On Balancing and Lucas-balancing Quaternions

Bijan Kumar Patel, Prasanta Kumar Ray

Abstract

The aim of this article is to investigate two new classes of quaternions, namely, balancing and Lucas-balancing quaternions that are based on balancing and Lucas-balancing numbers, respectively. Further, some identities including Binet's formulas, summation formulas, Catalan's identity, etc. concerning these quaternions are also established.

1 Introduction

Quaternions were introduced by W. R. Hamilton in the middle of 19th century; they are an extension of complex numbers. A quaternion q is a hyper-complex number defined by the equation

$$
q=a e_{0}+b e_{1}+c e_{2}+d e_{3}=(a, b, c, d)
$$

where a, b, c, d are members of the set of real numbers \mathbb{R} and $e_{0}, e_{1}, e_{2}, e_{3}$ with $e_{0}=1$ form a standard orthonormal basis in \mathbb{R}^{4}. The set of quaternions is usually denoted by \mathbb{H} and constitutes a non-commutative field known as skew field that extends the complex field \mathbb{C}. The standard basis vectors $e_{0}, e_{1}, e_{2}, e_{3}$ satisfy the quaternion multiplication as per the following multiplication table (Table 1).

If p and q are any two quaternions in \mathbb{H}, say,

$$
p=\left(p_{0}, p_{1}, p_{2}, p_{3}\right) \quad \text { and } \quad q=\left(q_{0}, q_{1}, q_{2}, q_{3}\right)
$$

then their addition and substraction are defined as

$$
p \pm q=\left(p_{0} \pm q_{0}\right) e_{0}+\left(p_{1} \pm q_{1}\right) e_{1}+\left(p_{2} \pm q_{2}\right) e_{2}+\left(p_{3} \pm q_{3}\right) e_{3}
$$

[^0]| $*$ | 1 | e_{1} | e_{2} | e_{3} |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | e_{1} | e_{2} | e_{3} |
| e_{1} | e_{1} | -1 | e_{3} | $-e_{2}$ |
| e_{2} | e_{2} | $-e_{3}$ | -1 | e_{1} |
| e_{3} | e_{3} | e_{2} | $-e_{1}$ | -1 |

Table 1: The multiplication table for the basis of \mathbb{H}

Further, if we rewrite $p=p_{0}+P$ and $q=q_{0}+Q$ where $P=p_{1} e_{1}+p_{2} e_{2}+p_{3} e_{3}$ and $Q=q_{1} e_{1}+q_{2} e_{2}+q_{3} e_{3}$, then their multiplication is defined as

$$
p q=p_{0} q_{0}-P \cdot Q+p_{0} Q+q_{0} P+P \times Q
$$

Here "." and " \times " are respectively the scalar and vector products of the vectors. The complex conjugate of $q=q_{0}+Q$, denoted by \bar{q} is defined as $\bar{q}=q_{0}-Q$, while the norm of q, denoted by $|q|$, is given as $|q|=\sqrt{q \bar{q}}$.

Fibonacci and Lucas quaternions were introduced by Horadam [8], and are defined by the equations

$$
Q F_{n}=F_{n} e_{0}+F_{n+1} e_{1}+F_{n+2} e_{2}+F_{n+3} e_{3}
$$

and

$$
Q L_{n}=L_{n} e_{0}+L_{n+1} e_{1}+L_{n+2} e_{2}+L_{n+3} e_{3} .
$$

Here F_{n} and L_{n} denote the $n^{\text {th }}$ Fibonacci and Lucas number, respectively. Some more properties including recurrence relation were studied in [9]. Iyer [10] derived some relations between the Fibonacci and Lucas quaternions. Halici [7] investigated the Fibonacci and Lucas quaternions and derived some identities of them which includes Binet's formulas and generating functions. Subsequently, Akyigit et al. [1] generalized the Fibonacci quaternions and studied many of their properties. Recently, Çimen and Ipek [5] defined the Pell and Pell-Lucas quaternions as follows:

$$
Q P_{n}=P_{n} e_{0}+P_{n+1} e_{1}+P_{n+2} e_{2}+P_{n+3} e_{3}
$$

and

$$
Q P L_{n}=Q_{n} e_{0}+Q_{n+1} e_{1}+Q_{n+2} e_{2}+Q_{n+3} e_{3}
$$

where P_{n} and Q_{n} are the $n^{\text {th }}$ Pell and Pell-Lucas numbers respectively. As usual, Pell and Pell-Lucas numbers are defined recursively by

$$
P_{n}=2 P_{n-1}+P_{n-2}
$$

and

$$
Q_{n}=2 Q_{n-1}+Q_{n-2}
$$

for $n \geq 2$ with their respective initials

$$
\left(P_{0}, P_{1}\right)=(0,1) \quad \text { and } \quad\left(Q_{0}, Q_{1}\right)=(1,1)
$$

Consequently, Szynal-Liana and Włoch [14] obtained several identities concerning $Q P_{n}$ and $Q P L_{n}$ using matrix methods. Motivated by the work of Szynal-Liana and Włoch, Catarino [4] introduced the Modified Pell and the Modified k-Pell quaternions and established some of their properties. Motivated by these works, in this paper we introduce the balancing and Lucas-balancing quaternions and establish some identities.

It is worth defining balancing and Lucas-balancing numbers. A balancing number B is a solution of the Diophantine equation

$$
1+2+3+\cdots+(B-1)=(B+1)+(B+2)+\cdots+(B+R)
$$

with R as a balancer corresponding to B [2]. For each balancing number B, the square root of $8 B^{2}+1$ is called a Lucas-balancing number [11]. The $n^{\text {th }}$ balancing number B_{n} and the $n^{\text {th }}$ Lucas-balancing number C_{n} are defined recursively by

$$
B_{n}=6 B_{n-1}-B_{n-2}
$$

with $\left(B_{0}, B_{1}\right)=(0,1)$ and

$$
C_{n}=6 C_{n-1}-C_{n-2}
$$

with $\left(C_{0}, C_{1}\right)=(1,3)$ respectively for $n \geq 2$. The Binet formulas for B_{n} and C_{n} are respectively given by

$$
B_{n}=\frac{\lambda_{1}^{n}-\lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}} \quad \text { and } \quad C_{n}=\frac{\lambda_{1}^{n}+\lambda_{2}^{n}}{2}
$$

where $\lambda_{1}=3+\sqrt{8}$ and $\lambda_{2}=\lambda_{1}^{-1}$.
In this article we introduce two new classes of quaternions, namely, balancing and Lucas-balancing quaternions and then derive some of their properties. Further, we also study various results of these classes of quaternions including recurrence relations, Binet's formulas, summation formulas, Catalan's identity etc.

2 Balancing and Lucas-balancing quaternions

In this section we define balancing and Lucas-balancing quaternions and derive some properties of these quaternions.

Definition 1. Let B_{n} and C_{n} denote the $n^{\text {th }}$ balancing and the $n^{\text {th }}$ Lucas-balancing numbers respectively. Then balancing and Lucas-balancing quaternions are respectively defined as

$$
Q B_{n}=B_{n} e_{0}+B_{n+1} e_{1}+B_{n+2} e_{2}+B_{n+3} e_{3}=\sum_{r=0}^{3} B_{n+r} e_{r},
$$

and

$$
Q C_{n}=C_{n} e_{0}+C_{n+1} e_{1}+C_{n+2} e_{2}+C_{n+3} e_{3}=\sum_{r=0}^{3} C_{n+r} e_{r}
$$

where e_{0}, e_{1}, e_{2} and e_{3} are the standard orthonormal basis vectors in \mathbb{R}^{4}.

We can observe from the above definition that addition and substraction of these quaternions can be obtained as follows:

$$
Q B_{n} \pm Q C_{n}=\sum_{r=0}^{3}\left(B_{r} \pm C_{r}\right) e_{r}
$$

Balancing and Lucas-balancing quaternions satisfy similar recurrence relations as those of balancing and Lucas-balancing numbers. The following propositions demonstrate this fact.

Proposition 1. The recurrence relations for balancing and Lucas-balancing quaternions are respectively

$$
Q B_{n}=6 Q B_{n-1}-Q B_{n-2} \quad \text { and } \quad Q C_{n}=6 Q C_{n-1}-Q C_{n-2}
$$

for $n \geq 2$.
Proof. Using the recurrence relation of $\left\{B_{n}\right\}_{n \geq 2}$, we have

$$
\begin{aligned}
Q B_{n} & =\sum_{r=0}^{3} B_{n+r} e_{r} \\
& =\sum_{r=0}^{3}\left(6 B_{n-1+r}-B_{n-2+r}\right) e_{r} \\
& =6 Q B_{n-1}-Q B_{n-2},
\end{aligned}
$$

which completes the proof. The proof is similar for Lucas-balancing quaternions.

The following lemma is useful while deriving the Binet formulas for both $Q B_{n}$ and $Q C_{n}$.
Lemma 1. For any natural number n,

$$
Q C_{n}+\sqrt{8} Q B_{n}=A \lambda_{1}^{n} \quad \text { and } \quad Q C_{n}-\sqrt{8} Q B_{n}=B \lambda_{2}^{n}
$$

where

$$
A=\sum_{r=0}^{3} \lambda_{1}^{r} e_{r} \quad \text { and } \quad B=\sum_{r=0}^{3} \lambda_{2}^{r} e_{r}
$$

Proof. Using the identity $C_{n}+\sqrt{8} B_{n}=\lambda_{1}^{n}$, we have

$$
\begin{aligned}
Q C_{n}+\sqrt{8} Q B_{n} & =\sum_{r=0}^{3} C_{n+r} e_{r}+\sqrt{8} \sum_{r=0}^{3} B_{n+r} e_{r} \\
& =\sum_{r=0}^{3}\left(C_{n+r}+\sqrt{8} B_{n+r}\right) e_{r} \\
& =\sum_{r=0}^{3} \lambda_{1}^{r+n} e_{r} \\
& =A \lambda_{1}^{n},
\end{aligned}
$$

where $A=\sum_{r=0}^{3} \lambda_{1}^{r} e_{r}$. Similarly, using the identity $C_{n}-\sqrt{8} B_{n}=\lambda_{2}^{n}$, the second result can be obtained.

Theorem 1. The Binet formulas for $Q B_{n}$ and $Q C_{n}$ are respectively given by

$$
Q B_{n}=\frac{A \lambda_{1}^{n}-B \lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}} \quad \text { and } \quad Q C_{n}=\frac{A \lambda_{1}^{n}+B \lambda_{2}^{n}}{2}
$$

where $A=\sum_{r=0}^{3} \lambda_{1}^{r} e_{r}$ and $B=\sum_{r=0}^{3} \lambda_{2}^{r} e_{r}$ with $n \geq 0$.
Proof. By virtue of Lemma 1,

$$
A \lambda_{1}^{n}-B \lambda_{2}^{n}=\left(\lambda_{1}-\lambda_{2}\right) Q B_{n} \quad \text { and } \quad A \lambda_{1}^{n}+B \lambda_{2}^{n}=2 Q C_{n},
$$

and the results follow.
By using the Binet form of balancing and Lucas-balancing quaternions, we derive some identities concerning $Q B_{n}$ and $Q C_{n}$. Before that we first define conjugates and norms of these quaternions.

Definition 2. The conjugates of $Q B_{n}$ and $Q C_{n}$ are respectively defined as

$$
\begin{aligned}
& \overline{Q B_{n}}=B_{n} e_{0}-B_{n+1} e_{1}-B_{n+2} e_{2}-B_{n+3} e_{3}=B_{n}-\sum_{r=1}^{3} B_{n+r} e_{r} \\
& \overline{Q C_{n}}=C_{n} e_{0}-C_{n+1} e_{1}-C_{n+2} e_{2}-C_{n+3} e_{3}=C_{n}-\sum_{r=1}^{3} C_{n+r} e_{r}
\end{aligned}
$$

and the norms of $Q B_{n}$ and $Q C_{n}$ are respectively defined as

$$
\begin{aligned}
& N_{Q B_{n}}=\overline{Q B_{n}} Q B_{n}=B_{n}^{2}+B_{n+1}^{2}+B_{n+2}^{2}+B_{n+3}^{2}=\sum_{r=0}^{3} B_{n+r}^{2}, \\
& N_{Q C_{n}}=\overline{Q C_{n}} Q C_{n}=C_{n}^{2}+C_{n+1}^{2}+C_{n+2}^{2}+C_{n+3}^{2}=\sum_{r=0}^{3} C_{n+r}^{2} .
\end{aligned}
$$

Proposition 2. If $n \geq 2$, then
(i) $Q B_{n}+\overline{Q B_{n}}=2 B_{n}$,
(ii) $Q B_{n}^{2}+Q B_{n} \overline{Q B_{n}}=2 B_{n} Q B_{n}$,
(iii) $Q B_{n} \overline{Q B_{n}}=\frac{1}{32}\left(B_{2 n+7}-B_{2 n-1}-8\right)$.

Proof. Using Definition 2, we have

$$
Q B_{n}+\overline{Q B_{n}}=\sum_{r=0}^{3} B_{n+r} e_{r}+B_{n}-\sum_{r=1}^{3} B_{n+r} e_{r}=2 B_{n}
$$

which ends the proof of (i). Since

$$
Q B_{n}^{2}=Q B_{n} Q B_{n}=Q B_{n}\left(2 B_{n}-\overline{Q B_{n}}\right)=2 B_{n} Q B_{n}-Q B_{n} \overline{Q B_{n}}
$$

and so

$$
Q B_{n}^{2}+Q B_{n} \overline{Q B_{n}}=2 B_{n} Q B_{n}
$$

In order to prove (iii) we use the following identity for all positive integers n and m,

$$
\sum_{r=0}^{m} B_{n+r}^{2}=\frac{1}{32}\left(B_{2 m+2 n+1}-B_{2 n-1}-2(m+1)\right) \quad([6, \text { Theorem 2.2] })
$$

Since $Q B_{n} \overline{Q B_{n}}=\sum_{r=0}^{3} B_{n+r}^{2}$, the identity follows by letting $m=3$.
Proposition 3. If m and n are positive integers, then

$$
Q B_{m+n}=B_{m} Q C_{n}+C_{m} Q B_{n}
$$

and

$$
Q C_{m+n}=C_{m} Q C_{n}+8 B_{m} Q B_{n}
$$

Proof. Using the identity $B_{m+n}=B_{m} C_{n}+C_{m} B_{n}$, we have

$$
\begin{aligned}
Q B_{m+n} & =\sum_{r=0}^{3} B_{m+n+r} e_{r} \\
& =B_{m} \sum_{r=0}^{3} C_{n+r} e_{r}+C_{m} \sum_{r=0}^{3} B_{n+r} e_{r} \\
& =B_{m} Q C_{n}+C_{m} Q B_{n}
\end{aligned}
$$

Similarly,

$$
Q C_{m+n}=\sum_{r=0}^{3} C_{m+n+r} e_{r}
$$

Further simplification leads the right side expression to

$$
\sum_{r=0}^{3}\left(C_{m} C_{n+r}+8 B_{m} B_{n+r}\right) e_{r}
$$

It follows that

$$
Q C_{m+n}=C_{m} \sum_{r=0}^{3} C_{n+r} e_{r}+8 B_{m} \sum_{r=0}^{3} B_{n+r} e_{r}
$$

and the result follows.
The following result can also be shown analogously.

Proposition 4. If m and n are positive integers, then

$$
Q B_{m-n}=C_{n} Q B_{m}-B_{n} Q C_{m} \quad \text { and } \quad Q C_{m-n}=C_{n} Q C_{m}-8 B_{n} Q B_{m}
$$

Replacing n by $n+r$ in the identities $B_{n}=3 B_{n-1}+C_{n-1}$ and $C_{n+1}=8 B_{n}+3 C_{n}$ [11], we have the following formulas that are useful while proving the subsequent results.

For any natural numbers n and r,

$$
\begin{align*}
& B_{n+r}=3 B_{n-1+r}+C_{n-1+r} \tag{1}\\
& C_{n+r}=8 B_{n-1+r}+3 C_{n-1+r} . \tag{2}
\end{align*}
$$

Using (2) and the recurrence relation for Lucas-balancing numbers, we have

$$
\begin{equation*}
B_{n+1+r}-B_{n-1+r}=2 C_{n+r} \tag{3}
\end{equation*}
$$

The following result demonstrates some relations between the balancing and Lucas-balancing quaternions.

Proposition 5. For $n \geq 2$ we have the following identities,
(i) $Q B_{n}=3 Q B_{n-1}+Q C_{n-1}$,
(ii) $Q C_{n}=8 Q B_{n-1}+3 Q C_{n-1}$,
(iii) $2 Q C_{n}=Q B_{n+1}-Q B_{n-1}$,
(iv) $Q C_{n}-Q C_{n-1}=2\left(Q B_{n-1}+Q B_{n}\right)$.

Proof. From (1), we have

$$
\begin{aligned}
Q B_{n} & =\sum_{r=0}^{3} B_{n+r} e_{r} \\
& =\sum_{r=0}^{3}\left(3 B_{n-1+r}+C_{n-1+r}\right) e_{r} \\
& =3 Q B_{n-1}+Q C_{n-1},
\end{aligned}
$$

which implies the first identity. Similarly, applying (2) and (3), (ii) and (iii) can be derived. (iv) immediately follows from (ii) and (iii). This completes the proof.

Theorem 2 (Catalan's identity). If $n, r \in \mathbb{N}$, then

$$
\begin{aligned}
Q B_{n}^{2}-Q B_{n+r} Q B_{n-r}= & \frac{-1}{8}\left[\left(C_{2 r}-C_{0}\right)+\left(C_{2 r-1}-C_{1}\right) e_{1}+\left(C_{2 r+2}-C_{2}\right) e_{2}\right] \\
& +\frac{1}{16}\left[\left(C_{2 r+3}+C_{2 r-3}+C_{2 r-1}-C_{2 r+1}-2 C_{3}\right)\right] e_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
Q C_{n}^{2}-Q C_{n+r} Q C_{n-r}= & \left(C_{2 r}-C_{0}\right)-\left(C_{2 r-1}-C_{1}\right) e_{1}-\left(C_{2 r+2}-C_{2}\right) e_{2} \\
& +\left(2 C_{3}+C_{2 r+1}-C_{2 r-3}-C_{2 r-1}-C_{2 r+3} / 2\right) e_{3}
\end{aligned}
$$

Proof. Using the Binet formula for balancing quaternions and the fact $\lambda_{1} \lambda_{2}=1$, we have

$$
\begin{aligned}
& Q B_{n}^{2}-Q B_{n+r} Q B_{n-r} \\
&=\left(\frac{A \lambda_{1}^{n}-B \lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}\right)^{2}-\left(\frac{A \lambda_{1}^{n+r}-B \lambda_{2}^{n+r}}{\lambda_{1}-\lambda_{2}}\right)\left(\frac{A \lambda_{1}^{n-r}-B \lambda_{2}^{n-r}}{\lambda_{1}-\lambda_{2}}\right) \\
&= \frac{A B\left(\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{r}-1\right)+B A\left(\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{r}-1\right)}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} \\
&= \frac{A B\left(\lambda_{1}^{2 r}-1\right)+B A\left(\lambda_{2}^{2 r}-1\right)}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} \\
&= \frac{\left\{-2+2 \lambda_{2} e_{1}+2 \lambda_{1}^{2} e_{2}+\left(\lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{2}-\lambda_{1}\right) e_{3}\right\}\left(\lambda_{1}^{2 r}-1\right)}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} \\
&+\frac{\left\{-2+2 \lambda_{1} e_{1}+2 \lambda_{2}^{2} e_{2}+\left(\lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{1}-\lambda_{2}\right) e_{3}\right\}\left(\lambda_{2}^{2 r}-1\right)}{\left(\lambda_{1}-\lambda_{2}\right)^{2}} \\
&=\left(\frac{1}{8}-\frac{\lambda_{1}^{2 r}+\lambda_{2}^{2 r}}{16}\right)+\left(\frac{\lambda_{1}^{2 r-1}+\lambda_{2}^{2 r-1}}{16}-\frac{\lambda_{1}+\lambda_{2}}{16}\right) e_{1} \\
&+\left(\frac{\lambda_{1}^{2 r+2}+\lambda_{2}^{2 r+2}}{16}-\frac{\lambda_{1}^{2}+\lambda_{2}^{2}}{16}\right) e_{2} \\
&+\left(\frac{\lambda_{1}^{2 r+3}+\lambda_{2}^{2 r+3}}{32}+\frac{\lambda_{1}^{2 r-3}+\lambda_{2}^{2 r-3}}{32}\right. \\
&\left.+\frac{\lambda_{1}^{2 r-1}+\lambda_{2}^{2 r-1}}{32}-\frac{\lambda_{1}^{2 r+1}+\lambda_{2}^{2 r+1}}{32}-\frac{\lambda_{1}^{3}+\lambda_{2}^{3}}{16}\right) e_{3}
\end{aligned}
$$

which completes the proof of first part. The second part follows analogously.
Since Cassini's identity is a special case of Catalan's identity where $r=1$, the following result immediately follows from Theorem 2 .

Corollary 1. For any positive integer n, the Cassini identity for balancing quaternions is

$$
Q B_{n+1} Q B_{n-1}-Q B_{n}^{2}=\frac{A B\left(\lambda_{1}^{2}-1\right)+B A\left(\lambda_{2}^{2}-1\right)}{\left(\lambda_{1}-\lambda_{2}\right)^{2}}=-2+70 e_{2}+192 e_{3}
$$

whereas that for Lucas-balancing quaternions is

$$
Q C_{n+1} Q C_{n-1}-Q C_{n}^{2}=\frac{A B\left(1-\lambda_{1}^{2}\right)+B A\left(1-\lambda_{2}^{2}\right)}{4}=16-560 e_{2}-1536 e_{3}
$$

Theorem 3 (d'Ocagne's identity). If $m, n \in \mathbb{N}$ with $n \geq m$, then

$$
\begin{aligned}
Q B_{m+1} Q B_{n}-Q B_{m} Q B_{n+1}= & 2\left(-B_{n-m} e_{0}+B_{n-m+1} e_{1}+B_{n-m-2} e_{2}\right) \\
& +\left(B_{n-m+3}+B_{n-m-3}+B_{n-m+1}-B_{n-m-1}\right) e_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
Q C_{m+1} Q C_{n}-Q C_{m} Q C_{n+1}= & 16\left[B_{n-m}-B_{n-m+1} e_{1}-B_{n-m-2} e_{2}\right] \\
& -8\left(B_{n-m+3}+B_{n-m+1}-B_{n-m-1}+B_{n-m+1}\right) e_{3} .
\end{aligned}
$$

Proof. Using the Binet formula for balancing quaternions and since $\lambda_{1} \lambda_{2}=1$, we have

$$
\begin{aligned}
Q B_{m+1} Q B_{n}-Q B_{m} Q B_{n+1}= & \left(\frac{A \lambda_{1}^{m+1}-B \lambda_{2}^{m+1}}{\lambda_{1}-\lambda_{2}}\right)\left(\frac{A \lambda_{1}^{n}-B \lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}\right) \\
& -\left(\frac{A \lambda_{1}^{m}-B \lambda_{2}^{m}}{\lambda_{1}-\lambda_{2}}\right)\left(\frac{A \lambda_{1}^{n+1}-B \lambda_{2}^{n+1}}{\lambda_{1}-\lambda_{2}}\right) \\
= & \frac{B A \lambda_{1}^{n-m}-A B \lambda_{2}^{n-m}}{\lambda_{1}-\lambda_{2}} \\
= & -2 B_{n-m} e_{0}+2 B_{n-m+1} e_{1}+2 B_{n-m-2} e_{2} \\
& +\left(B_{n-m+3}+B_{n-m-3}+B_{n-m+1}-B_{n-m-1}\right) e_{3}
\end{aligned}
$$

which completes the proof of the first part. Similarly using the Binet formula for $Q C_{n}$, the second result can be shown.

An interesting observation from the above results is that the Catalan identities for balancing and Lucas-balancing quaternions are expressed in terms of Lucas--balancing numbers whereas the d'Ocagne identities for both these quaternions are in terms of balancing numbers.

Theorem 4. The identity $Q C_{n}^{2}-8 Q B_{n}^{2}=\frac{A B+B A}{2}$ holds for $n \geq 1$.
Proof. Applying the Binet formulas for balancing and Lucas-balancing quaternions, we get

$$
\begin{aligned}
Q C_{n}^{2}-8 Q B_{n}^{2} & =\left(\frac{A \lambda_{1}^{n}+B \lambda_{2}^{n}}{2}\right)^{2}-8\left(\frac{A \lambda_{1}^{n}-B \lambda_{2}^{n}}{\lambda_{1}-\lambda 2}\right)^{2} \\
& =\frac{\left(A^{2} \lambda_{1}^{2 n}+A B+B A+B^{2} \lambda_{2}^{2 n}\right)-\left(A^{2} \lambda_{1}^{2 n}-A B-B A+B^{2} \lambda_{2}^{2 n}\right)}{4} \\
& =\frac{A B+B A}{2},
\end{aligned}
$$

which completes the proof.

3 Sum formulas of balancing and Lucas-balancing quaternions

In this section, we derive some sum formulas involving $Q B_{n}$ and $Q C_{n}$.
The following identity is available in [6].
Lemma 2. For all positive integers k and i,

$$
\begin{equation*}
\sum_{i=0}^{n} B_{k+i}=\frac{1}{4}\left[B_{(n+1)+k}-B_{n+k}-B_{k}+B_{k-1}\right] \tag{4}
\end{equation*}
$$

Theorem 5. If P_{r} is the $r^{\text {th }}$ Pell number, then

$$
\sum_{r=1}^{n} Q B_{r}=\frac{1}{4}\left(Q B_{n+2}-Q B_{n+1}-\sum_{r=0}^{3} P_{2 r+1} e_{r}\right)
$$

Proof. Using (4), we have

$$
\begin{aligned}
\sum_{r=0}^{n} Q B_{r}= & \left(\sum_{r=0}^{n} B_{r}\right) e_{0}+\left(\sum_{r=0}^{n} B_{r+1}\right) e_{1} \\
& +\left(\sum_{r=0}^{n} B_{r+2}\right) e_{2}+\left(\sum_{r=0}^{n} B_{r+3}\right) e_{3} \\
= & {\left[\frac{1}{4}\left(B_{n+2}-B_{n+1}-1\right)\right] e_{0}+\left[\frac{1}{4}\left(B_{n+3}-B_{n+2}-5\right)\right] e_{1} } \\
& +\left[\frac{1}{4}\left(B_{n+4}-B_{n+3}-29\right)\right] e_{2}+\left[\frac{1}{4}\left(B_{n+5}-B_{n+4}-169\right)\right] e_{3} \\
= & \frac{1}{4}\left(\sum_{r=0}^{3} B_{n+2+r} e_{r}-\sum_{r=0}^{3} B_{n+1+r}-\sum_{r=0}^{3} P_{2 r+1} e_{r}\right) \\
= & \frac{1}{4}\left(Q B_{n+2}-Q B_{n+1}-\sum_{r=0}^{3} P_{2 r+1} e_{r}\right),
\end{aligned}
$$

which completes the proof.

The following result gives a general relation concerning balancing and Lucas--balancing quaternions.

Theorem 6. For $m, n \geq 0$,

$$
Q B_{m n}=\sum_{r=0}^{n}\binom{n}{r}(-1)^{n-r} B_{m}^{r} B_{m-1}^{n-r} Q B_{r}
$$

and

$$
Q C_{m n}=\sum_{r=0}^{n}\binom{n}{r}(-1)^{n-r} C_{m}^{r} C_{m-1}^{n-r} Q C_{r}
$$

Proof. Using the identity

$$
B_{k m+n}=\sum_{r=0}^{m}\binom{m}{r}(-1)^{m-r} B_{k}^{r} B_{k-1}^{m-r} B_{r+n} \quad([12, \text { Eq. (11) }])
$$

we have

$$
\begin{aligned}
Q B_{m n} & =\sum_{l=0}^{3} B_{m n+l} e_{l} \\
& =\sum_{l=0}^{3}\left(\sum_{r=0}^{n}\binom{n}{r}(-1)^{n-r} B_{m}^{r} B_{m-1}^{n-r} B_{r+l}\right) e_{l} \\
& =\sum_{r=0}^{n}\binom{n}{r}(-1)^{n-r} B_{m}^{r} B_{m-1}^{n-r}\left(\sum_{l=0}^{3} B_{r+l} e_{l}\right),
\end{aligned}
$$

which completes the proof of the first part. The second part can be obtained similarly using the identity

$$
C_{k m+n}=\sum_{r=0}^{m}\binom{m}{r}(-1)^{m-r} B_{k}^{r} B_{k-1}^{m-r} C_{r+n} \quad([12, \text { Theorem 2.1] })
$$

The next result follows directly from Theorem 6 by setting $m=2$.

Corollary 2. For $n \geq 0$,

$$
Q B_{2 n}=\sum_{r=0}^{n}\binom{n}{r}(-1)^{n-r} 6^{r} Q B_{r}
$$

and

$$
Q C_{2 n}=\sum_{r=0}^{n}\binom{n}{r}(-1)^{n-r} 6^{r} Q C_{r}
$$

The balancing and Lucas-balancing sums involving binomial coefficients were studied in [13]. The following are analogous to the identities studied in Theorem 4.1, [13].

Theorem 7. For any positive integers m and k with $m>k \geq 0$, we have

$$
\sum_{r=0}^{n} Q B_{m r+k}=\frac{\left(Q B_{k}-Q B_{m n+m+k}\right)+\left(Q B_{m n+k}-Q B_{k-m}\right)}{2\left(1-Q C_{m}\right)}
$$

and

$$
\sum_{r=0}^{n} Q C_{m r+k}=\frac{\left(Q C_{k}-Q C_{m n+m+k}\right)+\left(Q C_{m n+k}-Q C_{k-m}\right)}{2\left(1-Q C_{m}\right)}
$$

Proof. Using the Binet formula for balancing quaternions, we obtain

$$
\begin{aligned}
\sum_{r=0}^{n} Q B_{m r+k}= & \sum_{r=0}^{n} \frac{A \lambda_{1}^{m r+k}-B \lambda_{2}^{m r+k}}{\lambda_{1}-\lambda_{2}} \\
= & \frac{1}{\lambda_{1}-\lambda 2}\left(A \lambda_{1}^{k} \sum_{r=0}^{n} \lambda_{1}^{m r}-B \lambda_{2}^{k} \sum_{r=0}^{n} \lambda_{2}^{m r}\right) \\
= & \frac{1}{\lambda_{1}-\lambda 2}\left[A \lambda_{1}^{k}\left(\frac{\lambda_{1}^{m n+m}-1}{\lambda_{1}^{m}-1}\right)-B \lambda_{2}^{k}\left(\frac{\lambda_{2}^{m n+m}-1}{\lambda_{2}^{m}-1}\right)\right] \\
= & \frac{1}{\lambda_{1}-\lambda 2}\left[A\left(\frac{\lambda_{1}^{m n+m+k}-\lambda_{1}^{k}}{\lambda_{1}^{m}-1}\right)-B\left(\frac{\lambda_{2}^{m n+m+k}-\lambda_{2}^{k}}{\lambda_{2}^{m}-1}\right)\right] \\
= & \frac{1}{\lambda_{1}-\lambda 2}\left[\frac{\left(A \lambda_{1}^{k}-B \lambda_{2}^{k}\right)}{2-\left(\lambda_{1}^{m}+\lambda_{2}^{m}\right)}-\frac{\left(A \lambda_{1}^{m n+m+k}-B \lambda_{2}^{m n+m+k}\right)}{2-\left(\lambda_{1}^{m}+\lambda_{2}^{m}\right)}\right] \\
& +\left[\frac{\left(A \lambda_{1}^{m n+k}-B \lambda_{2}^{m n+k}\right)}{2-\left(\lambda_{1}^{m}+\lambda_{2}^{m}\right)}-\frac{\left(A \lambda_{1}^{k-m}-B \lambda_{2}^{k-m}\right)}{2-\left(\lambda_{1}^{m}+\lambda_{2}^{m}\right)}\right] \\
= & \frac{\left(Q B_{k}-Q B_{m n+m+k}\right)+\left(Q B_{m n+k}-Q B_{k-m}\right)}{2\left(1-Q C_{m}\right)}
\end{aligned}
$$

The proof for the Lucas-balancing quaternions is similar.
The following result is an immediate consequence of the above result.
Corollary 3. For $m \geq 0$, we have

$$
\sum_{r=0}^{n} Q B_{m r}=\frac{\left(Q B_{0}-Q B_{m n+m}\right)+\left(Q B_{m n}+Q B_{m}\right)}{2\left(1-Q C_{m}\right)}
$$

and

$$
\sum_{r=0}^{n} Q B_{r}=\frac{\left(Q B_{0}-Q B_{n+1}\right)+\left(Q B_{n}+Q B_{1}\right)}{2\left(1-Q C_{1}\right)}
$$

4 Generating functions for balancing and Lucas-balancing quaternions

Generating functions are used to solve linear recurrence relations with constant coefficients. Recall that a generating function for a sequence $\left\{a_{n}\right\}$ of real numbers is defined by

$$
L(s)=\sum_{n=0}^{\infty} a_{n} s^{n} .
$$

The generating function for the balancing sequence is given by

$$
G(s)=\frac{s}{1-6 s+s^{2}} \quad([2, \text { Theorem 6.1])}
$$

whereas that for the Lucas-balancing sequence is

$$
g(s)=\frac{1-3 s}{1-6 s+s^{2}} \quad([3, \text { Proposition } 4.4])
$$

In order to find the generating functions for both $Q B_{n}$ and $Q C_{n}$, we need the following result.

Theorem 8. For any natural numbers k and m with $k>m \geq 0$ and $n \in \mathbb{N}$, the generating functions of $Q B_{k n+m}$ and $Q C_{k n+m}$ are respectively

$$
\sum_{n=0}^{\infty} Q B_{k n+m} s^{n}=\frac{Q B_{m}-Q B_{m-k} s}{1-2 C_{k} s+s^{2}}
$$

and

$$
\sum_{n=0}^{\infty} Q C_{k n+m} s^{n}=\frac{Q C_{m}-Q C_{m-k} s}{1-2 C_{k} s+s^{2}}
$$

Proof. Using the Binet formula for $Q B_{n}$, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} Q B_{k n+m} s^{n} & =\sum_{n=0}^{\infty}\left(\frac{A \lambda_{1}^{k n+m}-B \lambda_{2}^{k n+m}}{\lambda_{1}-\lambda_{2}}\right) s^{n} \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left(\frac{A \lambda_{1}^{m}}{1-\lambda_{1}^{k} s}-\frac{B \lambda_{2}^{m}}{1-\lambda_{2}^{k} s}\right) \\
& =\frac{1}{\lambda_{1}-\lambda_{2}}\left[\frac{\left(A \lambda_{1}^{m}-B \lambda_{2}^{m}\right)-\left(A \lambda_{1}^{m-k}-B \lambda_{2}^{m-k}\right) s}{1-\left(\lambda_{1}^{k}+\lambda_{2}^{k}\right) s+s^{2}}\right] \\
& =\frac{Q B_{m}-Q B_{m-k} s}{1-2 C_{k} s+s^{2}},
\end{aligned}
$$

which is the desired result. For $Q C_{k n+m}$ the proof is similar as $Q B_{k n+m}$.
The following results are direct consequences of Theorem 8.
Corollary 4. The generating function $G_{Q}(s)$ for balancing quaternions and $g_{Q}(s)$ for Lucas-balancing quaternions are respectively

$$
G_{Q}(s)=\frac{s e_{0}+e_{1}+(6-s) e_{2}+(35-6 s) e_{3}}{1-6 s+s^{2}}
$$

and

$$
g_{Q}(s)=\frac{(1-3 s) e_{0}+(3-s) e_{1}+(17-3 s) e_{2}+(99-17 s) e_{3}}{1-6 s+s^{2}} .
$$

Proof. Let the generating function for $Q B_{n}$ be

$$
G_{Q}(s)=\sum_{n=0}^{\infty} Q B_{n} s^{n}
$$

By putting $k=1$ and $m=0$, Theorem 8 becomes

$$
\begin{aligned}
G_{Q}(s) & =\frac{1}{1-6 s+s^{2}} \sum_{r=0}^{3}\left(B_{r}-B_{r-1} s\right) e_{r} \\
& =\frac{s e_{0}+e_{1}+(6-s) e_{2}+(35-6 s) e_{3}}{1-6 s+s^{2}}
\end{aligned}
$$

which completes the proof. The proof is similar for Lucas-balancing quaternions.

The next results demonstrate the exponential generating functions and Poission generating functions for both balancing and Lucas-balancing quaternions.

Theorem 9. For $m, n \in \mathbb{N}$, the exponential generating functions of the quaternions $Q B_{m+n}$ and $Q C_{m+n}$ are respectively

$$
\sum_{n=0}^{\infty} \frac{Q B_{m+n}}{n!} s^{n}=\frac{A \lambda_{1}^{m} e^{\lambda_{1} s}-B \lambda_{2}^{m} e^{\lambda_{2} s}}{\lambda_{1}-\lambda_{2}}
$$

and

$$
\sum_{n=0}^{\infty} \frac{Q C_{m+n}}{n!} s^{n}=\frac{A \lambda_{1}^{m} e^{\lambda_{1} s}+B \lambda_{2}^{m} e^{\lambda_{2} s}}{2}
$$

Proof. Using Binet's formula for $Q B_{m+n}$, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} Q B_{m+n} \frac{s^{n}}{n!} & =\sum_{n=0}^{\infty}\left(\frac{A \lambda_{1}^{m+n}-B \lambda_{2}^{m+n}}{\lambda_{1}-\lambda_{2}}\right) \frac{s^{n}}{n!} \\
& =\frac{A \lambda_{1}^{m}}{\lambda_{1}-\lambda_{2}} \sum_{n=0}^{\infty} \frac{\left(\lambda_{1} s\right)^{n}}{n!}-\frac{B \lambda_{2}^{m}}{\lambda_{1}-\lambda_{2}} \sum_{n=0}^{\infty} \frac{\left(\lambda_{2} s\right)^{n}}{n!} \\
& =\left(\frac{A \lambda_{1}^{m}}{\lambda_{1}-\lambda_{2}}\right) e^{\lambda_{1} s}-\left(\frac{B \lambda_{2}^{m}}{\lambda_{1}-\lambda_{2}}\right) e^{\lambda_{2} s},
\end{aligned}
$$

and the result follows. Further simplification gives

$$
\sum_{n=0}^{\infty} \frac{Q B_{m+n}}{n!} s^{n}=Q C_{m}\left(\sum_{n=0}^{\infty} B_{n} \frac{s^{n}}{n!}\right)+Q B_{m}\left(\sum_{n=0}^{\infty} C_{n} \frac{s^{n}}{n!}\right)
$$

The proof for the Lucas-balancing quaternions is similar.
Corollary 5. The exponential generating functions for balancing and Lucas-balancing quaternions are respectively

$$
\sum_{n=0}^{\infty} \frac{Q B_{n}}{n!} s^{n}=\frac{A e^{\lambda_{1} s}-B e^{\lambda_{2} s}}{\lambda_{1}-\lambda_{2}} \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{Q C_{n}}{n!} s^{n}=\frac{A e^{\lambda_{1} s}+B e^{\lambda_{2} s}}{2}
$$

The following result relating to Poisson generating functions is an immediate consequence of Theorem 9 because Poisson generating functions for balancing and Lucas-balancing quaternions can be obtained by multiplying e^{-s} to the exponential generating functions for both these quaternions.

Corollary 6. The Poisson generating function for balancing and Lucas-balancing quaternions are

$$
\sum_{n=0}^{\infty} \frac{Q B_{n}}{n!} s^{n} e^{-s}=\frac{A e^{\lambda_{1} s}-B e^{\lambda_{2} s}}{e^{s}\left(\lambda_{1}-\lambda_{2}\right)} \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{Q C_{n}}{n!} s^{n} e^{-s}=\frac{A e^{\lambda_{1} s}+B e^{\lambda_{2} s}}{2 e^{s}}
$$

respectively.

The various generating functions discussed above are applied to derive the following identities.

Lemma 3. For any natural number $n, Q B_{n+r+1}-Q B_{n+r-1}=2 Q C_{n+r}$.

Proof. Using Proposition 5, we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} Q B_{n+r+1} s^{n}-\sum_{n=0}^{\infty} Q B_{n+r-1} s^{n} & =\frac{Q B_{r+1}-Q B_{r} s}{1-6 s+s^{2}}-\frac{Q B_{r-1}-Q B_{r-2} s}{1-6 s+s^{2}} \\
& =\frac{\left(Q B_{r+1}-Q B_{r-1}\right)-\left(Q B_{r}-Q B_{r-2}\right) s}{1-6 s+s^{2}} \\
& =\frac{2 Q C_{r}-2 Q C_{r-1} s}{1-6 s+s^{2}} \\
& =2 \sum_{n=0}^{\infty} Q C_{n+r} s^{n},
\end{aligned}
$$

which completes the proof.

Lemma 4. For any natural number n,

$$
\sum_{n=0}^{\infty} \frac{Q B_{n}}{n!} s^{n}=\frac{e^{3 s}}{\sqrt{8}}\left[Q C_{0} \sinh (\sqrt{8} s)+\sqrt{8} Q B_{0} \cosh (\sqrt{8} s)\right]
$$

and

$$
\sum_{n=0}^{\infty} \frac{Q C_{n}}{n!} s^{n}=e^{3 s}\left[\sqrt{8} Q B_{0} \sinh (\sqrt{8} s)+Q C_{0} \cosh (\sqrt{8} s)\right]
$$

Proof. For any natural number n, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{Q B_{n}}{n!} s^{n}= & \frac{A e^{\lambda_{1} s}-B e^{\lambda_{2} s}}{\lambda_{1}-\lambda_{2}} \\
= & \frac{e^{3 s}}{2 \sqrt{8}}\left(A e^{\sqrt{8} s}-B e^{-\sqrt{8} s}\right) \\
= & \frac{e^{3 s}}{2 \sqrt{8}}\left[\left(\frac{Q C_{r}+\sqrt{8} Q B_{r}}{\lambda_{1}^{r}}\right) e^{\sqrt{8} s}-\left(\frac{Q C_{r}-\sqrt{8} Q B_{r}}{\lambda_{2}^{r}}\right) e^{-\sqrt{8} s}\right] \\
= & \frac{e^{3 s}}{\sqrt{8}}\left[C_{r} Q C_{r}\left(\frac{e^{\sqrt{8} s}-e^{-\sqrt{8} s}}{2}\right)-\sqrt{8} B_{r} Q C_{r}\left(\frac{e^{\sqrt{8} s}+e^{-\sqrt{8} s}}{2}\right)\right. \\
& \left.+\sqrt{8} C_{r} Q B_{r}\left(\frac{e^{\sqrt{8} s}+e^{-\sqrt{8} s}}{2}\right)-8 B_{r} Q B_{r}\left(\frac{e^{\sqrt{8} s}-e^{-\sqrt{8} s}}{2}\right)\right] \\
= & \frac{e^{3 s}}{\sqrt{8}}\left[\sinh (\sqrt{8} s)\left(C_{r} Q C_{r}-8 B_{r} Q B_{r}\right)\right. \\
& \left.+\sqrt{8} \cosh (\sqrt{8} s)\left(C_{r} Q B_{r}-B_{r} Q C_{r}\right)\right] .
\end{aligned}
$$

Using the Proposition 4 in the above expression we get the desired result.
Binet's formulas for balancing and Lucas-balancing quaternions was already shown in Theorem 1. However, these formulas can also be derived by applying generating functions for both balancing and Lucas-balancing quaternions as follows.

By virtue of Corollary 4, we have

$$
G_{Q}(s)=\frac{1}{1-6 s+s^{2}} \sum_{r=0}^{3}\left(B_{r}-B_{r-1} s\right) e_{r}
$$

Further simplification using partial fractions reduces the above identity to

$$
\begin{aligned}
G_{Q}(s)= & \frac{1}{\lambda_{1}-\lambda_{2}}\left[\frac{Q B_{1}-\lambda_{2} Q B_{0}}{1-s \lambda_{1}}-\frac{Q B_{1}-\lambda_{1} Q B_{0}}{1-s \lambda_{2}}\right] \\
= & \frac{1}{\lambda_{1}-\lambda_{2}}\left[\sum_{s=0}^{3}\left(B_{s+1}-\lambda_{2} B_{s}\right) e_{s} \sum_{n=0}^{\infty} \lambda_{1}^{n} s^{n}\right. \\
& \left.\sum_{s=0}^{3}\left(B_{s+1}-\lambda_{1} B_{s}\right) e_{s} \sum_{n=0}^{\infty} \lambda_{2}^{n} s^{n}\right] \\
= & \frac{1}{\lambda_{1}-\lambda_{2}}\left[\sum_{s=0}^{3} \lambda_{1}^{s} e_{s} \sum_{n=0}^{\infty} \lambda_{1}^{n} s^{n}-\sum_{s=0}^{3} \lambda_{2}^{s} e_{s} \sum_{n=0}^{\infty} \lambda_{2}^{n} s^{n}\right] .
\end{aligned}
$$

That is,

$$
G_{Q}(s)=\sum_{n=0}^{\infty} Q B_{n} s^{n}=\sum_{n=0}^{\infty}\left(\frac{A \lambda_{1}^{n}-B \lambda_{2}^{n}}{\lambda_{1}-\lambda_{2}}\right) s^{n}
$$

and hence the Binet formula for $Q B_{n}$ is obtained. Similarly, the Binet formula for $Q C_{n}$ can also be obtained by using the generating function for Lucas-balancing quaternions.

References

[1] M. Akyig̃it, H.H. Kösal, M. Tosun: Fibonacci generalized quaternions. Advances in Applied Clifford Algebras 24 (3) (2014) 631-641.
[2] A. Behera, G.K. Panda: On the square roots of triangular numbers. Fibonacci Quarterly 37 (1999) 98-105.
[3] P. Catarino, H. Campos, P. Vasco: On some identities for balancing and cobalancing numbers. Annales Mathematicae et Informaticae 45 (2015) 11-14.
[4] P. Catarino: The modified Pell and the modified k-Pell quaternions and octonions. Advances in Applied Clifford Algebras 26 (2) (2016) 577-590.
[5] C.B. Çimen, A. İpek: On Pell quaternions and Pell-Lucas quaternions. Advances in Applied Clifford Algebras 26 (1) (2016) 39-51.
[6] R.K. Davala, G.K. Panda: On sum and ratio formulas for balancing numbers. Journal of Indian Mathematical Society 82 (1-2) (2015) 23-32.
[7] S. Halici: On fibonacci quaternions. Advances in Applied Clifford Algebras 22 (2) (2012) 321-327.
[8] A.F. Horadam: Complex Fibonacci numbers and Fibonacci quaternions. The American Mathematical Monthly 70 (3) (1963) 289-291.
[9] A.F. Horadam: Quaternion recurrence relations. Ulam Quarterly 2 (2) (1993) 23-33.
[10] M.R. Iyer: A note on Fibonacci quaternions. Fibonacci Quarterly 7 (3) (1969) 225-229.
[11] G.K. Panda, P.K. Ray: Some links of balancing and cobalancing numbers with Pell and associated Pell numbers. Bulletin of the Institute of Mathematics, Academia Sinica (New Series) 6 (1) (2011) 41-72.
[12] P.K. Ray: Curious congruences for balancing numbers. International Journal of Contemporary Mathematical Sciences 7 (18) (2012) 881-889.
[13] P.K. Ray: Balancing and Lucas-balancing sums by matrix methods. Mathematical Reports 17 (2) (2015) 225-233.
[14] A. Szynal-Liana, I. Włoch: The Pell quaternions and the Pell octonions. Advances in Applied Clifford Algebras 26 (1) (2016) 435-440.

Received: 31 July 2017
Accepted for publication: 9 October 2020
Communicated by: Karl Dilcher

[^0]: 2020 MSC: 11B37, 11B39, 20G20
 Key words: Recurrence relations, Balancing numbers, Lucas-balancing numbers, Quaternions Affiliation:

 Bijan Kumar Patel - Department of Mathematics, KIIT Deemed to be University, Bhubaneswar, India
 E-mail: iiit.bijan@gmail.com
 Prasanta Kumar Ray - Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, India
 E-mail: prasantamath@suniv.ac.in

