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A look on some results about Camassa—Holm type
equations

Igor Leite Freire

Abstract. We present an overview of some contributions of the author
regarding Camassa—Holm type equations. We show that an equation uni-
fying both Camassa—Holm and Novikov equations can be derived using the
invariance under certain suitable scaling, conservation of the Sobolev norm
and existence of peakon solutions. Qualitative analysis of the two-peakon
dynamics is given.

1 Introduction

From September to December of 2018 I had the opportunity to stay a while in the
Mathematical Institute of the Silesian University in Opava, Czech Republic, as a
visiting professor. It was a very nice and rich experience and, in particular, I had
the opportunity to visit the University of Ostrava and deliver a talk in the Ostrava
Seminar on Mathematical Physics. I want to express my gratitude to Professor
Pasha Zusmanovich (Ostrava) for his invitation to give a talk in that seminar and
to Professor Artur Sergyeyev (Opava) for his firm encouragement and help during
my visit to Opava.
My talk was concerned with the Camassa—Holm (CH) equation

My +2Usm A+ umgy =0, M= U — Uy, (1)

and other similar equations sharing common properties with it, and recently I
received a very kind invitation to write a survey about my talk. This is the genesis
of the present work which, like my seminar, is a review of some of my papers
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regarding the CH equation and partners. More precisely, in this review I will
revisit the works [3], [6], [14], [15], [16], [17] which lead to the discovery of a one-
parameter family of equations having the CH equation as a very special member.
In view of the purposes of the present work, some parts of the presentation will
closely follow the original references.

The CH equation (1) was named after the seminal work by Camassa and Holm
[8], although, as far as I know, it was discovered a decade earlier in [24]. However,
in [8] the equation was derived from a physical framework and some fascinating
facts about it were reported there. Some of its interesting properties are:

P1. Bi-Hamiltonian structure, meaning that the equation has the representa-

tions
OH’ oH
_ _ 92 — _ hadd
my = —0,(1—092) 5 (m0y + Oym) i
where
1
H=- /(u2 +u?)da, (2)
2 Jr

1
H = 3 /(u3 + uu?) dw,
R

oH o1 u? +u2 OH' B o1 ud + uu?
%—(1—835) Eu<2 , 5m—(1—8x) E,{——2,

and 0 0 0 0
o 0 0 2
T Ou De Ouy Dy Ouy +D; gy

is the Euler-Lagrange operator.

E, :

4+ .- (3)

These two representations satisfy certain properties that we do not study
further here. These properties, however, make the equation bi-Hamiltonian.
For further details about bi-Hamiltonian equations, see Olver [41].

P2. Infinite hierarchy of symmetries. As a consequence of the bi-Hamiltonian
structure, it has a recursion operator R = (md, + 9;m)(1 — 92)~1d; 1. The
existence of the recursion operator implies on the existence of an infinite
hierarchy of symmetries, although the presence of the operator (1 — §2)~!
brings non-local terms into them. Again, we refer to Olver’s book [41] for
further details about this subject, as well as [40].

P3. Infinite hierarchy of conservation laws. One more consequence of the
bi-Hamiltonian structure is the existence of infinitely many conservation laws.

P4 Distributional wave solutions. The equation has the solitary waves u(t, z) =
ce17=¢tl " called peakons, as solutions.

P5 Soliton-like solutions. A sort of non-linear superposition of the peakon
solutions, called multipeakons.
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These properties were reported in [8] and since then they have been extensively
investigated in the literature. Moreover, the items above do not give us an exhaus-
tive list of the remarkable properties of the CH equation. From the perspective
of Analysis, we can also mention the following salient features of the equation:
Its peakon solutions are stable [11]; the solutions with sufficient regularity can be
globally defined and depending on the value of the derivative of the initial data
they can also describe wave breaking [10], [12], [13]. The reader is guided to [23],
[35], [36] and references thereof for further readings about qualitative properties of
the solutions of the CH equation. It is also worth observing that the properties
P1, P2, and P3 above are related to integrability. For a review on integrability
and differential equations, see [34], [38].

For a while the CH equation was the only known equation having the above
properties, until the appearance of the Degasperis—Procesi (DP) equation [20]

me + 3’U/$m +umg = O, m=UuU—Ugg, (4)

which differs from the CH equation by the coefficient in the term w,m. Both CH
and DP are members of the one-parameter family of equations

my + buym +umy =0, M =u— Uy, (5)

commonly called b-equation [21]. Provided that b is an integer, equation (5) has
the properties P4 and P5 above, see [21], [28], but not necessarily the others for
arbitrary values of b. As far as I know, (5) was the first family of equations having
such properties and containing two integrable members [37].

An influential work in the land of the CH-type equations was made by the end
of the first decade of this century [39]. There, Novikov presented a list of quadratic
and cubic nonlinear equations generalising the CH equation. Among the equations
discovered by Novikov there was

me + 3uu1m -+ Uzmz = 0, m=u— Ugyg, (6)

which is today known as Novikov equation and, like the CH and DP equations, has
the properties’ P1-P5 above.

The CH and Novikov equations still share other properties. Below we list some
of those that will be of vital importance for our purposes:

P6 Scaling symmetry. They are invariant under the transformation (¢, z,u) —
(A, 2, A71u), A > 0, with b = 1 for the CH equation [9] and b = 2 for the
Novikov equation [6], [15]. This transformation has the following generator:

0 0

P7 Conservation of the H'(R)-norm of its solutions. Both equations have
(2) as a Hamiltonian and this fact implies on the conservation of the H'(R)-
norm of their solutions decaying fast enough at infinity [8], [29].

INote that they share the same properties, but not necessarily the same Hamiltonians or the
same solutions.
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P8 Peakons. Both equations have peakon solutions of the type
u(t,z) = cMbelr=etl
¢ >0, [8], [29].

As already mentioned, this paper is mostly concerned with certain common
properties of the CH and Novikov equations and how these properties, more specif-
ically, P6—P8, enable us to obtain a family of equations unifying (1) and (6).

The paper is organised in the following way: in the next section we present
an overview on symmetries, conservation laws and elements of functional analysis
which will be relevant to us. Next, in Section 3 we consider an inverse problem
and solve it. Its solution, actually, is the equation unifying the CH and Novikov
equations. Then, in Section 4 we study the two-peakon dynamics of the equation
obtained in the previous section. Final comments are presented in Section 5.

2 Preliminaries

In this section we present the basic tools of this work. We opt to make a to the
point presentation, but we also suggest to the interested reader enough references
with further and deeper discussions/presentations about the topics discussed here.
Through this paper we assume that x € R.

2.1 Lie point symmetries

Here we present some facts about Lie symmetries of differential equations with
two independent variables and one dependent variable u = u(t, z) of the type (1).
Further details and more general treatment can be found in [4], [5], [32], [33], [41].
We recall that a smooth function depending on (¢, z,u) and derivatives of v up
to a finite, but not necessarily fixed, order is called a differential function and the
set of all of these functions is denoted by .A.
The total derivative operators with respect to ¢t and = are given by

D—g+u£+u i—ku 0 +

ot Tou T M ouy T Duy ’ )

D=2 e v tun L

* T 9z o Tt ou, T T G,

Let

i(t,x,u,€) =t + er(t,z,u) + O(?),
Z(t,x,u,€) = x + e€(t, x,u) + O(?), (9)
u(t, z,u,€) = u+ en(t,z,u) + O(e?),

be a formal one-parameter group of transformations. The coefficients 7, £, n, which
depend only on (¢, z,u), define the infinitesimal generator

0

0
X=ro+Ea
T +§ +8

(10)
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of the group of transformations. The transformations (9) are said to be a Lie point
symmetry of an equation

Ut — Utgr = F(ua Ug, Uz, uxa:x) (11)

if and only if
XO) g~ tgzs — F) = Mup — ey — F), (12)

for some function A\ € A, where

0 0
CIZL’ CCECEI

Bu U OUgaa

0

auth

0
R +¢toe (13)

is the third-order prolongation of the generator (10), and

= Di(n) — (De7)ur — (Di§)ua,
= D;(n) — (Dy7)ur — (D),
Dy (C") = (Da7)tgt — (D) U (14)
C””” = Dy (¢*") — (DT )uzat — (Dab)Uzzz,
Ctm = Dy(C"") = (DiT) gt — (Di&)Uiaa-

Remark 1. In principle the third-order prolongation of the generator (10) would
have more components which we neglected because the equation (11) depends only
on t, T, U, Up, Uz, Ugy, Usze and Uge, and therefore we only present the components
of the prolongation that really interest us.

Example 1. Let us consider the generator (7) and the equation
Ut + €Uy + W)Uy + g(w)Ugtpe + h(UW)Ugge = 0, (15)

where f, g and h are smooth functions and ¢ < 0 is an arbitrary constant. Suppose
that (7) is the generator of a one-parameter group of symmetries of (15). Substi-
tuting the components 7 = bt, £ = 0 and 7 = —u into (14) and next into (13), we
have

0

0 0 0
X®) =y ——bt—+(b+1)uy o

Ry 5 t+u —+tu +u +(b+1)uy

9
autzm -
(16)

0 _9
Oy Ozgn

A simple calculation yields

(b + 1)(Ut + Eutxx) =+ (Uf)/uar + [(Ug)/ + g]uxuxx + (Uh)/um:cacy

where the prime ' means derivative with respect to u. Comparison of the latter

expression with (12) gives

(b + 1)(ut + Eutﬂﬁﬂ?) + (uf)lux + [(UQ)I + g}umuzm + (Uh)luzzm -
Aug + etgee + f(w)ug + g(W)Ugtige + (W) Ugry)-
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From the coefficients of uy, u;, Uz, we are forced to conclude that
A=0b+ 1, (uf)/ = )\f’ (ug)/ +g= /\g’ (uh)’ = )\h7

which reads f(u) = yu®, g(u) = ou’~' and h(u) = 6u’, where 7, o and 0 are
arbitrary constants. As a consequence of these calculations, the generator (7) is a
Lie point symmetry generator of (15) if and only if the equation takes the form

Up + ez + YulUy + ouP T ugUugy + Ouluge, = 0, (17)
where v, 0 and 6 are arbitrary constants.

2.2 Conservation laws

Our purpose in this subsection is to present basic facts about conservation laws.
For a more rigorous and detailed discussion about this point, see the papers [1],
[2], [42], [43] and the books [4], [32], [33], [41].

A conserved current of the equation (11) is a pair C' = (C?, C!), where C°, C* €
A, such that Div(C) := D,C°+ D,C" vanishes identically on the solutions of (11).
It is possible to prove that

DtCO + Dmcl = Q(ut — Utgpy — F), (18)

where @) € A is called characteristic of the conservation law, while the expression
in (18) is referred as the characteristic form of the conservation law corresponding
to the conserved current C, e.g, see [43].

Let us explore (18) a bit more. On the solutions of (11) the relation (18)
becomes D;C° + D,C' = 0. The component C? is called conserved density, while
the component C' is known as conserved flur. These terms are natural in view
of the following observation: assume that « is a solution of (18) decaying to 0 at
infinity, with the same property holding to its derivatives and C', and let us define

Hlu] := /RCO da. (19)

We note that:

e u — H[u] is a functional, not necessarily linear;
e H[u] depends only on ¢.

It is easy to check that

d 0 1 1|to0
If we denote ug(x) := u(0, z), the last relation yields

Hu] = Hluo]. (20)

In particular, this implies that H[u] is invariant in time and is completely deter-
mined if we know the function u(¢,x) for some value of ¢, which very often is at
t=0.
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From Theorem 4.7 of [41], we know that E, (L) = 0, where E, is the Euler—
Lagrange operator given in (3), if and only if there exist functions P° and P!
depending on ¢, z,u and its derivatives such that L = D;P° 4+ D, P'. Then, taking
(3) and (18) into account, we have

Equation (21) provides a necessary and sufficient condition for finding a character-
istic of a conservation law for (11).

Example 2. Let us consider the equation (17) with b > 0 and @ = u. A simple
computation yields

E, (u(ut + el + yuluy + ouP  Mugug, + Qubumz))
=[o—(b+1)0)b [(b— D)ul2ul + 3u" ruzus,] . (22)

Therefore, the right hand side of (22) vanishes if and only if ¢ = (b + 1)6. If this
is the case, the equation (17) becomes

g + EUggs + yuluy + b+ 1)0ub_1uxum + Bubtgyy = 0 (23)

and, in particular, we have the identity

g + EUtzy + yubug + (b + 1)t9ub_1u:,vumC + Gubumm]

2y

= Dt (U2 — €2ui) —|— Dz (2-’—b

ubt? — 2000y, + 26uum> . (24)

2.3 Review on functional analysis

We recall that S(R) denotes the Schwartz space, while S’(R) denotes its (topolog-
ical) dual space. The elements of S(R) are called test functions, while members of
S'(R) are referred as tempered distributions.

The Sobolev space H!(R) is the set of functions f € L?(R) such that its (weak)
derivative f’ € L?(R). It is a Hilbert space when endowed with the inner product

(u,v) := /R(uv—kuwvx)da:.

Of great importance to us is the induced norm

||U||%{1(R) = HU||2L2(R) + HuI”%?(R)'

In particular, from the last paragraph and equation (2) we conclude that H[u] =
HUH%I(R)/Z
For further details, see [7], [23], [25], [31], [44].
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2.4 Peakon solutions

Here we consider peakon solutions, which will be of capital importance in this
review. They can be described as follows: a peakon is a continuous wave solution
with a pointed crest, and as a consequence it is not a smooth function, but it has
lateral derivatives, both finite but not equal.

A more formal characterisation is, see [36] for further details: Let I C R be
an interval and suppose that a function ¢ is continuous on it. One says that ¢
has a peak at a point = € I if ¢ is smooth on both TN {z € R: z < x} and
IN{zeR: z>z} and

lim ¢/ = — lim ¢(z —¢€) # +o0.
0# lim ¢'(z+e)=— lim §'(z—¢) # Foo

Given an ordinary differential equation, we say that a distribution ¢ is its
solution if it satisfies the equation in the distributional sense. If the function ¢ has
a peak, we say that the solution ¢ is a peakon solution of the equation.

Example 3. Consider the ODE
—c(¢' = ") + 70" + (b+ 100" 149" + 067" = 0, (25)

where b, ¢, 7, and 0 are constants, ¢ > 0 (for convenience) and ¢ = ¢(z).
The weak formulation of the equation (25) is given by (see [3, Section III-A])

e " / AP 20 -1 1 ab—1/¢1\2 b—1 b—2( 17\3
| et =10+ 00yt + 20 (62 002 6z = o

— 00

where ¢ = ¢(z) is an arbitrary test function.
Substituting ¢(z) = Ae~I#|, with A # 0, and integrating by parts, we conclude
that the integral equation above is identically satisfied if and only if

“+o0
2A(c + 0A®)Y (0) — APFL((b+2)0 + ) Y(2) sgn(z)e” VIl =0,

for any test function 1, which forces us to conclude that ¢ + #A® = 0 and v =
—(b+2)0.

In conclusion, equation (25) has the peakon solution ¢(z) = Ae~|?! if and only
if 0A® = —c and v = —0(b + 2). Therefore, it becomes

—c(¢/ = ¢"") = (b+2)00"¢ + (b+1)06""'¢'¢" + 0¢°¢"" = 0. (26)

We can extend the definition of peakon solutions for equations with more than
one independent variable as follows: A continuous function u(t, ) is said to have a
peakon at a point (o, xo) if at least one of the functions x — u(to, x) or t — wu(t, zo)
has a peak at © = xg or t = tg, respectively, see [18].
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3 An inverse problem relating symmetries, conservation laws and
weak solitary waves

We now arrive at the core of the present review. We firstly note that the CH and
Novikov equations are members of the class (15) satisfying the properties P6—P8
of the Introduction. A natural question is:

Question 1. What would be the most general member of the class (15), with
h(u) # 0, having the properties P6—P8 of the Introduction?

Note, in particular, that P7 jointly with the Sobolev Embedding Theorem im-
plies that the solutions of the equation are continuous (with respect to the variable
x), but we cannot assure smoothness in the usual sense. Then, this means that
the solutions of an equation satisfying P6—P8 may lose usual differentiability and
perhaps some of them can only be considered truly solutions for the equation in
the sense of distributions.

A follow-up question is:

Question 2. From the members of the equation (15) having the properties in
the Question 1, what would be the most general one having multi-peakon solutions,
that is, solutions behaving like a superposition of the peakon solutions?

The answer to the first question is given right now.

Theorem 1. Up to time and space scalings, the most general equation of the type
(15) with h(u) # 0 having the properties P6-P8 is the equation

Ut — Utgr — (b+ 2ulu, + (b+ 1)ub_1umum + uluypn =0 (27)
or its equivalent form
me + (b+ Dul " tugm +ulmy =0, m = u — Uy, (28)

Proof. We firstly note that we can assume ¢ = —1 in (15) since we can make a
scaling in = which is equivalent to choosing this value of e. By Example 1, (15)
satisfies P6 if and only if it belongs to the class (17). In addition, the H'(R)-norm
(Sobolev norm) of the solutions of the equation (15) is conserved if and only if (17)
is reduced to (23), see Example 2. Finally, assume that it has a travelling wave
solution u(t,z) = ¢(z), z = & — ct. Then the equation (23) implies the ODE (25),
which admits a peakon solution if and only if it takes the form (26), that is,

Uy — Upgy — (b4 2)0ubuy, + (b + 1)9ub_1uzum + Qubugyy = 0,

where 0 #£ 0. This constant, on the other hand, can be eliminated under a suitable
scale in the variable ¢ and, therefore, we obtain (27). O

Let N > 1 be an integer and assume that
N
u(t,z) = ij(t)e—lr—%(t)\’ (29)
j=1

where p1,...,pn and qq, ..., qn are certain (piecewise differentiable) functions.
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We note that the (weak) derivatives of u with respect to t and x are, respectively,

N
Uy = 625 ij —lz—q; (¥)] —_ Z _ sgn q(t))q;(t)p](t)) ef\zqu(t)\’
j=1
N
Z Ve~ l#=ai (0 = Zp )sgn (z — g (t))—lw—%(t)l.

Therefore, we have

= u-= = 2sz (x —q(2)),
my =2 Zpé(t)é(x — qi(t)) — 2 Zpi(t)qé(t)é’(x — (1)), (30)

mx722pz "(x — ai(t)).

‘We now observe that

u(t, @)’ (x — qi(t)) = u(t, ()" (x — qi(t)) — bu(t, ¢:(£))"  ua(t, ¢:(£)5(x — ¢ ()

and
u(t, z)"  uad(x — qi(t) = ult, i()" ™ ua(t, ¢i(1))6(x — q:(2)).
Then

tmwzzpz ) (ult.0:()"9'(x = a:(t))
—bu(t,qiu))” e (ta(0)) )3 — (1), (31)
N

Tugm =3 ult 6(0)" " ua(t 0:(0)d(x — 0,(8).
i=1

Substituting (29) and (30) into (28) and taking (31) into account we obtain
N

D[P + pi®)u’ T (¢ ) (t )] 5 — i(t))

i=1

- sz ¢;(t) — u(t,;(t)"] '(x — ;(t)) = 0. (32)

Our aim now is to obtain a set of equations describing the dynamics of p1, ..., pN
and q1,...,qy. A simple argument is that both § and ¢’ are linearly independent
distributions and, therefore, (32) holds if and only if each term multiplying these
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distributions vanishes. A more formal and rigorous proof can be done using the
ideas presented in [19, subsection 6.2] to prove that

pi(t) = =pi(t)ult, 4;(t))" s (1, ai(1)),

(33)

see also [3].

For b = 1 and b = 2 system (33) is an integrable dynamical system, see for
instance [22], [30] and references therein. This system is Hamiltonian with respect
to the canonical Hamiltonian structure for b = 1, see [22], [30], and a certain non-
canonical Hamiltonian structure for b = 2, see [29], [30], with the same Hamiltonian
for both b =1 and b = 2, see [22], [29], [30].

We conclude this section noting that the lines above answer Question 2: Equa-
tion (28), up to re-scaling, is the largest member of (15) having multi-peakon
solutions.

Remark 2. Above we proceeded in a very naive way to obtain the dynamical system
(33). In [3, Section ITI-B] the same set of equations is derived in a more rigorous
way by taking the weak formulation of the equation (28).

4 Two-peakon dynamics

The analysis of the system (33) for arbitrary N is rather difficult, but the case
N = 2 is somewhat tractable and so we focus on it from now on. Let us assume a
2-peakon solution given by

u(z,t) = py(t)e 1T 1Ol 4 po()e~ 2= (34)

Henceforth we omit the dependence on ¢ in the functions involved and ’ means
derivatives with respect to ¢. Equation (33) becomes

b—1
Py =sen(g — ) prpze |79 (pr 4 pyemloal)T
b—1
Py = —sgn(q —q2) prpze” 0%l (premlamal 4 py)" (35)
b
¢ = (p+paelnmel)’,
b
@ = (p1 e—lai—az| erz) )
We shall also impose another condition on the solution (34): that it satisfies
(20), where H]u] is given by (2).
In order to find H[u] for (34), let us note that um = u—u,, = u+u2 — D(uu,).
Then, we have

1 1 1
§/Rumdx:§/R(u2+ui)dx— Ul

In case uu,|™, =0 (and the function (34) satisfies this condition), we obtain

o0 1 o0
= Hlu] — o Ulls

— 00 —0o0

Hlu] = %/Rumdz.
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Using m given by (30) with N = 2, the last equation yields
Hu] = pi + 2pipae™ 17+ pl. (36)

Let pio := pi(0), go := |q1(0) — g2(0)| (this constant measures the separation of the
pulses at t = 0), and
Ho := pio + 2pTophee ™ + 3.

Then, equation (36) reads
i+ 2pipoe” % 4 pi = . (37)
As a consequence of (37), we have the inequality
0 < el = (Hy —p} — p3)/(2p1p2) < 1. (38)
Noting that

Ho—pi—p5  Ho+pi—p3

p1+poe” 1% = py + = =: Ay,
2p; 2py
H 7p27p2 H 7p2+p2 (39)
pr+ppelnTeel = O TL 2y ) 0 TL TR gy,
2po 2p

and substituting the equations (39) and (37) into the equation (35), we obtain the
following system:

qi:AIL qé:Aga

1 _
ph= 5 sen(a - g2) AV (Ho — p? — p),

1 _
Py = —5sen (@1 — g2) A5~ (Ho — i — p3)-
Assume that ¢ (t) and ¢a(t) are very far one from the other as ¢ > 1, so that

we can assume e~ 191~%| ~ 0. From (35) we then conclude that H(t) = p? + p3,
that is, the coefficient functions p; and py in (34) describe a circle of radius

\/ﬁo = ”UOHHl(R)/ﬁv

where uy = u(0, z).

Let us now assume that q;(t) = ¢o(t), that is, e"1997% = 1. Then Hg = (p1 +
p2)? and from (34) we conclude that these “two-peakons” degenerates into a single
peakon solution, since their positions coincide and the sum of their amplitudes is
constant. In this case, the solution can be rewritten as

u(t,x) = \/Hoe_lx_\/qjg“,

and we then obtain nothing but the well-known solution given by the Example 3.
However, we can also obtain another solution, given by

u(t,x) = —\/Hoeﬂx*\/ﬂigtl.
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The solutions above give us the relation between the conserved quantity, the
wave speed and the amplitude of the wave: let ¢ := \/H5. Then

u(t, CC) _ :Fcl/be—\zict\
and H[u] = c’. For further details, see [3, Section IV].

5 Final comments

In this paper we reviewed some contributions of the author regarding some CH-
type equations. Our main focus was to derive the equation (27) using symmetries,
conservation laws and assuming that it has peakon solutions.

The first two works reporting this equation were [27] and [14], see also [16].
In [27] the equation was considered from the point of view of analysis, more pre-
cisely, from the point of view of well-posedness and related topics. By the time
P.L. da Silva and me reported our discovery in [14], [16] we did not know Himonas
and Holliman’s work. We only discovered this work by the time we were working
on [3] in collaboration with S. Anco.

In [14], [16] we considered Question 1 without imposing P8. As a consequence,
we derived (23). However, we noted that taking v = —6(b + 2) and next choosing
f = 1 we would then obtain a one-parameter family of equations unifying both CH
and Novikov equations. Then we obtained (27) in an ad hoc way.

In [3] we worked with a particular class of equations of the type (15) and we
again derived (27), but differently from the previous reference, the derivation in [3]
was very natural, once we were also investigating peakon solutions. The request
that the equation has peakon solutions was the restriction missing in [14], [16] to
obtain (27) without any ad hoc procedure.

We conclude this work by observing that the equation (27) has two known
integrable cases: b = 1 and b = 2, corresponding to the Camassa-Holm and Novikov
equations, respectively. We do not expect other integrable members belonging to
this equation and this view is supported by recent results established in [26].
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