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Metric groups, unitary representations and continuous
logic

Aleksander Ivanov

Abstract. We describe how properties of metric groups and of unitary
representations of metric groups can be presented in continuous logic. In
particular we find Lω1ω-axiomatization of amenability. We also show that
in the case of locally compact groups some uniform version of the negation
of Kazhdan’s property (T) can be viewed as a union of first-order axiomati-
zable classes. We will see when these properties are preserved under taking
elementary substructures.

1 Introduction
In this paper we study the behavior of amenability and Kazhdan’s property (T)
under logical constructions. We view these tasks as a part of investigations of
properties of basic classes of topological groups appeared in measurable and geo-
metric group theory, see [9], [10], [13]. The fact that some logical constructions,
for example ultraproducts, have become common in group theory, gives additional
flavour for this topic. We concentrate on properties of metric groups which can be
expressed in continuous logic [2].

Since we want to make the paper available for non-logicians, in Section 2 we
briefly remind the reader some preliminaries of continuous logic. In Section 3 we
apply it to amenability. In Section 4 we consider unitary representations of locally
compact groups.

2 Basic continuous logic
2.1 Continuous structures
We fix a countable continuous signature

L = {d,R1, . . . , Rk, . . . , F1, . . . , Fl, . . . }.
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Let us recall that a metric L-structure is a complete metric space (M,d) with d
bounded by 1, along with a family of uniformly continuous operations Fi on M and
a family of predicates Ri, i.e. uniformly continuous maps from appropriate Mki

to [0, 1]. It is usually assumed that to a predicate symbol Ri a continuity modulus
γi is assigned so that when d(xj , x

′
j) < γi(ε) with 1 ≤ j ≤ ki the corresponding

predicate of M satisfies

|Ri(x1, . . . , xj , . . . , xki)−Ri(x1, . . . , x′j , . . . , xki)| < ε.

It happens very often that γi coincides with id. In this case we do not mention the
appropriate modulus. We also fix continuity moduli for functional symbols. Each
classical first-order structure can be considered as a complete metric structure with
the discrete {0, 1}-metric.

By completeness, continuous substructures of a continuous structure are always
closed subsets.

Atomic formulas are the expressions of the form Ri(t1, . . . , tr), d(t1, t2), where ti
are terms (built from functional L-symbols). In metric structures they can take any
value from [0, 1]. Statements concerning metric structures are usually formulated
in the form

φ = 0

(called an L-condition), where φ is a formula, i.e. an expression built from 0,1 and
atomic formulas by applications of the following functions:

x/2 , x−̇y = max(x− y, 0) , min(x, y) , max(x, y) , |x− y| ,

¬(x) = 1− x , x+̇y = min(x+ y, 1) , sup
x

and inf
x
.

A theory is a set of L-conditions without free variables (here supx and infx play
the role of quantifiers).

It is worth noting that any formula is a γ-uniformly continuous function from
the appropriate power of M to [0, 1], where γ is the minimum of continuity moduli
of L-symbols appearing in the formula.

The condition that the metric is bounded by 1 is not necessary. It is often
assumed that d is bounded by some rational number d0. In this case the (truncated)
functions above are appropriately modified.

We sometimes replace conditions of the form φ−̇ε = 0 where ε ∈ [0, d0] by more
convenient expressions φ ≤ ε.

In several places of the paper we use continuous Lω1ω-logic. It extends the
first-order logic by new connectives applied to countable families of formulas :

∨
is

the infinitary min and
∧

corresponds to the infinitary max. When we apply these
connectives we only demand that the formulas of the family all obey the same
continuity modulus, see [3].

2.2 Metric groups
Below we always assume that our metric groups are continuous structures with re-
spect to bi-invariant metrics (see [2]). This exactly means that (G, d) is a complete
metric space and d is bi-invariant. Note that the continuous logic approach takes
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weaker assumptions on d. Along with completeness it is only assumed that the
operations of a structure are uniformly continuous with respect to d. Thus it is
worth noting here that

• any group which is a continuous structure has an equivalent bi-invariant
metric.

Indeed assuming that (G, d) is a continuous metric group which is not discrete one
can apply the following function:

d∗(x, y) = sup
u,v

d(u · x · v, u · y · v).

See Lemma 2 and Proposition 4 of [11] for further discussions concerning this
observation.

2.3 The approach
In Section 3 we apply the recent paper [14] for Lω1ω-axiomatization of (non-)
amenability of metric groups. The case of property (T) looks slightly more com-
plicated, because unbounded metric spaces are involved in the definition.

Typically unbounded metric spaces are considered in continuous logic as many-
sorted structures of n-balls of a fixed point of the space (n ∈ ω). Section 15 of [2]
contains nice examples of such structures. If the action of a bounded metric group
G is isometric and preserves these balls we may consider the action as a sequence of
binary operations where the first argument corresponds to G. In such a situation
one just fixes a sequence of continuity moduli for G (for each n-ball). We will see
in Section 4 that this approach works sufficiently well for the negation of property
(T) (non-(T)) in the class of locally compact groups.

It is well-known that a locally compact group with property (T) is amenable if
and only if it is compact. Thus it is natural to consider these properties together.

2.4 Uniform continuity
Actions of metric groups which can be analyzed by tools of continuous logic must
be uniformly continuous for each sort appearing in the presentation of the space
by metric balls. This slightly restricts the field of applications.

2.5 Hilbert spaces in continuous logic
We treat a Hilbert space over R exactly as in Section 15 of [2]. We identify it with
a many-sorted metric structure

({Bn}n∈ω, 0, {Imn}m<n, {λr}r∈R,+,−, 〈〉),

where Bn is the ball of elements of norm ≤ n, Imn : Bm → Bn is the inclusion map,
λr : Bm → Bkm is scalar multiplication by r, with k the unique integer satisfying
k ≥ 1 and k− 1 ≤ |r| < k; furthermore, +,− : Bn×Bn → B2n are vector addition
and subtraction and 〈〉 : Bn → [−n2, n2] is the predicate of the inner product. The
metric on each sort is given by d(x, y) =

√
〈x− y, x− y〉. For every operation the

continuity modulus is standard. For example in the case of λr this is z
|r| . Note that
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in this version of continuous logic we do not assume that the diameter of a sort is
bounded by 1. It can become any natural number.

Stating existence of infinite approximations of orthonormal bases (by a count-
able family of axioms, see Section 15 of [2]) we assume that our Hilbert spaces are
infinite dimensional. By [2] they form the class of models of a complete theory
which is κ-categorical for all infinite κ, and admits elimination of quantifiers.

This approach can be naturally extended to complex Hilbert spaces,

({Bn}n∈ω, 0, {Imn}m<n, {λc}c∈C,+,−, 〈〉Re, 〈〉Im).

We only extend the family λr : Bm → Bkm, r ∈ R, to a family λc : Bm → Bkm,
c ∈ C, of scalar products by c ∈ C, with k the unique integer satisfying k ≥ 1 and
k − 1 ≤ |c| < k. We also introduce Re- and Im-parts of the inner product.

3 Metric groups and amenability
Although closed subgroups of amenable locally compact groups are amenable,
amenability is not preserved under elementary extensions. For example there are
locally finite countable groups having elementary extensions containing free groups
(i.e. in the discrete case amenability is not axiomatizable). In this section we ap-
ply the description of amenable topological groups found by F.M. Schneider and A.
Thom in [14] in order to axiomatize in Lω1ω amenability for metric groups which
are continuous structures. In fact we will see that this property is sup

∨
inf in

terms of [7] 1. This kind of axiomatization is essential in model-theoretic forcing,
see Proposition 2.6 in [7]. Our results imply that (typical) elementary substructures
of (non-) amenable groups are (non-) amenable. In particular these properties are
bountiful, see [12].

Let G be a topological group, F1, F2 ⊂ G are finite and U be an identity
neighbourhood. Let RU be a binary relation defined as follows:

RU = {(x, y) ∈ F1 × F2 : yx−1 ∈ U}.

This relation defines a bipartite graph on (F1, F2). Let

µ(F1, F2, U) = |F1| − sup{|S| − |NR(S)| : S ⊆ F1},

where NR(S) = {y ∈ F2 : (∃x ∈ S)(x, y) ∈ RU}. By Hall’s matching theorem this
value is the matching number of the graph (F1, F2, RU ). Theorem 4.5 of [14] gives
the following description of amenable topological groups.

Let G be a Hausdorff topological group. The following are equivalent.
(1) G is amenable.
(2) For every θ ∈ (0, 1), every finite subset E ⊆ G, and every identity
neighbourhood U , there is a finite non-empty subset F ⊆ G such that

∀g ∈ E(µ(F, gF, U) ≥ θ|F |).

1in the discrete case this was observed in [8]
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(3) There exists θ ∈ (0, 1) such that for every finite subset E ⊆ G,
and every identity neighbourhood U , there is a finite non-empty subset
F ⊆ G such that

∀g ∈ E(µ(F, gF, U) ≥ θ|F |).

It is worth noting here that when an open neighbourhood V contains U the number
µ(F, gF, U) does not exceed µ(F, gF, V ). In particular in the formulation above we
may consider neighbourhoods U from a fixed base of identity neighbourhoods. For
example in the case of a continuous structure (G, d) with an invariant d we may
take all U in the form of metric balls B<q = {x : d(1, x) < q}, q ∈ Q ∩ (0, 1). It is
also clear that we can restrict all θ by rational ones. From now on we work in this
case.

In Lemma 1 we consider the Schneider-Thom theorem in the formulation where
all U are closed balls Bq = {x : d(1, x) ≤ q}, q ∈ Q ∩ (0, 1). Notice that the
corresponding versions of statement (2) above are equivalent for U of the form B<q
and of the form Bq. Indeed this follows from the observation that µ(F, gF,B<q) ≤
µ(F, gF,Bq) and µ(F, gF,Bq) ≤ µ(F, gF,B<r) for q < r.

Lemma 1. Given k ∈ N and rational numbers q, θ ∈ (0, 1) there is a quantifier
free formula φk,q,θ(x̄, y) depending on variables x1, . . . , xk and y such that in the
structure (G, d) the 0-statement φk,q,θ(x̄, y) ≤ 0 is equivalent to the condition that
x1, . . . , xk form a set F with µ(F, yF,Bq) ≥ θ|F |.

Moreover the identity function is a continuity modulus of y in φk,q,θ(x̄, y).

Proof. To guarantee the inequality µ(F, gF,Bq) ≥ θ|F | for an F = {f1, . . . , fk} we
only need to demand that for every S ⊆ F the following inequality holds:

|S| − k + θ · k ≤ |NR(S)|,

where NR(S) is defined with respect to (F, gF ) and U = Bq.
To satisfy this inequality we will use the observation that when S′ ⊆ gF and

ρ is a function S′ → S such that max{d(gf, ρ(gf)) : gf ∈ S′} ≤ q then |S′| ≤
|NR(S))|. Let us assume that S corresponds to some tuple xi1 , . . . , xil of elements of
{x1, . . . , xk}, the subset S′ corresponds to some tuple of terms from {yx1, . . . , yxk}
(recovered by ρ−1) and let

distS,S′,ρ(x1, . . . xk, y) = max{d(yxi, ρ(yxi)) : yxi ∈ S′}

(a max-formula of continuous logic). Then the statement formalizing the inequality
|S′| ≤ |NR(S))| can be expressed that the formula distS,S′,ρ(x1, . . . xk, y) takes
value ≤ q with respect to the realization of x̄ by the tuple f1, . . . fk and y by g.

Thus the following formula φk,q,θ(x̄, y) satisfies the statement of the lemma:

max
S⊆{x1,...,xk}

min{distS,S′,ρ(x1, . . . xk, y) : S′ ⊆ {yx1, . . . , yxk} , ρ : S′ → S ,

|S| − k + θ · k ≤ |S′|}−̇q.
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To see the last statement of the lemma it suffices to notice that the identity
function is a continuity modulus of y in each distS,S′,ρ(x1, . . . xk, y). The latter
follows from the definition of distS,S′,ρ(x1, . . . xk, y) and the fact that d is invariant
and satisfies the triangle inequality. �

Theorem 1. The class of all amenable groups which are continuous structures with
invariant metrics, is axiomatizable by all Lω1ω-statements of the following form:

sup
y1...yl

∨
{ inf
x1...xk

max{φk,q,θ(x̄, yi) : 1 ≤ i ≤ l} : k ∈ ω} ≤ 0,

where θ, q ∈ Q ∩ (0, 1) and l ∈ ω.

In particular every first order elementary substructure of a continuous structure
which is an amenable group is also an amenable group.

Proof. The tuple y1, . . . , yl consists of all free variables of the formula

inf
x1...xk

max{φk,q,θ(x̄, yi) : 1 ≤ i ≤ l}.

By the last statement of Lemma 1 the identity function is a continuity modulus of
each yi in this formula. This implies the same statement concerning the infinite
disjunction in the formulation. Thus the formula in the formulation belongs to
Lω1ω.

By Theorem 4.5 of [14] and the discussion after the formulation of that theorem
above we see that all amenable groups satisfy the statements in the formulation.

Let us prove the contrary direction. Let (G, d) satisfy the axioms from the
formulation. We want to apply condition (2) of Theorem 4.5 of [14] in the case of
balls Bq. Fix θ, q and E as in the formulation so that E = {g1, . . . , gl}. Choose
q′ ∈ Q ∩ (0, 1) so that q′ < q. Since (G, d) satisfies

sup
y1...yl

∨
{ inf
x1...xk

max{φk,q′,θ(x̄, yi) : 1 ≤ i ≤ l} : k ∈ ω} ≤ 0,

we find f1, . . . , fk ∈ G so that

max{φk,q′,θ(f̄ , gi) : 1 ≤ i ≤ l} < q − q′.

By the definition of the formula φk,q′,θ(f̄ , gi) we see that condition (2) of Theorem
4.5 of [14] holds for θ, U = Bq and E. This proves that (G, d) is amenable.

To see the last statement of the theorem assume that (G, d) is amenable and
(G1, d) � (G, d). We repeat the argument of the previous paragraph for E ⊆ G1.
Then having found f1, . . . , fk ∈ G as above we can apply the definition of an
elementary substructure in order to obtain f ′1, . . . , f

′
k ∈ G1 so that

max{φk,q′,θ(f̄ ′, gi) : 1 ≤ i ≤ l} < q − q′.

The rest is clear. �



Metric groups, unitary representations and continuous logic 41

To have a similar theorem for non-amenability we need the following lemma.

Lemma 2. Given k ∈ N and rational numbers q, θ ∈ (0, 1) there is a quantifier
free formula φ−k,q,θ(x̄, y) depending on variables x1, . . . , xk and y such that in the
structure (G, d) the 0-statement φk,q,θ(x̄, y) ≤ 0 is equivalent to the condition that
x1, . . . , xk form a set F with µ(F, yF,B<q) < θ|F |.

Moreover the identity function is a continuity modulus of y in φ−k,q,θ(x̄, y).

Proof. To guarantee the inequality µ(F, gF,B<q) < θ|F | for an F = {f1, . . . , fk}
we only need to demand that there is S ⊆ F such that

|NR(S)| < |S| − k + θ · k,

where NR(S) is defined with respect to (F, gF ) and U = B<q.
To formalize this inequality we will use the observation that when S′ ⊆ gF

satisfies the inequality

q ≤ inf{d(gf, f ′)) : f ′ ∈ S and gf 6∈ S′},

then |S′| ≥ |NR(S))|. Thus if we associate to S and S′ some tuple of elements of
{x1, . . . , xk} and some tuple of terms from {yx1, . . . , yxk} respectively, then the
statement |S′| ≥ |NR(S))| can be expressed that the formula

distS,S′(x1, . . . xk, y) = inf{d(yxi, xj)) : xj ∈ S and yxi 6∈ S′}

takes value ≥ q with respect to the realization of x̄ by the tuple f1, . . . fk and y by
g.

Thus the following formula φ−k,q,θ(x̄, y) satisfies the statement of the lemma.

min
S⊆{x1,...,xk}

min{q−̇distS,S′(x1, . . . xk, y) : S′ ⊆ {yx1, . . . , yxk} ,

|S′| < |S| − k + θ · k}.

The statement that the identity function is a continuity modulus of y in the formula
φ−k,q,θ(x̄, y) follows from the definition of this formula and the assumption that d is
an invariant metric. �

Theorem 2. The class of all non-amenable groups which are continuous structures
with invariant metrics, is axiomatizable by all Lω1ω-statements of the following
form:∨
q

∨
l∈ω{infy1...yl

∧
{supx1...xk

min{φ−k,q,θ(x̄, yi) : 1 ≤ i ≤ l} : k ∈ ω} : q ∈ Q ∩ (0, 1)} ≤ 0,

where θ ∈ Q ∩ (0, 1).

Moreover every subset A of a continuous structure (G, d) which is a non-amenable
group is contained in a first order elementary substructure of (G, d) of density
character ≤ |A|+ ℵ0 which also a non-amenable group.
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Proof. As in the proof of Theorem 1 one can show that the formula from the
formulation of the theorem satisfies the requirements to be an Lω1ω-formula of
continuous logic.

By Theorem 4.5 (3) of [14] and the discussion after the formulation of that
theorem above we see that all non-amenable groups satisfy the statements in the
formulation.

Let us prove the contrary direction. Let (G, d) satisfy the axioms from the
formulation. To apply condition (3) of Theorem 4.5 of [14] fix θ ∈ Q ∩ (0, 1). For
every ε > 0 one can choose q and E = {g1, . . . , gl} so that (G, d) satisfies∧

{ sup
x1...xk

min{φ−k,q,θ(x̄, gi) : 1 ≤ i ≤ l} : k ∈ ω} ≤ ε.

This obviously means that∧
{ sup
x1...xk

min{φ−k,q−ε,θ(x̄, gi) : 1 ≤ i ≤ l} : k ∈ ω} ≤ 0.

By the definition of the formula φ−k,q−ε,θ(x̄, gi) we see that condition (3) of Theorem
4.5 of [14] does not hold for θ, U = B<q−ε and E. This proves that (G, d) is not
amenable.

To see the last statement of the theorem assume that (G, d) is not amenable.
Then applying Theorem 4.5 (2) of [14] we find θ ∈ (0, 1), a finite subset E =
{g1, . . . , gl} ⊆ G, and an identity neighbourhood U = B<q, such that for every
finite non-empty subset F ⊆ G

∃g ∈ E(µ(F, gF, U) < θ|F |).

Let (G1, d) � (G, d) and E ⊆ G1. Then by Lemma 2

G1 |=
∧
{ sup
x1...xk

min{φ−k,q,θ(x̄, gi) : 1 ≤ i ≤ l} : k ∈ ω} ≤ 0.

By Theorem 4.5 (2) of [14] the group (G1, d) is not amenable. It remains to note
that given A as in the formulation above by the Löwenheim-Skolem Theorem for
continuous logic ([2], Proposition 7.3) the substructure G1 can be chosen of density
character ≤ |A|+ ℵ0 with A ∪ E ⊂ G1. �

4 Negating (T)
It is well-known that a locally compact group with property (T) of Kazhdan is
amenable if and only if it is compact. Thus axiomatization of property (T) (non-
(T)) is natural in the context of axiomatization of amenability (at least for locally
compact groups). In this section we apply continuous logic to (T)/non-(T). Our
results are partial. On the one hand they are restricted to the class of locally
compact groups and on the other one they mainly concern property non-(T).
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4.1 Introduction
Let a topological group G have a continuous unitary representation on a complex
Hilbert space H. A closed subset Q ⊂ G has an ε-invariant unit vector in H if

there exists v ∈ H such that sup
x∈Q
‖ x ◦ v − v ‖< ε and ‖ v ‖= 1.

A closed subset Q of the group G is called a Kazhdan set if there is ε > 0 with
the following property: for every unitary representation of G on a Hilbert space
where Q has an ε-invariant unit vector there is a non-zero G-invariant vector. The
following statement is Proposition 1.1.4 from [1].

Let G be a topological group. The pair (G,
√

2) is Kazhdan pair, i.e.
if a unitary representation of G has a

√
2-invariant unit vector then G

has a non-zero invariant vector.

If the group G has a compact Kazhdan subset then it is said that G has property
(T) of Kazhdan.

Proposition 1.2.1 of [1] states that the group G has property (T) of Kazhdan
if and only if any unitary representation of G which weakly contains the unit
representation of G in C has a fixed unit vector.

By Corollary F.1.5 of [1] the property that the unit representation of G in C is
weakly contained in a unitary representation π of G (this is denoted by 1G ≺ π)
is equivalent to the property that for every compact subset Q of G and every ε > 0
the set Q has an ε-invariant unit vector with respect to π.

The following example shows that in the first-order logic property (T) is not
elementary: there are two groups G1 and G2 which satisfy the same sentences of
the first-order logic but G1 |= (T) and G2 6|= (T).

Example. Let n > 2. According Example 1.7.4 of [1] the group SLn(Z) has
property (T). Let G be a countable elementary extension of SLn(Z) which is not
finitely generated. Then by Theorem 1.3.1 of [1] the group G does not have (T).

The main result of this section, Theorem 3, shows that in the context of con-
tinuous logic the class of unitary representations of locally compact groups with
property non-(T) can be viewed as the union of axiomatizable classes.

4.2 Unitary representations in continuous logic
We apply methods announced in the introduction. In order to treat axiomati-
zability question in the class of locally compact groups satisfying some uniform
version of property non-(T) we need the preliminaries of continuous model theory
of Hilbert spaces from Section 2.5. Moreover since we want to consider unitary
representations of metric groups G in continuous logic we should fix continuity
moduli for the corresponding binary functions G×Bn → Bn induced by G-actions
on metric balls of the corresponding Hilbert space.

Remark 1. Continuous unitary actions of G on B1 obviously determine their ex-
tensions to

⋃
{Bi : i > 1}:

g(r · x) = r · g(x) where x ∈ B1 and r · x ∈ Bn.
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Thus a continuity modulus, say F , for the corresponding function G × B1 → B1

can be considered as a family of continuity moduli for G×Bi → Bi as follows:

Fi(ε) = F (
ε

i
).

Using this observation we simplify the approach by considering only continuity
moduli for G×B1 → B1. When we fix such F we call the corresponding continuous
unitary action of G an F -continuous action.

We now define a uniformly continuous versions of the notion of a Kazhdan set.

Definition 1. Let G be a metric group of diameter ≤ 1 which is a continuous
structure in the language (d, ·,−1 , 1). Let F be a continuity modulus for the G-
variable of continuous functions G×B1 → B1.

We call a closed subset Q of the group G an F -Kazhdan set if there is ε with
the following property: every F -continuous unitary representation of G on a Hilbert
space with (Q, ε)-invariant unit vectors also has a non-zero invariant vector.

It is clear that for any continuity modulus F a subset Q ⊂ G is F -Kazhdan if
it is Kazhdan. We will say that G has property F -non-(T) if G does not have a
compact F -Kazhdan subset.

To study such actions in continuous logic let us consider a class of many-sorted
continuous metric structures which consist of groups G together with metric struc-
tures of complex Hilbert spaces

(d, ·,−1 , 1) ∪ ({Bn}n∈ω, 0, {Imn}m<n, {λc}c∈C,+,−, 〈〉Re, 〈〉Im).

Such a structure also contains a binary operation ◦ of an action which is defined
by a family of appropriate maps G × Bm → Bm (in fact ◦ is presented by a
sequence of functions ◦m which agree with respect to all Imn). When we add the
obvious continuous sup-axioms that the action is linear and unitary, we obtain an
axiomatizable class KGH . Given unitary action of G on H we denote by A(G,H)
the member of KGH which is obtained from this action. When we fix a continuity
modulus, say F , for the G-variables of the operation G × B1 → B1 we denote by
KGH(F ) the corresponding subclass of KGH .

Definition 2. The class
⋃
{Kδ(F ) : δ ∈ (0, 1) ∩Q}. Let Kδ(F ) be the subclass of

KGH(F ) axiomatizable by all axioms of the following form

sup
x1,...,xk∈G

inf
v∈Bm

sup
x∈

⋃
xiKδ

max(‖ x ◦ v − v ‖ −̇ 1

n
, |1− ‖ v ‖ |) = 0,

where k,m, n ∈ ω \ {0} and Kδ = {g ∈ G : d(1, g) ≤ δ}.

It is easy to see that the axiom of Definition 2 implies that each finite union⋃k
i=1 giKδ has a 1

n -invariant unit vector in H. To see that it can be written by
a formula of continuous logic note that supx∈

⋃
xiKδ

can be replaced by supx with
simultaneous including of the quantifier-free part together with max(δ−̇d(x, xi) :
1 ≤ i ≤ k) into the corresponding min-formula.

In fact the following theorem shows that in the class of locally compact metric
groups condition F -non-(T) is a union of axiomatizable classes.
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Theorem 3. Let F be a continuity modulus for the G-variable of continuous func-
tions G×B1 → B1.

(a) In the class of all unitary F -representations of locally compact metric groups
the condition of weak containment of the unit representation 1G coincides with the
condition that the corresponding structure A(G,H) belongs to

⋃
{Kδ(F ) : δ ∈

(0, 1) ∩Q}.
(b) In the class of all unitary F -representations of locally compact metric groups

the condition of witnessing F -non-(T) corresponds to a union of axiomatizable
classes of structures of the form A(G,H).

Proof. (a) Let G be a locally compact metric group and let the ball Kδ = {g ∈ G :
d(g, 1) ≤ δ} ⊆ G be compact. If a unitary F -representation of G weakly contains
the unit representation 1G, then considering it as a structure A(G,H) we see that
this structure belongs to Kδ(F ).

On the other hand if some structure of the form A(G,H) belongs to Kε(F), then
assuming that ε ≤ δ we easily see that the corresponding representation weakly
contains 1G. If δ < ε, then Kε may be non-compact. However since Kδ ⊆ Kε

any compact subset of G belongs to a finite union of sets of the form xKε. Thus
the axioms of Kε(F ) state that the corresponding structure A(G,H) defines a
representation weakly containing 1G.

(b) The condition

sup
v∈B1

inf
x∈G

(1−̇(‖ x ◦ v − v ‖ +|1− ‖ v ‖ |)) ≤ 0

(we call it NIV) obviuosly implies that G does not have invariant unit vectors.
For the contrary direction we use the fact mentioned in the introduction of Section
4 that the absence of G-invariant unit vectors implies that G does not have

√
2-

invariant unit vectors. In particular for every v ∈ B1 there is x ∈ G such that
√

2 ‖ v ‖≤‖ x ◦ v − v ‖ .

This obviously implies NIV.
AddingNIV to each Kδ(F ) we obtain axiomatizable classes as in the statement

of (b). Below we call it KNIV
δ (F ). �

5 Comments
(I) It is clear that the classes

⋃
{Kδ(F ) : δ ∈ (0, 1) ∩ Q} and

⋃
{KNIV

δ (F ) : δ ∈
(0, 1)∩Q} can be considered without the restriction of local compactness. However
it does not look likely that then they axiomatize weak containment of the unit
representation 1G or witnessing non-(T).
(II) In spite of axiomatizability issues in our paper it is still not clear how large the
class of locally compact non-compact groups with bi-invariant merics and property
(T). This is especially interesting in the case of connected groups, since some
standard Lie group examples do not admit compatible bi-invariant metrics.
(III) Using the method of Proposition 1.2.1 from [1] one can show that if for every
compact subset Q of a locally compact metric group (G, d) and every ε > 0 there is
an expansion of G to a structure from KGH(F ) with a (Q, ε)-invariant unit vector
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but without non-zero invariant vectors, then G has a unitary F -representation
which belongs to KNIV

δ (F ) for appropriate δ ∈ (0, 1) ∩Q.
(IV) Since the class of locally compact metric groups is not axiomatizable 2, the
subclasses of Kδ(F ) and KNIV

δ (F ) appearing in Theorem 3 are only relatively
axiomatizable. On the other hand they have some nice properties of axiomatizable
classes. For example the following statement holds.

Proposition 1. Any elementary substructure of any A(G,H) ∈
⋃
{KNIV

δ (F ) : δ ∈
(0, 1) ∩Q} with a locally compact G also belongs to

⋃
{KNIV

δ (F ) : δ ∈ (0, 1) ∩Q}
and is of the form A(G0,H0), where G0 � G, H0 � H and G0 is locally compact.

In the proof we use an additional tool from model theory. Let M be a continuous
metric structure. A tuple ā from Mn is algebraic in M over A if there is a compact
subset C ⊆Mn such that ā ∈ C and the distance predicate dist(x̄, C) is definable
(in the sense of continuous logic, [2]) in M over A. Let acl(A) be the set of all
elements algebraic over A. In continuous logic the concept of algebraicity is parallel
to that in traditional model theory (see Section 10 of [2]).

Proof. Let M ∈
⋃
{KNIV

δ (F ) : δ ∈ (0, 1) ∩ Q} and G be the group sort of M .
Choose δ > 0 so that the δ-ball K = {g ∈ G : d(g, 1) ≤ δ} in G is compact. Note
that since the condition d(g, 1) ≤ δ defines a totally bounded complete subset in
any elementary extension of G, the set K is a definable subset of acl(∅).

Let M0 � M and G0 be the sort of M0 corresponding to G. It remains to
verify that for any compact subset D ⊂ G0 and any ε > 0 the representation M0

always has a (D, ε)-invariant unit vector. To see this note that since G0 ≺ G and
K is compact and algebraic, the ball {g ∈ G0 : d(g, 1) ≤ δ} ⊂ G0 is a compact
neighborhood of 1 which coincides with K. In particular D is contained in a finite
union of sets of the form gK. The rest follows from the conditions that M0 ∈ Kδ(F )
and G0 ≺ G. �

We do not know if the statement of this proposition holds without the assumtion
that G locally compact.
(V) In Section 8.4 of [13] it is proved that if Γ is a discrete group with property
(T), then the direct power Γω also has property (T) as a topological group. On the
other hand the topological group Γω is a continuous metric group under the obvious
metric. There is also a certain class of ’trivial examples’ of non-locally compact
groups with bi-invariant metrics that have property (T). Namely, there are abelian
metrizable groups that admit no non-trivial unitary representations, i.e. satisfying
property (T). Such an example can be found in [5]. Since it is extremely amenable
it does not admit non-trivial unitary representations. The author does not know
other non-locally compact groups which are continuous metric groups with property
(T). In particular are there non-trivial connected examples? This remark originally
appeared in a discussion with Michal Doucha and then was extended by the referee.
(VI) The author thinks that the following question is basic in this topic.

2an ultraproduct of compact metric groups is not necessarily locally compact
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Let (G, d) be a metric group which is a continuous structure. Assume
that property (T) holds in G. Does every elementary substructure of
(G, d) satisfy (T)?

According the previous remark it looks reasonable to start with the discrete case:

Does an elementary substructure of a discrete group with property (T)
also have property (T)?

It is natural to consider this question in the case of linear groups, where property
(T) and elementary equivalence are actively studied, see [4] and [6].
(VII) Property FH states that every action of G by affine isometries on a Hilbert
space has a fixed point. It is equivalent to property (T) for σ-compact locally
compact groups. Axiomatization of FH is studied in arXiv paper [12]. Since in
this case unbounded actions appear, the approach is different there.
(VIII) One of the definitions of non-amenability says that a topological group is
non-amenable if there is a locally convex topological vector space V and a contin-
uous affine representation of G on V such that some non-empty invariant convex
compact subset K of V does not contain a G-fixed point ([1], Theorem G.1.7). If
we restrict ourselves just by linear representations on normed/metric vector spaces
we obtain a property which is stronger than non-amenability. We call it strong
non-FP. The paper [12] contains some results showing that the approach to non-
(T) presented in Sections 4 and 5 can be applied to strong non-FP too. We would
also mention that this arXiv paper also considers the class of groups which are not
extremely amenable in some uniform way.
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