§ sciendo

Communications in Mathematics 29 (2021) 325-341 325
DOI: 10.2478 /cm-2021-0010

(©2021 Bijan Kumar Patel, Prasanta Kumar Ray

This is an open access article licensed

under the CC BY-NC-ND 3.0

On Balancing and Lucas-balancing Quaternions

Bijan Kumar Patel, Prasanta Kumar Ray

Abstract. The aim of this article is to investigate two new classes of quater-
nions, namely, balancing and Lucas-balancing quaternions that are based on
balancing and Lucas-balancing numbers, respectively. Further, some iden-
tities including Binet’s formulas, summation formulas, Catalan’s identity,
etc. concerning these quaternions are also established.

1 Introduction

Quaternions were introduced by W. R. Hamilton in the middle of 19th century;
they are an extension of complex numbers. A quaternion ¢ is a hyper-complex
number defined by the equation

q = aep + bey + ces + des = (a, b, c,d)

where a,b,c, d are members of the set of real numbers R and eg, ey, e, e3 with
eo = 1 form a standard orthonormal basis in R*. The set of quaternions is usually
denoted by H and constitutes a non-commutative field known as skew field that
extends the complex field C. The standard basis vectors eg, e1, €2, e3 satisfy the
quaternion multiplication as per the following multiplication table (Table 1).

If p and ¢ are any two quaternions in H, say,

p = (po,p1,p2,p3) and ¢ = (qo,q1,49,q3),

then their addition and substraction are defined as

pEq=(poEqo)eo + (p1 £ q1)er + (p2 £ q2)ez + (p3 £ q3)es .
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* 1 €1 €9 €3
1 €1 €9 €3
epr e —1 es —e2
€2 €9 —€3 -1 €1
€3 €3 €9 —eq -1

Table 1: The multiplication table for the basis of H

Further, if we rewrite p = pg + P and ¢ = g9 + ) where P = pie; + paes + pses
and Q = q1e1 + g2e2 + gzes, then their multiplication is defined as

pq =pogo — P - Q +poQ + qP + P xQ.

“won 7

Here and “ x 7 are respectively the scalar and vector products of the vectors.
The complex conjugate of ¢ = qo + @, denoted by ¢ is defined as § = qp — @, while
the norm of ¢, denoted by |g|, is given as |q| = 1/¢q.

Fibonacci and Lucas quaternions were introduced by Horadam [8], and are
defined by the equations

QF, = Fheq + Fppier + Fopoea + Foyses

and
QLy = Lpeg + Lpy1e1 + Lpg2ez + Linyzes.

Here F,, and L,, denote the n*® Fibonacci and Lucas number, respectively. Some
more properties including recurrence relation were studied in [9]. Iyer [10] derived
some relations between the Fibonacci and Lucas quaternions. Halici [7] investigated
the Fibonacci and Lucas quaternions and derived some identities of them which
includes Binet’s formulas and generating functions. Subsequently, Akyigit et al.
[1] generalized the Fibonacci quaternions and studied many of their properties.
Recently, Cimen and Ipek [5] defined the Pell and Pell-Lucas quaternions as follows:

QP, = Pyeg + Ppyier + Poioea + Pyyses

and
QPL, = Qneo + Qnyre1 + Qnioes + Qnizes,

where P, and Q,, are the n'® Pell and Pell-Lucas numbers respectively. As usual,
Pell and Pell-Lucas numbers are defined recursively by

Pn:2pn—l+Pn—2

and
Qn = 2Qn71 + Qn72

for n > 2 with their respective initials

(PQ,Pl) = (0, 1) and (QOan) = (1,1)
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Consequently, Szynal-Liana and Wloch [14] obtained several identities concerning
QP, and QPL, using matrix methods. Motivated by the work of Szynal-Liana
and Wioch, Catarino [4] introduced the Modified Pell and the Modified k-Pell
quaternions and established some of their properties. Motivated by these works,
in this paper we introduce the balancing and Lucas-balancing quaternions and
establish some identities.

It is worth defining balancing and Lucas-balancing numbers. A balancing num-
ber B is a solution of the Diophantine equation

14243+ +(B-1)=(B+1)+(B+2)+---+(B+R)

with R as a balancer corresponding to B [2]. For each balancing number B, the
square root of 8 B2 + 1 is called a Lucas-balancing number [11]. The n'® balancing
number B,, and the n*" Lucas-balancing number C,, are defined recursively by

B, =6B,1—Bn 2

with (By, B1) = (0,1) and

Cn = 607171 - Cn72
with (Cp,C1) = (1, 3) respectively for n > 2. The Binet formulas for B,, and C,
are respectively given by

A A

AT+ A2
B, = and C, = ALt A

)\1—)\2 2 ’

where A\ = 3+ /8 and Ay = )\1_1.

In this article we introduce two new classes of quaternions, namely, balancing
and Lucas-balancing quaternions and then derive some of their properties. Further,
we also study various results of these classes of quaternions including recurrence
relations, Binet’s formulas, summation formulas, Catalan’s identity etc.

2 Balancing and Lucas-balancing quaternions

In this section we define balancing and Lucas-balancing quaternions and derive
some properties of these quaternions.

Definition 1. Let B,, and C,, denote the n*" balancing and the n*® Lucas-balancing
numbers respectively. Then balancing and Lucas-balancing quaternions are respec-
tively defined as

3

@B, = B,eo + BTL+1€1 + B7L+262 + Bn+363 = Z Bn+7'er ,
r=0

and

3
QCn = CneO + Cn+161 + Cn+262 + Cn+363 = Z CnJrrer 5
r=0

where eg, e1, €2 and es are the standard orthonormal basis vectors in R*.
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We can observe from the above definition that addition and substraction of
these quaternions can be obtained as follows:

3
QBn + an = Z(Br + Or)(i,« .

r=0

Balancing and Lucas-balancing quaternions satisfy similar recurrence relations
as those of balancing and Lucas-balancing numbers. The following propositions
demonstrate this fact.

Proposition 1. The recurrence relations for balancing and Lucas-balancing quater-
nions are respectively

QB, =6QB,1 —QB,—2 and QC, =6QC,_1—QC),_»
forn > 2.

Proof. Using the recurrence relation of { B, },>2, we have

3
QBn = Z Bn+rer

r=0

3
== Z(GBn—1+r - Bn—2+r)6r
r=0

= GQBn—l - QBn—Q ’

which completes the proof. The proof is similar for Lucas-balancing quaternions.
O

The following lemma is useful while deriving the Binet formulas for both @B,
and QC,.

Lemma 1. For any natural number n,
an + \/gQBn = A)\? and QCn - \/gQBn = B>\121 5

where s s
A= Z Ae, and B= Z Aser .
r=0 r=0
Proof. Using the identity C, + v8B,, = A}, we have

3 3
an + \/gQBn = Z Cn+r6r + \/gz B71,+rer
r=0

r=0

3
= Z(Cn+r + \/an+7”)67"
r=0

3
= 5 N,
r=0

= AN,
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3
where A = Y Afe,. Similarly, using the identity C,, — v/8B,, = A}, the second
r=0
result can be obtained. (]

Theorem 1. The Binet formulas for QB,, and QC,, are respectively given by
AN = B)\} AN+ BA}

Bn—i n— - 5
Q T and QC 5

3 3
where A = > Me, and B = ) Me, withn > 0.
r=0 r=0

Proof. By virtue of Lemma 1,
AN} — BAY = (A1 — A2)@B,, and AN} 4+ BA} =2QC,,,
and the results follow. O

By using the Binet form of balancing and Lucas-balancing quaternions, we
derive some identities concerning @B, and QC,,. Before that we first define con-
jugates and norms of these quaternions.

Definition 2. The conjugates of @B, and QC,, are respectively defined as

3
QBn = BneO - BnJrlel - Bn+2e2 - Bn+3e3 — Bn - ZBnJrrer 5

r=1

3
QCn = Cneo - Cn+1el - Cn+2€2 - Cn+3€3 — Cn - ZCnJrrer 5

r=1

and the norms of QB,, and QC), are respectively defined as
L 3
Nos, = QBuQB, = B, + Bi, + By h + Biis =) Bry.,
r=0

3
Ngc, = QC,QC, = Cp+ Cr iy +Ci g+ Ciyy = Z Crsr

=0
Proposition 2. Ifn > 2, then
(i) @By + @B, = 2By,
(ii) QB +QB,QB, = 2B,QB,
(iii) QBn@Bn = 55 (Bant7 — Ban—1 — 8).
Proof. Using Definition 2, we have

3 3
QBn + @ = Z B7L+7'e7' + Bn - Z B7L+7'e7' = 23n 5

r=0 r=1
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which ends the proof of (i). Since

and so
QBZ + QBHQBTL = 2BnQBn .

In order to prove (iii) we use the following identity for all positive integers n and m,

- 1
> B, = 3—2(Bgm+2n+1 — Byp_1—2(m+1)) (6, Theorem 2.2]).
r=0

3
Since @B,QB, = > B2, the identity follows by letting m = 3. O
r=0

Proposition 3. If m and n are positive integers, then

and
QCh+n = CrQC, + 8B, QB, .

Proof. Using the identity B,,+n = BnCy + Cp, By, we have

3
QB77L+’IL = Z BTTL+7L+7‘6’I'
r=0

3 3
= Bm Z Cn+7'er + Orn Z Bn-l—’rer

r=0 r=0

Similarly,

3
Qcm+n = § Cm+n+rer .
r=0

Further simplification leads the right side expression to

3
> (ConCrir + 8B Brir)er .

r=0
It follows that

3 3
QCern = Cm Z Cn+r€7‘ +8Bn, Z Bn+re7‘ y

r=0 r=0

and the result follows. O

The following result can also be shown analogously.
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Proposition 4. If m and n are positive integers, then
QBm—n = CnQBm - BnQCm and Qcm—n = CnQCm - SBnQBm .

Replacing n by n+r in the identities B,, = 3B,,_1+C,,—1 and C}, 41 = 8B,+3C,,
[11], we have the following formulas that are useful while proving the subsequent
results.

For any natural numbers n and r,

Bn+r - 3Bn—1+7‘ + Cn—1+r 5 (1)
Cn+r = 8Bn71+r + 30n71+r . (2)

Using (2) and the recurrence relation for Lucas-balancing numbers, we have
Bn+1+r - Bn—1+r = 2Cn+r . (3)

The following result demonstrates some relations between the balancing and
Lucas-balancing quaternions.

Proposition 5. For n > 2 we have the following identities,
(i) @B, =3QBn-1+QCy_1,
(i) QCp =8QBy—1 +3QC, 1,
(iii) 2QC,, = QBpy1 — QBn_1,
(iv) QCr — QCp1 = 2(QBu1 + QB,).
Proof. From (1), we have

3
QBn - ZBn+r€r

r=0

3
= Z(an—l-H’ + Cn—1+r)€r
r=0

= SQBn—l + an—l )

which implies the first identity. Similarly, applying (2) and (3), (ii) and (iii) can
be derived. (iv) immediately follows from (ii) and (iii). This completes the proof.
O

Theorem 2 (Catalan’s identity). If n,r € N, then

-1
QBi - QB QB = §[(Czr —Co) + (Cop1 — Chr)eq + (Corga — Cr)es)
1

+16

[(Corqs + Cor_3 + Copq — Copy1 — 2C5)]es
and

Qcﬁ - QCnJrT’QCnfr = (C2r - Co) - (027“71 - 01)61 - (02r+2 - C2)€2
+ (205 + Copq1 — Cop—3 — Copy — Copy3/2)e3.
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Proof. Using the Binet formula for balancing quaternions and the fact Ay Ao = 1,
we have

QBTQL - QBn-i-rQBn—r
B (AA;L - B/\Q)Q (A)Jf” - B)\;””) (Ax;—T - BA;H)
)\17)\2 )\1*)\2 )\1*>\2

A ((R) -~y +ma((R) -y
B (A1 — A2)?

AB(A\" — 1) + BA(AY" — 1)

(A1 — A2)?

{24 20061 + 20 e + (AT 4+ A3 + Ao — Ap)es} (AT — 1)
B (A1 = A2)?

N {=2+2X1e1 +2X\3e2 + (A3 + A3 + A\ — Aa)es (M3 — 1)

(A1 —A2)?
_ (1 Ay +)\§") . (Af“ +AT N +)\2> .
8 16 16 16
N (A?"” +A M+ Xg‘) o

16 16
N (A%T+3+)\§T+3 N )\?T*S_,_)\%T*?)
32 32
N )\%r—l _1_)\%7‘—1 B A?T"!‘l +A§T+1 B /\:1)"*‘)\% o
32 32 16

which completes the proof of first part. The second part follows analogously. [

Since Cassini’s identity is a special case of Catalan’s identity where r = 1, the
following result immediately follows from Theorem 2.

Corollary 1. For any positive integer n, the Cassini identity for balancing quater-
nions is

AB(A? — 1)+ BA()2 — 1)

B,11QB,_ 1 —QB? =
QBn+1Q 1—Q (1 — Xo)2

= —2+ 70ey + 192e¢3 ,

whereas that for Lucas-balancing quaternions is

AB(1—)})+ BA(1-)\})
4

QC,11QC,_1 — QC2 = =16 — 560e; — 1536e3 .

Theorem 3 (d’Ocagne’s identity). If m,n € N with n > m, then

QBm—i-lQBn - QBmQBn+1 = 2(*Bn—m60 + Bn—m+161 + Bn—m—262)
+ (B7L—m+3 +Bn-m—3+ Bp_ms1 — Bn—m—l)e3
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and
Qcm+1QCn - QCmQCn+1 =16 [anm - anm+1el - Bn7m7262]
- 8(Bn—m+3 + Bn—m+1 - Bn—m—l + Bn—m+1)63 .

Proof. Using the Binet formula for balancing quaternions and since A\j Ao = 1, we
have

m+1 m+1 n_ n
QB 1QB, — QB QBpy1 = (AA1 B} > (A)\l B)\2>

)\1 — )\2 /\1 - )\2
(Axp — BAgL) (A)\?“ — BA;‘“)
/\1 — )\2 /\1 - )\2
_ BANT™ — ABX\TT™
A — Ao

= —2B,_meq + 2anm+161 + 2B, _m—2e2
+ (Bn—m+3 + Bn—m—S + Bn—7n+1 - Bn—m—1)63 )

which completes the proof of the first part. Similarly using the Binet formula
for QC,, the second result can be shown. O

An interesting observation from the above results is that the Catalan identities
for balancing and Lucas-balancing quaternions are expressed in terms of Lucas-
-balancing numbers whereas the d’Ocagne identities for both these quaternions are
in terms of balancing numbers.

o AB+BA
Theorem 4. The identity QC? — 8QB2 = 4EEE4 holds for n > 1.

Proof. Applying the Binet formulas for balancing and Lucas-balancing quaternions,
we get

0C? — 8QB? = (AX{+BA§)2_8 (AX{—BAQ)Q

2 A1 — A2
_ (A2\3" + AB + BA + B2)\3") — (A2)\2" — AB — BA + B?\3")
4
_ AB+ BA
-—
which completes the proof. O

3 Sum formulas of balancing and Lucas-balancing quaternions

In this section, we derive some sum formulas involving @B, and QC,,.
The following identity is available in [6].

Lemma 2. For all positive integers k and i,

g 1
> Biyi= Z[B(n—i-l)—i-k — Btk — B + Bi—1]. (4)
i=0
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Theorem 5. If P, is the " Pell number, then

n 3
1
T§:1 QBT - 1 (QBnJrQ - QBn+1 - E P2r+16r) .

r=0
Proof. Using (4), we have

n

; OB, = (XL: B,.> eo + (z: BT.H) e
<i r+2) €2 + <zn: Br+3) es3

r=0

Jr
1 1
1 Bnio — Bpy1i—1)|eo + E(BTH»S —Bni2—5)|es
+

1 1
|:4(Bn+4 — Bpys — 29)} es + |:4(Bn+5 — Bpys— 169)] €3

(Z Bn+2+'rer - Z Bn+1+r Z P27‘+ler>

r=0

%\*—‘

1
= Z (QBn+2 - QBnJrl - ;P2r+1er> 5

which completes the proof. O

The following result gives a general relation concerning balancing and Lucas-
-balancing quaternions.
Theorem 6. For m,n > 0,
" /n
Qan - Z (’I">( )n TBT Bn T]QBrv
r=0

and

- n n—r
QCmn E < >( e Cr QO .
Proof. Using the identity

B = 3 () (O BB B (12 B (1)

r
r=0
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we have

3
QBmn = Z an-{-lel

=0

=S (3 (1) BB )
(:) (=1)""B;,B, (23: Br+l6l> ;

=0

which completes the proof of the first part. The second part can be obtained
similarly using the identity

Chmin =Y (T)(—nm’“B};B;”_—{CMn ([12, Theorem 2.1]). O
r=0

The next result follows directly from Theorem 6 by setting m = 2.

Corollary 2. For n > 0,

n

QBan = (Z) (—1)" "6"QB, ,

r=0

and

n

QCon =Y (Z) (—1)"~"6"QC, .

r=0

The balancing and Lucas-balancing sums involving binomial coefficients were
studied in [13]. The following are analogous to the identities studied in Theo-
rem 4.1, [13].

Theorem 7. For any positive integers m and k with m > k > 0, we have

- _ (QBk - Qan+m+k) + (Qan+k - Qkam)
2 Qer—‘rk - 2(1 — Qcm)

and

. _ (Qck - Qcmn+m+k) + (Qcmn+k - Qck—m)
TZ::OQCWT—HC - 2(1 — QCm) .
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Proof. Using the Binet formula for balancing quaternions, we obtain

i QBmTJrk = i A)\rlnr+k — B)\;nr+k

r=0 r=0 >\1 o >\2
1 n n
_ k mr k mr
Sy (A)\l S OAPT—BASY A3 )
r=0 r=0

1 [ >\7r1,n+m -1 /\77L7L+m -1
= AN F—— | - BN B
A — A2 1( NP —1 ) 2 -1

_ 1 A )\71nn+’rn+k: _ )\,Ilc 3 )\;nn—i-m—i-k _ A]Qg
A — A2 AP — 1 A — 1

1 (AN} = BXS) (APl — gtk
A = A2 2 (AT DY) 2— (A + A7)

+

2 (A" +23Y) 2- (A" + A7)

(QBk - QB’rrL7L+7n+k) + (Qan-‘rk - QBk'—'m)
2(1-QCy) '

(AN R = BATTHR) (AN BA‘;’“)]

The proof for the Lucas-balancing quaternions is similar. O

The following result is an immediate consequence of the above result.

Corollary 3. For m > 0, we have

;QBW— TR ,

and
n

_ (Q@By — QBpy1) + (QB, +QBx)
2,05 2(1-QC) |

r=0

4 Generating functions for balancing and Lucas-balancing quater-
nions
Generating functions are used to solve linear recurrence relations with constant

coefficients. Recall that a generating function for a sequence {a,} of real numbers
is defined by

o0
L(s) = Z ans” .
n=0
The generating function for the balancing sequence is given by

S

=Tt

([2, Theorem 6.1])
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whereas that for the Lucas-balancing sequence is

_ 1—3s
T 1—6s+s2

g(s) ([3, Proposition 4.4]).
In order to find the generating functions for both @B, and QC,,, we need the

following result.

Theorem 8. For any natural numbers k and m with k > m > 0 and n € N, the
generating functions of Q Byt and QCr,4y, are respectively

o)
QBm - QBm—kS
B n+m "=
T;)Q kntmS 1—2Cys+ s2
and
= QCHy — QC—gs
C n _ 3 m—
nz:% Q@Cntms 1—2Cys+ s2

Proof. Using the Binet formula for QB,,, we have

o0 o0 A}\kner _ B)\kn+m
B et n _ 1 2 n
3 s =3 ()
o A By
7)\1—)\2 17)\’1€S 17)\’268
1 [(Ax;n — BAJY) — (ANF — BA TR s

BV L—(AF+ A\b)s + s2
_ QB — QBm_gs
To1- 2C)s + s2
which is the desired result. For QCp, 4, the proof is similar as QB 4m- O

The following results are direct consequences of Theorem 8.

Corollary 4. The generating function Gg(s) for balancing quaternions and gg(s)
for Lucas-balancing quaternions are respectively

seg+e1 + (6 — s)ea + (35 — 6s)es
1—6s+ s?

Gq(s) =

and
(1 —3s)eg+ (3—8)er + (17— 3s)ea + (99 — 17s)es
1—6s+ s2 '

9Q(s) =

Proof. Let the generating function for QB,, be

Gol(s) =Y _ QBns".
n=0



338 Bijan Kumar Patel, Prasanta Kumar Ray

By putting £ = 1 and m = 0, Theorem 8 becomes

3
1
Gals) = 152 2 (Br = Brasles
r=0

sep + e + (6 — s)ea + (35 — 6s)es
1—6s+ s?

which completes the proof. The proof is similar for Lucas-balancing quaternions.
O

The next results demonstrate the exponential generating functions and Poission
generating functions for both balancing and Lucas-balancing quaternions.

Theorem 9. For m,n € N, the exponential generating functions of the quaternions
QBp4+n and QCh, 4y, are respectively

A1s B}\gnekgs

Z QBm+n n - A)\ine
- A1 — A2

and

Z chrz+7z § — A)\T@Als + B)\gl@)\Qs

Proof. Using Binet’s formula for QB,,, ., we have

%) R0 o] A)\m+n o B)\m—i-n g™
Bm n_y — 1 2 -
;)Q ol 2 ( AL — Ao ) n!

n=0

AN i(xls)n_ B\ i(xzs)"

a /\1 — )\2 Tl' )\1 — /\2 0 ’fl'

A)\m A1s B)‘gn A2s
<)\1 >\2>6 <)\1—>\2)6 ’

and the result follows. Further simplification gives

ZQBMH " _QC,, (ZB >+QBW<ZC )

The proof for the Lucas-balancing quaternions is similar. O

Corollary 5. The exponential generating functions for balancing and Lucas-balancing
quaternions are respectively

Z QBn § — Aekls _ BeAzs and Z an o Ae)\ls +Be)\25
AL — A2 2 '
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The following result relating to Poisson generating functions is an immediate
consequence of Theorem 9 because Poisson generating functions for balancing and
Lucas-balancing quaternions can be obtained by multiplying e~* to the exponential
generating functions for both these quaternions.

Corollary 6. The Poisson generating function for balancing and Lucas-balancing
quaternions are

S reor 2 ACLBEL g 3 Qe AR
B ES(Al - 2e8 ’

respectively.

The various generating functions discussed above are applied to derive the fol-
lowing identities.

Lemma 3. For any natural number n, QB 1,11 — QBpir—1 = 2QC, 4.

Proof. Using Proposition 5, we get

iQB N +18 ZQB N 18 QBT+1 QBTS _ QBT—I — QBT—23

— oy 1—6s+ s2 1—6s+ s2
_ (QBT+1 - QBrfl) - (QBT - QB’I“72)S
1— 65+ 52
~2QC, —2QC,_1s
1—6s+ 52
=2 Z QCnyrs™,
n=0
which completes the proof. U

Lemma 4. For any natural number n,

i an s — fj; [QCO sinh(v/8s) + vV8Q B, cosh(\/gs)]
n=0 '

and

3 an § = 3 [\/gQBO sinh(v/8s) + QCo cosh(@S)] :
n=0 ’
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Proof. For any natural number n, we have

Z QB,L o Ach - et
Ny
" (AeVE _ pe-
= AV e
o 635 QOT + \/gQBr e\/§5 _ QCT - \/gQBr e_\/gs
2B A A5
835 e\/gs — e~ 8s e\/gs +€_ 8s
= - - B £ re
Ve CTQCT< 5 ) V8B,QC, ( 5

V8s —/8s V8s _ ,—/8s
v (5 n (5]

635
e
+V/8cosh(v/8s)(C.QB, — BTQC»} :

[sinh(\/és) (C.QC, — 8B,QB,)

Using the Proposition 4 in the above expression we get the desired result. O

Binet’s formulas for balancing and Lucas-balancing quaternions was already
shown in Theorem 1. However, these formulas can also be derived by applying
generating functions for both balancing and Lucas-balancing quaternions as follows.

By virtue of Corollary 4, we have

3
1
GQ(S) = m Z(BT - Br_ls)er
r=0

Further simplification using partial fractions reduces the above identity to

Gols) = 1 QR@B1 — MQBy QB — @By
Q )\1—)\2 1—8)\1 1—8)\2
3 o]
1
S Bsi1 — X By)es AT s™
Al . )\2 sgo( +1 2 ) 7;) 1
3 00
> (Bos1 = MBoes Y )\Ss”]
s=0 n=0
Z)\lesz Z)‘2€SZ ] .
/\1 )\2 L 0 n=0 n=0

That is,
> n o= (AN = BARN
GQ(S) = § QBps" = E <)\11_)\22> s,

n=0 n=0
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and hence the Binet formula for QB,, is obtained. Similarly, the Binet formula
for QC,, can also be obtained by using the generating function for Lucas-balancing
quaternions.
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