s/dhΩm−1,s, and the maps

δ : Φs → Φs+1

are induced by the maps dv : Ωm,s → Ωm,s+1. Note that dh and dv anticommute,
so that most of the small squares in the diagram are anticommutative rather than
commutative. An obvious question concerns the exactness of this bicomplex. It
is fairly straightforward to see that dv is locally exact by using a version of the
standard Poincaré lemma with parameters, but proving local exactness of dh is
significantly more complicated. A comprehensive study of the variational bicom-
plex may be found in [1] and a useful summary with further references is given
in [38]; these works also contain information about the global cohomology of the
bicomplex.
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0 0

R R 0 0

0 Ω0M Ω0,0 Ω0,1 · · · Ω0,s · · ·

0 Ω1M Ω1,0 Ω1,1 · · · Ω1,s · · ·

...
...

...
...

0 Ωm−1M Ωm−1,0 Ωm−1,1 · · · Ωm−1,s · · ·

0 ΩmM Ωm,0 Ωm,1 · · · Ωm,s · · ·

0 Φ0 Φ1 · · · Φs · · ·

0 0 0

π∗∞

d

dv

dh

dv

dh

dv dv

dh

π∗∞

d

dv

dh

dv

dh

dv dv

dh

d dh dh dh

π∗∞

d

dv

dh

dv

dh

dv dv

dh

π∗∞

d

dv

p

dv

p

dv dv

p

δ δ δ δ

Figure 1: The variational bicomplex on J∞π

It is important to realise that the variational bicomplex cannot work in the same
way on finite-order jet manifolds, because if ω is a form on Jkπ then in general
dhω and dvω are forms on Jk+1π; and sequences such as

Ω1,0E
dh−→ Ω2,0J1π

dh−→ Ω3,0J2π

are not even locally exact. To see an example of this, take M = R2 and E = R4,
and put ω = (u1

1u
2
2 − u1

2u
2
1)dx1 ∧ dx2 ∈ Ω2,0J1π; then dhω = 0, but there is no

1-form on E mapping to ω under dh, because the image of any such form must
have coefficients affine in the first derivative coordinates.

It is therefore of interest to consider forms which do not increase in order under
dh. It may be shown that, in coordinates, their coefficients must be polynomial in
the highest order derivatives, and that such polynomials must involve determinants.
These are called Jacobian forms in [1], and an elementary proof that if ω ∈ Ωr,0Jkπ
(where 0 ≤ r < m) satisfies dhω ∈ Ωr+1,0Jkπ then the coefficients of ω must be
polynomial of degree not exceeding s in the k-th order derivative coordinates may
be found in [34].

A different approach which avoids this problem is to consider, instead of horizon-
tal forms, equivalence classes of arbitrary forms modulo contact forms or strongly
contact forms. Consider a fixed order k, and now write Ωr for ΩrJkπ. For
1 ≤ r ≤ m let Θr be the submodule of Ωr containing the contact forms, so that if
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r > 1 and θ ∈ Θr−1 then dθ ∈ Θr; if r > m let Θr be generated by the strongly
contact forms and dθ where θ ∈ Θr−1. We therefore have a subsequence

0→ Θ1 → Θ2 → · · · → Θm → · · · → ΘM → 0

of the de Rham sequence. By considering restrictions to open subsets of Jkπ of
the form π−1

k,0(U) where U ⊂ E, the corresponding sheaf sequence is found to be
exact; in addition each sheaf Θr is soft. We may therefore construct the following
sheaf diagram

0 0

0 Θ1 · · · ΘM 0

0 R Ω0 Ω1 · · · ΩM ΩM+1 · · ·

Ω1/Θ1 · · · ΩM/ΘM

0 0

d

p

d d

p

d d

where the sheaf sequence of quotients (with maps induced by d)

0 R Ω0 Ω1/Θ1 · · · ΩM/ΘM ΩM+1 · · ·

is exact. It is known as the finite-order variational sequence, and further details
may be found in [23].

The construction of the finite-order variational sequence involves only contact
forms, and so it also makes sense on manifolds of contact elements. In contrast
the variational bicomplex uses horizontal forms, and so cannot be defined directly
on manifolds of contact elements, although it is again possible to mimic horizontal
forms by using quotient modules [28]. On velocity manifolds, though, a different
type of bicomplex may be constructed using vector-valued forms: r-forms taking
their values in

∧s Rm∗, with d taking the place of the vertical differential and a
tensorial map constructed from total derivatives taking the place of the horizontal
differential; further details may be found in [33].

4 The calculus of variations
4.1 Parametric and non-parametric variational problems

The machinery we have described above allows us to study variational problems of
many kinds. There is, though, one important distinction which may be exemplified
by considering two simple problems, one from mechanics and one from geometry.
The problem in mechanics is to find the trajectory of a free particle moving in
space (say, R3) from one point to another; the problem in geometry is to find the
curve giving the shortest distance between two points in space.
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The solution to both problems is, of course, the straight line between the two
points; but the term ‘straight line’ has different meanings for the two problems.
For the mechanics problem, the straight line is a map from a closed interval to R3,
whereas for the geometric problem the straight line is a geometric line segment,
perhaps with a given direction. In mechanics, traversing the path of the particle
at a varying speed would represent a different trajectory, whereas in geometry
there is no concept of ‘speed’ and any description of the line segment in terms of
a map from a closed interval to R3 would involve an external parameter, not part
of the original problem. We say that the geometric problem is parametric, and the
mechanics problem is non-parametric.

The distinction may be seen when the two problems are expressed as integrals
in classical notation. The mechanics problem would be expressed as∫

1
2 (ẋ2 + ẏ2 + ż2)dt

whereas the geometric problem would be expressed as∫ √
ẋ2 + ẏ2 + ż2 dt ;

writing the integrand of the latter as F (ẋ, ẏ, ż), we see that it is ‘positively homo-
geneous in the velocity variables’, so that

F
(
µ(ẋ, ẏ, ż)

)
= µF (ẋ, ẏ, ż)

for µ > 0.
This geometric problem is an instance of a Finsler geometry. In a general

Finsler geometry, one is given a manifold E and a positively homogeneous function
F :

o

TE → R, the Finsler function, satisfying a certain regularity condition; one
seeks maps γ : [a, b]→ E giving stationary values of the integral∫ b

a

(̄1γ)∗F dt .

It follows from the homogeneity property of F that if γ is such an extremal then
so is any reparametrization γ ◦ κ where κ : [a, b]→ [a, b] and κ′(t) > 0. In general,
parametric variational problems may involve more independent variables (such as
minimal surface problems) or higher order derivatives; they would be defined by a
function on a bundle of regular velocities T kmE satisfying a family of homogeneity
conditions known as Zermelo conditions [37]. Such a problem may also be defined
on the corresponding manifold of contact elements.

On the other hand, time is intrinsic to the description of the mechanics problem,
so we may regard such problems as being formulated on J1π, where π : E → R is
a fibred manifold. In general one is given a function L : J1π → R, the Lagrangian
function and seeks local sections φ : [a, b]→ E giving extreme values of the integral∫ b

a

(j1φ)∗Ldt .
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Now, though, t (the coordinate on the base manifold R) is defined by pullback
as a global coordinate on J1π, so we may consider λ = Ldt as a 1-form on J1π,
the Lagrangian 1-form, horizontal over R. Note that L, and hence λ, might have
an explicit time dependence; if it does not, and E has the form of a Cartesian
product E = R× E0, then there is a canonical isomorphism J1π ∼= R× TE0, and
indeed many mechanics texts consider time-independent Lagrangian functions to
be defined on TE0 so that the techniques of symplectic geometry can be used on
that even-dimensional manifold.

In general, a non-parametric variational problem may involve more independent
variables (such as problems in field theory) or higher order derivatives; it would
defined by a Lagrangian m-form on Jkπ, where π : E → M is a fibred manifold,
with M orientable and m = dimM .

4.2 Lagrangians and Euler–Lagrange equations

We consider a non-parametric variational problem, given by the Lagrangian m-
form λ on Jkπ, horizontal over M (see [32]). Let C ⊂M be a compact connected
m-dimensional submanifold, so that the variational problem defined by λ and C is
to find extremals, local sections φ of π : E →M whose domains contain C, giving
stationary values of the integral ∫

C

(jkφ)∗λ

under small ‘variations’ of φ: that is to say, if φs is a one-parameter family of local
sections, all of whose domains contain C, such that φ0 = φ and φs|∂C = φ|∂C , then

d

ds

∫
C

(jkφs)
∗λ = 0 .

Such a family of local sections may be constructed from the flow of a vertical vector
field Y on E vanishing on π−1(∂C), a variation field, and then we require∫

C

(jkφ)∗dY kλ = 0 (5)

where Y k is the prolongation of Y to Jkπ.
Now define an m-form ϑλ on J2k−1π, horizontal over Jk−1π, to be a Lepage

equivalent of λ if π∗2k−1,kλ−ϑλ is a contact form, and also iXdϑλ is a contact form
for every vector field X defined on J2k−1π and vertical over E. It may be shown
that every Lagrangian m-form λ has a Lepage equivalent, although (unless m = 1)
this will not be unique. Using a Lepage equivalent, equation (5) for extremals may
be written as ∫

C

(j2k−1φ)∗dZϑλ = 0 (6)

whenever Z is a vector field on J2k−1π vanishing on π−1
2k−1(∂C), with no require-

ment that Z be a prolongation.
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Noting that dZϑλ = diZϑλ + iZdϑλ and that∫
C

(j2k−1φ)∗diZϑλ =

∫
C

d
(
(j2k−1φ)∗iZϑλ

)
=

∫
∂C

(j2k−1φ)∗iZϑλ = 0

because Z vanishes on π−1
2k−1(∂C), we find that only the 1-contact part of π∗2k,2k−1dϑλ

makes any contribution to the integral (6), and we write ελ for this 1-contact part;
it is an (m + 1)-form on J2kπ called the Euler–Lagrange form. In coordinates, if
λ = Ldx1 ∧ · · · ∧ dxm then

ελ =

(
∂L

∂uα
−

2k−1∑
|I|=1

(−1)|I|−1 d
|I|

dxI
∂L

∂uαI

)
duα ∧ dx1 ∧ · · · ∧ dxm .

The zero set of this form is a differential equation of order (at most) 2k, the Euler–
Lagrange equation for λ.

We now consider this in the context of the constructions described earlier, the
variational bicomplex and the finite-order variational sequence. We shall start with
the bicomplex (recall that this is defined for infinite jets, so that everything must
be pulled back to J∞π); the relevant part concerns m-forms and (m + 1)-forms,
and their predecessors and successors.

Ωm−1,0

Ωm,0 Ωm,1 Ωm,2

0 Φ0 Φ1 Φ2

0

dh

dv

p

dv

p p

δ δ

j j

If s ≥ 1 then each injection j selects a representative form from the equivalence
class in Φs, and the composite maps I = j ◦p : Ωm,s → Ωm,s, with local coordinate
expressions

I(ω) =
1

s

∞∑
|I|=0

(−1)|I|θα ∧
(
d|I|

dxI
i∂/∂uαI ω

)
(7)

are globally defined projection maps and are called interior Euler operators [1]. In
the particular case s = 1 any (m+ 1)-form in the image I(Ωm,1) is called a source
form and by construction is horizontal over E. The significance of the maps I is
that, given a Lagrangian m-form λ ∈ Ωm,0, the Euler-Lagrange (m+ 1)-form ελ is
the source form Idvλ ∈ Ωm,1.

Two questions arising in this context can be answered using local exactness of
the variational bicomplex. First, if λ is a null Lagrangian, so that ελ = Idvλ = 0,
we see that δpλ = pdvλ = 0 as j is an injection, so that pλ = 0 as δ is an injection;
thus λ = dhµ for some µ ∈ Ωm−1,0.
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Secondly, if ε ∈ Ωm,1 is a source form satisfying the condition δpε = 0 then
pε = δpλ for some λ ∈ Ωm,0 by exactness at Φ1 and surjectivity of p, so that
pε = pdvλ and therefore ε = Idvλ = ελ. This therefore gives a solution to the
inverse problem of the calculus of variations, and the representative Idvε is called
the Helmholtz–Sonin form of ε (see [38], where it is called the Helmholtz form).
Note that this is a comparatively easy version of the inverse problem, because
it requires the given differential equations to have the same format as the Euler–
Lagrange equations of the constructed Lagrangian. The problem of determining the
existence of a Lagrangian whose Euler–Lagrange equations are a matrix multiple
of the given equations, and hence equivalent to them, is much harder and has only
partial solutions.

Note that, in the absence of information about the cohomology of E, both these
argument are purely local. In addition, as all the forms constructed in this way are
defined on J∞π, information about projectability to any particular finite-order jet
manifold must be obtained by other means.

Slightly different considerations are involved when using the finite-order varia-
tional sequence, as all the relevant terms are quotients, and selecting a canonical
representative of an equivalence class might result in a form of a higher order
than the order of the original sequence. We shall therefore indicate the order of
each term by a subscript, so that the relevant part of the diagram, together with
additional terms containing representatives, would be

Ωm−1
k Ωmk Ωm+1

k Ωm+2
k

Ωm−1
k /Θm−1

k Ωmk /Θ
m
k Ωm+1

k /Θm+1
k Ωm+2

k /Θm+2
k

Ωmk+1 Ωm+1
2k+1 Ωm+2

2k+1

d

p

d

p

d

p p

i j j

δ δ

The map i gives the horizontal component ωh of π∗k+1,kω corresponding to the
equivalence class [ω], and the maps j gives rise to the finite-order versions of the
interior Euler operator [21]

.I(ω) =
1

s

k∑
|I|=0

(−1)|I|θα ∧
(
d|I|

dxI
i∂/∂uαI ωs

)
.

Note that the order of I(ω) is in general 2k+1 rather than 2k because ωs ∈ Ωm+s
k+1 ,

whereas a Lagrangian form λ is a horizontal m-form so that (dλ)1 ∈ Ωm+1
k and

therefore ελ = I(dλ) ∈ Ωm+1
2k . (It is not necessary to take the s-contact component

ωs in the corresponding formula (7) for the interior Euler operator on the variational
bicomplex, because elements of Ωm,s are automatically s-contact.)

As before, we may consider null Lagrangians λ ∈ Ωmk , and source forms ε ∈
I(Ωm+1

2k ) satisfying δε = 0, and use exactness [25]. Indeed, for the second problem
an explicit construction of a suitable form λ = Ldx1 ∧ dx2 ∧ · · · ∧ dxm is given by
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the Vainberg–Tonti Lagrangian

L = uα
∫ 1

0

εα(xi, suβI )ds .

Note that if λ is a Lagrangian form of order k with Euler–Lagrange form ελ of
order 2k, then the Vainberg–Tonti Lagrangian of ελ will generally have order 2k
rather than k, and so will differ from λ by a null Lagrangian. There are, though,
circumstances where ελ has order less than 2k but there is no lower-order form
λ̃ such that λ − λ̃ is null; a necessary condition for this is that the coefficient of
λ should be a polynomial in the k-th order derivatives, of degree not more than
the number of distinct multi-indices I of length k (see [36], where the proof makes
explicit use of the geometric properties of vector multi-indices). This condition is
not, however, sufficient; a further condition of skew-symmetry in those derivatives
is also needed.

5 Outlook

It is clear that the use of jet concepts has helped to clarify some of the underlying
geometry of variational problems. There are still, though, many outstanding ques-
tions, particularly for multiple-integral problems (m > 1) on Jkπ. For example, we
mentioned above that although Lepage equivalents of multiple-integral problems
are known to exist, they are not unique. This raises the question of whether it
is possible to make a canonical choice of a global equivalent. It is known that
this cannot be done in general when k > 2 [17], and that if k = 1 then there are
certainly three canonical choices: the classical Poincaré–Cartan form [15], differing
from the Lagrangian form by a term which is exactly 1-contact; the Carathéodory
form [5], which is a decomposable form defined for non-vanishing Lagrangians,
and the ‘Fundamental Lepage equivalent’ [3], [22] which is closed precisely when
the Lagrangian is null. (The second and third of these may also be defined for
variational problems on the manifold of first-order contact elements, whereas the
condition of being exactly 1-contact makes no sense there.) There are also ver-
sions of the Poincaré–Cartan form and the Carathéodory form for second-order
Lagrangians [6], [29], [31], defined on J2π, but it is not known whether there is a
canonical choice of Lepage equivalent of a second-order Lagrangian which is closed
precisely when the Lagrangian is null.

Perhaps, though, one of the most interesting and important problems is the
inverse multiplier problem for first-order multiple-integral problems: given a family
of second-order partial differential equations, when do they represent (after mul-
tiplying by an as yet undetermined matrix) the Euler–Lagrange equations of a
Lagrangian? Although there has been some work on this problem in the case of a
single dependent variable (see [2] for some early results) very little is known about
the case of a family of equations. Nevertheless, in view of recent developments in
the inverse multiplier problem for ordinary differential equations [7], [8], one might
hope to see some advances in due course.
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