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On the Mathematical Theory of Records

Alexei Stepanov

Abstract. In the present work, we briefly analyze the development of the
mathematical theory of records. We first consider applications associated
with records. We then view distributional and limit results for record values
and times. We further present methods of generation of continuous records.
In the end of this work, we discuss some tests based on records.

1 Introduction
Let X1, X2, . . . be a sequence of random variables. By this sequence of variables,
let us define the sequences of upper record times L(n)(n ≥ 1) and record values
X(n)(n ≥ 1) as follows:

L(1) = 1, L(n+ 1) = min
{
j : j > L(n), Xj > XL(n)

}
, (1)

X(n) = XL(n).

If in (1) we replace the second sign > with the sign <, then instead of the sequences
of upper record times L(n) and values X(n) we obtain the sequences of lower record
times and values. Since the theory of lower records follows from the theory of
upper records, we basically discuss upper records in this work. Wherein (with the
exception of Section 5) the term “upper” is not used.

The first mathematical paper on records was published by Chandler [6]. The
paper attracted the attention of many researchers and inspired many new pub-
lications. For references, see the books of Arnold et al. [2], Nevzorov [12] and
Ahsanullah and Nevzorov [1]; see also the references therein.

It should be noted that records are commonly used in different areas such as
sport, finance, reliability, hydrology, survival analysis and others. Let us consider
two examples, one relating to insurance and the other to hydrology.
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Example 1. Assume that Xi > 0 (1 ≤ i ≤ L(n)) is a set of client claims of
some large insurance company. We call a claim Xi a near record claim if Xi ∈
[X(n)− a,X(n)] for some non-stochastic constant a > 0. Let also

Sn =

L(n)∑
i=1

XiIXi∈[X(n)−a,X(n)],

where IA is the indicator-function of the event A. It is known that the sums of
approximately 10 percent of large claims can cause 90 percent of the total insurance
payment of a company. This fact motivates researchers to study the asymptotic
behavior of sums of near record claims Sn.

The research on large claims was conducted, among others, in Hashorva and
Hüsler [10], [11], Hashorva [9] and Balakrishnan et al. [5]. Let us consider another
example.

Example 2. Assume now that Xi > 0 (i ≥ 1) is a sequence of water levels of some
river. Suppose we are going to construct a dam with height H and, correspondingly,
going to estimate H. On one hand, it should be such that limn→∞ P (X(n) <
H) = 1 and, on the other hand, H should be chosen rather small in order to
avoid excessive construction spending. This problem also inspires researchers to
investigate asymptotic properties of X(n).

The development of the mathematical theory of records is analyzed in the
present paper. In Section 2, we discuss distributional results for record values
and times. In Section 3, we present limit results for records. Methods of genera-
tion of continuous records are presented in Section 4. In final Section 5, we describe
some statistical procedures based on records.

2 Distributional Results
2.1 Distributional Results for Record Times

Let us discuss distributional results for record times in the general continuous case.
Let X1, X2, . . . be independent and identically distributed random variables with
continuous distribution F . Let us introduce the record indicators ξn (n ≥ 1) as
follows:

ξn =

{
1, if Xn is a record value,
0, otherwise.

The following result was proved by the famous Hungarian mathematician Rényi
[18].

Lemma 1. The variables ξ1, ξ2, . . . are independent and

P (ξn = 1) = 1/n (n ≥ 1).
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Making use of Lemma 1, one can find the distribution of L(2). Indeed,

P (L(2) = k) = P (ξ1 = 1, ξ2 = 0, . . . , ξk−1 = 0, ξk = 1)

=
1

(k − 1)k
. (2)

It also follows from Lemma 1 that the sequence L(n) (n ≥ 1) forms a Markov chain
and

P (L(n) = k|L(n− 1) = j) =
j

(k − 1)k
(n ≥ 2, n− 1 ≤ j < k).

Identity (2) implies that
EL(2) =∞,

and then EL(2) ≤ EL(n) =∞ (n ≥ 2). For n ≥ 2 one can show that

P (L(n) = k) =
| Sn−1

k−1 |
k!

,

where Snk are the Stirling numbers of the first kind, defined by

x(x− 1) . . . (x− k + 1) =

k∑
n=0

Snk x
n.

Let us denote the number of records in a sample X1, . . . , Xn as N(n). We have
N(n) = ξ1 + ξ2 + . . .+ ξn. It should be noted that

P (L(n) > m) = P (ξ1 + ξ2 + . . .+ ξm < n). (3)

Let us now estimate the expected value of the number of record values in a con-
tinuous sample X1, . . . , Xn. Obviously,

EN(n) = Eξ1 + Eξ2 + . . .+ ξn

= 1 + 1/2 + . . .+ 1/n ≈ log n.

That way, an observer at average can register log 100 ≈ 4.6 record values in a
sample X1, . . . , X100 and log 1000 ≈ 6.9 record values in a sample of size n = 1000.
No doubt record values appear rarely.

Unfortunately, the distribution function of L(n) in the discrete case depends
on the underlying distribution F . It can be found only for each particular discrete
distribution.

2.2 Distributional Results for Record Values
We first discuss distributional results for continuous record values. The following
result was obtained by the Czech mathematician Tata [22].

Theorem 1. Let X1, X2, . . . be independent and identically distributed random
variables with H(x) = 1− e−x (x > 0). Then the variables

Y1 = X(1), Y2 = X(2)−X(1), Y3 = X(3)−X(2), . . .

are also independent and identically distributed with H.
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Tata’s result allows to find the distribution of X(n) when the underlying continuous
distribution F is arbitrary. First, observe that in the standard exponential case

X(n)
d
= Y1 + . . .+ Yn, (4)

where X
d
= Y means equality of the distributions of X and Y . Then X(n) has a

gamma distribution with parameters (n, 1). We, consequently, have

P (X(n) ≤ x) =
1

(n− 1)!

∫ x

0

e−uun−1du.

Let now X1, X2, . . . be independent and identically distributed random variables
with arbitrary continuous F . Observe that variables

E1 = − log(1− F (X1)), E2 = − log(1− F (X2)), . . .

are independent and identically distributed with H. It should also be noted that if
Xj is a record value among X1, X2, . . ., then Ej is a record value among E1, E2, . . .
Then if F is an arbitrary continuous distribution, then

P (X(n) ≤ x) =
1

(n− 1)!

∫ − log(1−F (x))

0

e−uun−1du. (5)

Let us consider the form of the joint density of X(1), . . . , X(n) in the absolutely
continuous case when f(x) = F ′(x) is the underlying density. Here, we have

fX(1),...,X(n−1),X(n) (x1, . . . , xn−1, xn)

=
f(x1)

1− F (x1)
. . .

f(xn−1)

1− F (xn−1)
f(xn).

It follows that the sequence X(1), X(2), . . . forms a Markov chain and

P (X(n+ 1) ≤ y | X(n) = x) =
F (y)− F (x)

1− F (x)
(x < y). (6)

Let us now discuss distributional results for record values in the discrete case.
These results were obtained, in particular, in the works of Shorrock [19], Vervaat
[23] and Pakhteev and Stepanov [16]. Assume that X,X1, X2, . . . are independent
and identically distributed random variables with support on non-negative integers
and for all n ≥ 0

F (n) = P (X ≤ n) < 1. (7)

Condition (7) guarantees the existence of the sequence X(n) (n ≥ 1) with proba-
bility one. Indeed, let there be a non-negative integer n0 such that F (n0 − 1) < 1
and F (n0) = 1. Then P (X(1) = n0) = F (n0) − F (n0 − 1) and P (X(2) exists) =
1 − (F (n0) − F (n0 − 1)) < 1. Let also pn = P (X = n) and qn = P (X ≥ n). The
joint probability mass function of the first n discrete record values has the form

P (X(1) = k1, . . . , X(n) = kn)

= pkn

n−1∏
i=1

pki
qki+1

(0 ≤ k1 < . . . < kn).
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It follows that the sequence X(n) (n ≥ 1) forms a Markov chain and

P (X(n+m) = kn+m, . . . , X(n+ 1) = kn+1|X(n) = kn)

=
pkn+m

qkn+1

n+m−1∏
i=n+1

pki
qki+1

(m ≥ 1).

Let us define random indicators ηi (= 0, 1; i = 0, 1, . . .). Let us set ηi = 1 if there
is a record value X(n) such that X(n) = i. The following lemma was proved by
Shorrock [19].

Lemma 2. The random variables ηi (i = 0, 1, . . .) are independent and

P (ηi = 1) =
pi
qi
.

Representation 1. Under the conditions of Lemma 2

P (X(n) > m) = P (η0 + . . .+ ηm < n) (n ≥ 1).

3 Limit Results
Continuous case Let X1, X2, . . . be independent and identically distributed ran-
dom variables with arbitrary continuous F . Let us recall that N(n) = ξ1+ξ2+. . .+
ξn, where the variables ξi (1 ≤ i ≤ n) are independent and P (ξi = 1) = 1/i. By
applying the limit theorems apparatus to independent variables ξi, one can obtain
the following limit results for the number of records N(n):

N(n)

log n

a.s.→ 1 and
N(n)− log n√

log n

d→ Z, (8)

where by the symbols
d→ and

a.s.→ we denote the convergence in distribution and
with probability one, respectively, and Z is a standard normal random variable,
i.e.,

P (Z ≤ x) = Φ(x) =
1√
2π

∫ x

−∞
e−

u2

2 du.

By applying (3) to the limit results in (8), we obtain

logL(n)

n

a.s.→ 1 and
logL(n)− n√

n

d→ Z.

Let X1, X2, . . . be independent and identically distributed random variables with
H(x) = 1− e−x (x > 0). Using (4), we can easily get that

X(n)

n

a.s.→ 1 and
X(n)− n√

n

d→ Z.

Let now X1, X2, . . . be independent and identically distributed random variables
with arbitrary continuous F . Applying the argument that was used for obtaining
(5), we get the limit results

− log(1− F (X(n))

n

a.s.→ 1 and
− log(1− F (X(n))− n√

n

d→ Z.
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Discrete case In the end of this section, we assume that X1, X2, . . . are indepen-
dent and identically distributed random variables with support on non-negative
integers and F (n) = P (X ≤ n) < 1 for all n ≥ 0. Observe that

∑∞
n=1 pn = 1

and then by the Dini test
∑∞
n=1

pn
qn

=∞. In turn, the Abel-Dini test implies that∑∞
n=1

pn

qn
(∑n

i=1
pi
qi

)2 < ∞. Then
∑∞
n=1

Dηn(∑n
i=1

pi
qi

)2 < ∞ and Kolmogorov’s strong

law of large numbers states that
∑n

i=1 ηi∑n
i=1

pi
qi

a.s.→ 1. Theorem 2 follows now from the

last strong convergence and Representation 1.

Theorem 2. The following asymptotic law∑X(n)
i=0

pi
qi

n

a.s.→ 1 (n→∞)

holds true.

One can derive a version of the central limit theorem for the sequence X(n) (n ≥ 1).

Theorem 3. Let limn→∞
pn
qn

= a < 1. Then∑X(n)
i=0

pi
qi
− n√

(1− a)n

d→ Z (n→∞).

4 Generation of Continuous Records
In this section, we assume that X,X1, X2, . . . are independent and identically dis-
tributed random variables with absolutely continuous distribution F and density
f . In this section we first briefly describe some basic methods of generation of
random variables. When the inverse continuous distribution function F−1 can be
found analytically, one can apply the inverse-transform method for generating X.
Inverse-Transform Method By this method, we can obtain X = x as

x = F−1(u),

where U = u is the generation of a random number.
The method works only for “simple” distributions. When the inverse F−1 can be
found only numerically, one can use the inverse-transform method along with a
numerical method for F−1. An alternative method of generation in the case when
F−1 cannot be found analytically is the rejection method.
Rejection Method Suppose we can generate a random variable X̃ having density
function g by the inverse-transform method. Suppose X with density function h
cannot be generated by the inverse-transform method and X and X̃ have the same
support. Then, one should find a constant c > 1 such that c = supx

h(x)
g(x) .

Algorithm 1. The rejection method.
STEP 1: Generate Y = y with density g.
STEP 2: Generate a random number U = u.
STEP 3: If u < h(y)

cg(y) , set X = y. Otherwise, go to STEP 1.
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The choice of X̃ is determined by the fact that c > 1 should get the smallest
possible value. The number of iterations in this method for obtaining X is a
geometric variable with mean c.

Simulation methods of records were discussed in the works of Bairamov and
Stepanov [3], Nevzorov and Stepanov [13], Balakrishnan et al. [4], Stepanov et al.
[21], Pakhteev and Stepanov [14], [15], [16], [17] and Stepanov [20]; see also the
references therein. Various algorithms of record generation are known. The first
and most natural algorithm of record generation is the direct one.
The direct algorithm of record generation The value X(1) = X1 is generated
and kept. For n ≥ 1, one can apply the recursive approach, which assumes that
X(n) is already generated. One then generates variables Xi till one of them, say
Xj = xj , is greater than X(n). Then X(n+1) = xj becomes the next record value,
which is also kept.
The direct algorithm allows to obtain sequences of record values in both discrete
and continuous cases. However, if a large number of records is needed this algorithm
is computationally burdensome and slow. Other (more effective) algorithms of
generation of records are based on the fact that sequences of records form Markov
chains. For record generation we can use the conditional distribution given by (6).
Further in this section we discuss only algorithms of generation of normal records.

Let now Zi (i ≥ 1) be independent and identically distributed random variables
with standard normal distribution Φ and density φ, and let Z(n) (n ≥ 1) be the
corresponding normal records. It follows from (6) that the conditional density of
Z(n+ 1) given Z(n) = zn has the form

fZ(n+1)|Z(n)(zn+1 | zn) =
φ(zn+1)

1− Φ(zn)
(zn+1 > zn).

The following algorithm was proposed in Pakhteev and Stepanov [17].

Algorithm 2. The sequence X(n) (n ≥ 1) can be generated as follows.
STEP 1: Generate X(1) = X1, X(2), . . . , X(i) (i ≥ 1) by the direct algorithm

of record generation till X(i) > 0.
For n ≥ i, apply the rejection method and the following recursive approach.

Assume that X(n) = xn is already generated.

STEP 2: Generate random numbers U1 = u1, U2 = u2 and set β∗n =
xn+
√
x2
n+4

2 .
STEP 3: If

−2 log u2 > (xn − log u1/β
∗
n − β∗n)2

set X(n+ 1) = xn − log u1/β
∗
n. Otherwise, return to STEP 2.

We explain why do we have to generate negative normal records by the direct
algorithm. We compare the conditional density fZ(n+1)|Z(n)(zn+1 | zn) with density
g(zn+1 | zn, βn) = βne

−βn(zn+1−zn) (zn+1 > zn), where βn > 0 is such that
g approximates f in the “best” way. For positive zn the forms of the curves
fZ(n+1)|Z(n)(zn+1 | zn) and g(zn+1 | zn, βn) are similar. The forms of g and f
when zn is negative are different and f cannot be approximated by g for any choice
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of βn. Let τ = 1, 2, . . . be a random variable such that Z1 ≤ 0, . . . , Zτ−1 ≤ 0 and
Zτ > 0. Observe that for k ≥ 1

P (τ = k) = P (Z1 ≤ 0, . . . , Zk−1 ≤ 0, Zk > 0)

= Φk−1(0)(1− Φ(0)) =
1

2k
.

It follows that τ is a geometric random variable with parameter 1/2. Then Eτ = 2.
That way, in a simulation experiment the number of first negative normal records
is insufficient and they can be generated by the direct algorithm.

Remember that in Algorithm 2 c∗(zn) = supzn+1>zn

fZ(n+1)|Z(n)(zn+1|zn)

g(zn+1|zn,βn) . One

can prove that c∗(zn) → 1 as zn → ∞. It is known that Z(n)
a.s.→ ∞. The

convergence c∗(zn)→ 1 tells us that Algorithm 4.2, which is based on the rejection
method, eventually works as an algorithm based on the inverse-transform method.
With time every generation in a generation experiment is accepted and becomes a
new record value. The last argument guaranties efficiency and good performance
of Algorithm 2.

If one generates directly standard normal random variables one cannot obtain
(with today’s best computer software) a standard normal generation which exceeds,
say, value 50. We generated in MatLab (by the computer AMD FX(tm)-8350
Eight-Core Processor 4.00GHZ 16 GB.) a single sequence of normal records and
obtained:

X(103) = 43.7085

X(104) = 140.4020

X(105) = 447.2026

X(106) = 1414.59097

X(107) = 4472.6570

X(108) = 14142.3753

X(109) = 44721.3003

X(2 ∗ 109) = 63251.0830.

This shows the power of our indirect Algorithm 2. We made another simulation
experiment. Making use of numerical integration, we computed in the standard
normal case the means of 110 normal records. Then we generated by Algorithm 2
one million times 110 first records and found the corresponding sample means.

EX(30) = 7.3226, X̄ (30) = 7.3234,
EX(50) = 9.6483, X̄(50) = 9.6491,
EX(70) = 11.5214, X̄(70) = 11.5219,
EX(90) = 13.1335, X̄(90) = 13.1337,
EX(110) = 14.5705, X̄(110) = 14.5708.

The visual comparison shows that the differences between the means and their
statistical estimates are small. This again indicates that Algorithm 2 allows to
generate “long” sequences of normal records efficiently.
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5 Statistical Procedures Related to Records
In the two years following the publication of the first paper on records by Chan-
dler [6], there appeared some papers in which records were used for testing some
statistical hypotheses; see Foster and Stuart [7], Foster and Teichroew [8]. These
papers were followed by other statistical works on records. They treated testing for
randomness, for homoscedasticity, for trend against natural alternatives. In this
section we discuss two examples of using records in statistics. In the first example
we present a test for trend against natural alternatives and in the second one we
consider a precedence test based on records.
Test for trend Let S(n) = N1(n)−N2(n) be the difference between the number
of upper and lower records in a sample X1, . . . , Xn. Let

Xk = Yk + δk (k = 1, . . . , n),

where Yk are independent and identically distributed random variables and δ is a
nonstochastic constant. It is clear that if δ > 0 then the number of upper records
is stochastically larger than the number of lower records. If δ = 0,

S(n) = ν1 + . . .+ νn,

where νk = 1 if Xk is an upper record, νk = −1 if Xk is a lower record and νk = 0,
otherwise. We have

ES(n) = 0, V ar S(n) =

n∑
k=1

2

k
∼ 2 log n.

Observe that S(n)√
2 logn

is asymptotically normal. Let the null hypothesis H0 be δ = 0

and the alternative hypothesis H1 be δ 6= 0. By the test construction, we reject
H0 if

either S(n) > zα/2
√

2 log n, or S(n) < −zα/2
√

2 log n,

where α = 1− Φ(zα).
Precedence test based on records Let X1, X2, . . . and Y1, Y2, . . . be two sam-
ples of independent and identically distributed random variables with distributions
FX and FY , respectively. A commonly encountered problem in practice is the com-
parison of FX and FY . It appears, for example, when we wish to test whether a
new manufacturing process or a new medical treatment is better than the existing
one. Thus we are interested in testing the null hypothesis

H0 : FX = FY

against

H1 : FX > FY

or

H
′

1 : FX < FY .
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A known procedure for testing H0 in terms of order statistics is the Wilcoxon
rank-sum test with the test statistic

Wn1,n2 =

n2∑
i=1

Rank(Yi),

whereRank(Yi) is the rank of Yi in the ordered sample consisting of Y1, . . . , Yn2
,X1,. . .,

Xn1
. The null hypothesis H0 is rejected in favor of H1 if a large value of Wn1,n2

is
observed.

A similar precedence test can be proposed in terms of records; see Balakrishnan
et. al. (2008). Let

Ri = #{j ∈ {1, 2, . . .} : Y (i− 1) < X(j) ≤ Y (i)},

where Y (0) = −∞ and X(i), Y (i) i = 1, 2, . . . The following theorem was proved
in Balakrishnan et. al. (2008).

Theorem 4. Under H0 : FX = FY , the random variables R1, R2, . . . are indepen-
dent and identically distributed and

P (Ri = k | H0) =

(
1

2

)k+1

, i = 1, 2, . . . , k = 0, 1, . . .

Let Rank(Y (i)), i = 1, 2, . . . be the rank of Y (i) in an ordered sequence consisting
of X- and Y -records. For example, if we have X(1) < X(2) < Y (1) < X(3) <
Y (2) < X(4) . . ., then Rank(Y (1)) = 3 and Rank(Y (2)) = 5. Let us define the
following test statistic

RW(r) =

r∑
i=1

Rank(Y (i)).

Since Rank(Y (1)) = RM1 + 1 and Rank(Y (i)) − Rank(Y (i − 1)) = RMi + 1,
i = 2, 3, . . ., Theorem 4.2 enables us to establish the null distribution of RW(r) as

P (RW(r) < s|H0 : FX = FY ) =∑
A(r)(s)

P (Rank(Y (1)) = i1, . . . , Rank(Y (r)) = ir | H0)

=
∑
A(r)(s)

P (Rank(Y (1)) = i1, Rank(Y (2))−Rank(Y (1)) = i2 − i1 − 1, . . . ,

Rank(Y (r))−Rank(Y (r − 1)) = ir − ir−1 − 1 | H0)

=
∑
A(r)(s)

(1/2)ir ,

where A(r)(s) = {(i1, i2, . . . , ir) : 0 < i1 < . . . < ir and i1 + i2 + . . . + ir < s.
Large values of RW(r) lead to the rejection of H0 in favor of H1. Therefore, for
a specified value of significance α, the critical region will be {sW , sW + 1, · · · },
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where the critical value sW (corresponding to an exact level α̂ closest to α but not
exceeding α) is the largest integer s satisfying

P (RW(r) ≥ s|H0 : FX = FY ) = 1−
∑
A(r)(s)

(1/2)ir = α̂ ≤ α.

With this test we finish considering statistical tests based on records and complete
our discussion.
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