Symmetric identity for polynomial sequences satisfying $A_{n+1}^{\prime}(x)=(n+1) A_{n}(x)$

Farid Bencherif, Rachid Boumahdi, Tarek Garici

Abstract

Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying $A_{n+1}^{\prime}(x)=(n+1) A_{n}(x)$ with $A_{0}(x)$ a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, Apostol--Euler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.

1 Introduction and preliminaries

With each formal power series $S(z)=\sum_{k=0}^{\infty} a_{k} \frac{z^{k}}{k!} \in \mathbb{C}[[z]]$ we can associate a polynomial sequence $\left(A_{k}(x)\right)_{k \geq 0}$ defined by

$$
\begin{equation*}
\sum_{k=0}^{\infty} A_{k}(x) \frac{z^{k}}{k!}=S(z) \mathrm{e}^{x z} \tag{1}
\end{equation*}
$$

or equivalently by $A_{k}(x)=\sum_{i=0}^{k}\binom{k}{i} a_{i} x^{k-i}$. Clearly

$$
\begin{equation*}
A_{k}^{\prime}(x)=k A_{k-1}(x), \quad k \geq 1, \quad A_{0}^{\prime}(x)=0 \tag{2}
\end{equation*}
$$

Reciprocally, it is not difficult to prove that if a polynomial sequence $\left(A_{k}(x)\right)_{k \geq 0}$ satisfies (2) then (1) holds for

$$
S(z)=\sum_{k=0}^{\infty} A_{k}(0) \frac{z^{k}}{k!}
$$

[^0]Apostol-Bernoulli polynomials $\left(\mathcal{B}_{k}(x ; \lambda)\right)_{k \geq 0}$ and Apostol-Euler polynomials $\left(\mathcal{E}_{k}(x ; \lambda)\right)_{k \geq 0}$ in the variable x defined for $\lambda \in \mathbb{C}$ by

$$
\frac{z}{\lambda \mathrm{e}^{z}-1} \mathrm{e}^{x z}=\sum_{k=0}^{\infty} \mathcal{B}_{k}(x ; \lambda) \frac{z^{k}}{k!}
$$

and for $\lambda \in \mathbb{C} \backslash\{-1\}$ by

$$
\frac{2}{\lambda \mathrm{e}^{z}+1} \mathrm{e}^{x z}=\sum_{k=0}^{\infty} \mathcal{E}_{k}(x ; \lambda) \frac{z^{k}}{k!}
$$

provide an example of such polynomials. If χ is a primitive Dirichlet character with conductor $f=f_{\chi}$, then $B_{n, \chi}(x), n=0,1,2, \ldots$, the generalized Bernoulli polynomials attached to χ are defined by the generating function [1]

$$
F_{\chi}(t, x)=\frac{t}{\mathrm{e}^{f t}-1} \sum_{a=1}^{f} \chi(a) \mathrm{e}^{a t} \mathrm{e}^{x t}=\sum_{n=0}^{\infty} B_{n, \chi}(x) \frac{t^{n}}{n!}, \quad|t|<\frac{2 \pi}{f}
$$

The polynomial sequence $\left(B_{n, \chi}(x)\right)_{n \geq 0}$ is another example of polynomial sequence satisfying (1). Furthermore, if $a_{0} \neq 0$, the polynomial sequence $\left(A_{k}(x)\right)_{k \geq 0}$ is called an Appell sequence [2]. Which is the case for the classical Bernoulli and Euler polynomials $B_{k}(x)$ and $E_{k}(x)$ defined respectively by

$$
\frac{z}{\mathrm{e}^{z}-1} \mathrm{e}^{x z}=\sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k}}{k!}
$$

and

$$
\frac{2}{\mathrm{e}^{z}+1} \mathrm{e}^{x z}=\sum_{n=0}^{\infty} E_{k}(x) \frac{z^{k}}{k!}
$$

In 2003, motivated by the work of Kaneko [8], Momiyama [10] and Wu et al. [17], Sun [14] derived a general combinatorial identity in terms of polynomials with dual sequences of coefficients. More precisely, he considered the two following polynomial sequences

$$
\begin{equation*}
R_{k}(x)=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} u_{i} x^{k-i} \quad \text { and } \quad R_{k}^{*}(x)=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} u_{i}^{*} x^{k-i} \tag{3}
\end{equation*}
$$

where $\left(u_{n}\right)_{n \geq 0}$ is any complex sequence and $\left(u_{n}^{*}\right)_{n \geq 0}$ is its dual sequence defined for $k \geq 0$ by $u_{k}^{*}=\sum_{i=0}^{k}\binom{k}{i}(-1)^{i} u_{i}$, and proved [14, Theorem 1.1], for any integers $n, m \geq 0$ and $x+y+z=1$, the following identities

$$
\begin{align*}
(-1)^{n-1} \sum_{k=0}^{m}\binom{m}{k} & x^{m-k} \frac{R_{n+k+1}(y)}{n+k+1} \\
& +(-1)^{m+1} \sum_{k=0}^{n}\binom{n}{k} x^{n-k} \frac{R_{m+k+1}^{*}(z)}{m+k+1}=\frac{m!n!x^{m+n+1} u_{0}}{(m+n+1)!} \tag{4}
\end{align*}
$$

$$
\begin{equation*}
(-1)^{n-1} \sum_{k=0}^{m}\binom{m}{k} x^{m-k} R_{n+k}(y)+(-1)^{m} \sum_{k=0}^{n}\binom{n}{k} x^{n-k} R_{m+k}^{*}(z)=0 \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& (-1)^{n}\left\{\sum_{k=0}^{m}\binom{m+1}{k} x^{m+1-k}(n+1+k) R_{n+k}(y)\right. \\
& \left.\quad+(n+m+2) R_{n+m+1}(y)\right\} \\
& \quad+(-1)^{m}\left\{\sum_{k=0}^{n}\binom{n+1}{k} x^{n+1-k}(m+1+k) R_{m+k}^{*}(z)\right. \\
& \left.\quad+(n+m+2) R_{m+n+1}^{*}(z)\right\}=0 \tag{6}
\end{align*}
$$

Which allowed him to derive various known identities involving Bernoulli numbers.
Chen and Sun [3], by applying the extended Zeilberger's algorithm, established several recurrence relations for Bernoulli numbers and polynomials which generalize the relations of Momiyama [10], Gessel [6] and Gelfand [5]. Prévost [11], by using the Padé approximation of the exponential function, extended Chen and Sun's results and obtained numerous recurrence relations involving Apostol-Bernoulli polynomials $\mathcal{B}_{k}(x ; \lambda)$ or Apostol-Euler polynomials $\mathcal{E}_{k}(x ; \lambda)$. Recently, Agoh [1] found some shortened recurrence relations for generalized Bernoulli polynomials attached to a primitive Dirichlet character χ which allowed him to reprove and generalize several identities on classical Bernoulli numbers and polynomials such as Saalschütz-Gelfand [5], von Ettingshausen-Seidel-Stern-Kaneko's [15], [16], [13], [8] and Chen and Sun [3] formulas. In particular, he showed [1, Theorem 2.1] that for any integers $n, m \geq 0$ and $s \geq 1$, we have

$$
\begin{align*}
& \sum_{k=0}^{m}\binom{m}{k} \frac{(s f)^{m-k} B_{n+1+k, \chi}(x)}{n+1+k}-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{(s f)^{n-k} B_{m+1+k, \chi}(x)}{m+1+k} \\
&=\sum_{a=1}^{f} \chi(a) \sum_{r=0}^{s-1}(a+x+r f)^{m}(a+x+(r-s) f)^{n} \\
& \quad+\frac{(-1)^{n+1}}{m+n+1}\binom{n+m}{n}^{-1}(s f)^{n+m+1} B_{0, \chi}(x) \tag{7}
\end{align*}
$$

With the use of the well-known relation [1, Eq. (2.4)]

$$
\begin{equation*}
B_{n, \chi}(x+s f)=B_{n, \chi}(x)+\sum_{k=0}^{s-1} \sum_{a=1}^{f} \chi(a) n(a+x+k f)^{n-1} \tag{8}
\end{equation*}
$$

where n and s are non-negative integers, identity (7) can be deduced from the
following relation, due to He and Zhang [7, Theorem 1.2]

$$
\begin{align*}
\sum_{k=0}^{m}\binom{m}{k} \frac{\alpha^{m-k} A_{n+k+q}(x)}{(n+q+k)^{\underline{q}}} & -\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{\alpha^{n-k} A_{m+q+k}(x+\alpha)}{(m+q+k)^{\underline{q}}} \\
& =\frac{(-1)^{n+1} \alpha^{n+m+1}}{(q-1)!} \int_{0}^{1}(1-t)^{m} t^{n} A_{q-1}(x+\alpha t) \mathrm{d} t \tag{9}
\end{align*}
$$

where $\left(A_{n}(x)\right)_{n \geq 0}$ is any sequence of polynomials defined by relation (1), α a complex number, and $n, m \geq 0, q \geq 1$ any integers. Recall that the falling factorial $z^{\underline{q}}$ is a polynomial in z defined by $z^{\underline{0}}=1$ and

$$
z^{\underline{q}}=\prod_{j=0}^{q-1}(z-j)
$$

for $q \geq 1$.
It is the main aim of this paper to establish in Theorem 1 a Saalschütz-Gelfand type identity for the polynomial sequence $\left(A_{n}(x)\right)_{n \geq 0}$ satisfying (2). This identity allows us to reprove some known identities for generalized Bernoulli polynomials attached to a primitive Dirichlet character due to Agoh [1] and Apostol-Bernoulli polynomials due to Prévost [11, Theorem 2] in a simple way.

2 Main result

Before giving our main result it is convenient to have the following lemma.
Lemma 1. For any non-negative integers n, m and q, we have the following identity

$$
\begin{align*}
\sum_{k=0}^{m}\binom{m}{k} \frac{z^{n+k+q}}{(n+k+q)^{\underline{q}}}-\sum_{k=0}^{n} & \binom{n}{k}(-1)^{n-k} \frac{(1+z)^{m+k+q}}{(m+k+q)^{\underline{q}}} \\
& =\frac{(-1)^{n+1}}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k} \frac{m!(n+q-k-1)!}{(m+n+q-k)!} z^{k} \tag{10}
\end{align*}
$$

Proof. Consider the polynomial $P(z)=z^{n}(1+z)^{m}$ and let $Q(z)$ denote the q-fold primitive of $P(z)$ defined by

$$
\begin{equation*}
Q(z)=\int_{0}^{z} \int_{0}^{z_{1}} \cdots \int_{0}^{z_{q-1}} P(t) \mathrm{d} t \mathrm{~d} z_{q-1} \cdots \mathrm{~d} z_{1} \tag{11}
\end{equation*}
$$

On the one hand, by the Cauchy well-known formula [4, p. 115] for repeated integration, we have

$$
\begin{equation*}
Q(z)=\frac{1}{(q-1)!} \int_{0}^{z}(z-t)^{q-1} P(t) \mathrm{d} t \tag{12}
\end{equation*}
$$

Changing variable t into $u-1$ in the right-hand side of (12) gives

$$
\begin{aligned}
& Q(z)=\frac{1}{(q-1)!} \int_{0}^{z+1}((z+1)-u)^{q-1} u^{m}(u-1)^{n} \mathrm{~d} u \\
& \quad-\frac{1}{(q-1)!} \int_{0}^{1}(z+(1-u))^{q-1} u^{m}(u-1)^{n} \mathrm{~d} u \\
&=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{1}{(q-1)!} \int_{0}^{z+1}((z+1)-u)^{q-1} u^{m+k} \mathrm{~d} u \\
& \quad-\frac{1}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k}(-1)^{n} z^{k} \int_{0}^{1} u^{m}(1-u)^{n+q-k-1} \mathrm{~d} u
\end{aligned}
$$

Recall that for any non-negative integers i and j,

$$
\int_{0}^{1} u^{i}(1-u)^{j} \mathrm{~d} u=\frac{i!j!}{(i+j+1)!}
$$

and for any non-negative integer k, from the Cauchy formula (12) we have

$$
\begin{equation*}
\frac{1}{(q-1)!} \int_{0}^{z}(z-u)^{q-1} u^{k} \mathrm{~d} u=\frac{z^{k+q}}{(k+q)^{\underline{q}}} \tag{13}
\end{equation*}
$$

From this, we can deduce that

$$
\begin{align*}
Q(z)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} & \frac{(z+1)^{m+k+q}}{(m+k+q)^{\underline{q}}} \\
& -\frac{1}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k}(-1)^{n} \frac{m!(n+q-k-1)!}{(m+n+q-k)!} z^{k} \tag{14}
\end{align*}
$$

On the other hand, expanding $P(t)$ in (11) and using the well-known identity

$$
\int_{0}^{z} \int_{0}^{z_{1}} \cdots \int_{0}^{z_{q-1}} t^{n+k} \mathrm{~d} t \mathrm{~d} z_{q-1} \cdots \mathrm{~d} z_{1}=\frac{z^{n+k+q}}{(n+k+q)^{\underline{q}}}
$$

where k is any non-negative integer, give

$$
\begin{equation*}
Q(z)=\sum_{k=0}^{m}\binom{m}{k} \frac{z^{n+k+q}}{(n+k+q)^{\underline{q}}} \tag{15}
\end{equation*}
$$

Finally, by equalling both expressions (14) and (15) of $Q(z)$ we obtain (10).
Theorem 1. Let $S(z) \in \mathbb{C}[[z]]$ be a formal power series and $\left(A_{k}(x)\right)_{k \geq 0}$ be a sequence of polynomials given by

$$
\begin{equation*}
\sum_{k=0}^{+\infty} A_{k}(x) \frac{z^{k}}{k!}=S(z) \mathrm{e}^{x z} \tag{16}
\end{equation*}
$$

For any complex number α and any integers $n, m \geq 0$ and $q \geq 1$, we have

$$
\begin{array}{r}
\sum_{k=0}^{m}\binom{m}{k} \frac{\alpha^{m-k} A_{n+q+k}(x)}{(n+q+k)^{\underline{q}}}-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{\alpha^{n-k} A_{m+q+k}(x+\alpha)}{(m+q+k)^{\underline{q}}} \\
=\frac{(-1)^{n+1}}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k} \alpha^{n+m+q-k} \frac{m!(n+q-k-1)!}{(m+n+q-k)!} A_{k}(x) \tag{17}
\end{array}
$$

Proof. Let

$$
S(z)=\sum_{k=0}^{\infty} a_{k} \frac{z^{k}}{k!}
$$

Then, from (16) we have, for $r \geq 0$,

$$
A_{r}(x)=\sum_{k=0}^{r}\binom{r}{k} a_{r-k} x^{k}
$$

Inspired by the work of Rota [12], let us consider the linear map L from $\mathbb{C}[x, y]$ to $\mathbb{C}[x]$ defined for any non-negative integers r and s by

$$
\begin{equation*}
L\left(x^{r} y^{s}\right)=a_{s} x^{r} \tag{18}
\end{equation*}
$$

For $\alpha=0$, it is obvious that equation (17) holds. Assume that $\alpha \neq 0$. As for any $r \geq 0$ we have

$$
\begin{aligned}
L\left((x+y)^{r}\right) & =\sum_{i=0}^{r}\binom{r}{i} a_{r-i} x^{i}=A_{r}(x), \\
L\left((x+\alpha+y)^{r}\right) & =\sum_{i=0}^{r}\binom{r}{i} a_{r-i}(x+\alpha)^{i}=A_{r}(x+\alpha),
\end{aligned}
$$

replacing z with $\left(\frac{x+y}{\alpha}\right)$ in (10) and applying L we get the desired relation (17).
Remark 1. If I and J denote respectively the right-hand sides of relations (9) and (17), then it is not difficult to show that $I=J$. In fact, for each fixed x and α, the Taylor expansion of the polynomial $A_{q-1}(x+\alpha t)$ in power of t is given by

$$
A_{q-1}(x+\alpha t)=\sum_{k=0}^{q-1}\binom{q-1}{k} t^{q-1-k} \alpha^{q-1-k} A_{k}(x)
$$

Thus,

$$
J=\frac{\alpha^{n+m+1}}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k} \alpha^{q-1-k} A_{k}(x) \int_{0}^{1} t^{n+q-1-k}(1-t)^{m} \mathrm{~d} t=I
$$

Which leads to another proof of Theorem 1.2 of He and Zhang [7].

3 Corollaries

Using Theorem 1, we can give an alternative proof of He and Zhang's theorem [7, Theorem 1.1 and Corollary 1.2] as follows.
Corollary 1. Let $S(z) \in \mathbb{C}[[z]]$ be a formal power series and $\left(A_{k}(x)\right)_{k \geq 0}$ be a sequence of polynomials given by

$$
\sum_{k=0}^{+\infty} A_{k}(x) \frac{z^{k}}{k!}=S(z) \mathrm{e}^{x z}
$$

For any complex number α and any non-negative integers n, m and q, we have

$$
\begin{align*}
& \sum_{k=0}^{m}\binom{m}{k}(n+k)^{\underline{q}} \alpha^{m-k} A_{n-q+k}(x) \\
&-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(m+k)^{\underline{q}} \alpha^{n-k} A_{m-q+k}(x+\alpha)=0 \tag{19}
\end{align*}
$$

Proof. From (2) we have for each $k \geq 1, A_{k}^{\prime}(x)=k A_{k-1}(x)$ and $A_{0}^{\prime}(x)=0$. Taking $q=1$ in relation (17) and then differentiating the obtained relation $q+1$ times with respect to x gives (19).
Remark 2. Relation (19) is clearly satisfied for $\alpha=0$. Note that in the case $\alpha \neq 0$ relation (19) can also be obtained by using the same method as in the proof of Theorem 1. Indeed, by differentiating the following identity

$$
\sum_{k=0}^{m}\binom{m}{k} z^{n+k}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(1+z)^{m+k}
$$

q times with respect to z, we obtain

$$
\sum_{k=0}^{m}\binom{m}{k}(n+k)^{\underline{q}} z^{n-q+k}-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(m+k)^{\underline{q}}(1+z)^{m-q+k}=0
$$

Replacing z with ($\frac{x+y}{\alpha}$) and applying the linear map L defined by (18) we get (19).
Next applying Theorem 1 and Corollary 1 for $\alpha=s f$ to the sequence

$$
\left(B_{n, \chi}(x)\right)_{n \geq 0}
$$

with the help of relation (8) we get the following two corollaries.
Corollary 2. For integers $q, s \geq 1$, and $n, m \geq 0$, we have

$$
\begin{align*}
\sum_{k=0}^{m}\binom{m}{k} & \frac{(s f)^{m-k} B_{n+q+k, \chi}(x)}{(n+q+k)^{\underline{q}}}-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{(s f)^{n-k} B_{m+q+k, \chi}(x)}{(m+q+k)^{\underline{q}}} \\
& =\sum_{i=0}^{s-1} \sum_{a=1}^{f} \chi(a) \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{(s f)^{n-k}(a+x+i f)^{m+q-1+k}}{(m+q-1+k)^{\underline{q-1}}} \\
& +\frac{(-1)^{n+1}}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k} \frac{(s f)^{n+m+q-k} m!(n+q-k-1)!}{(m+n+q-k)!} B_{k, \chi}(x) \tag{20}
\end{align*}
$$

With the help of relation (13), the right hand-side of (20) can also be written, for $q \geq 2$, as

$$
\begin{aligned}
& \frac{1}{(q-2)!} \sum_{i=0}^{s-1} \sum_{a=1}^{f} \chi(a) \int_{0}^{a+x+i f}(a+x+i f-u)^{q-2} u^{m}(u-s f)^{n} \mathrm{~d} u \\
& \quad+\frac{(-1)^{n+1}}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k} \frac{(s f)^{n+m+q-k} m!(n+q-k-1)!}{(m+n+q-k)!} B_{k, \chi}(x)
\end{aligned}
$$

Taking $q=1$ in (20) gives immediately Theorem 2.1 of Agoh [1].
Corollary 3. For integers $s \geq 1$, and $n, m, q \geq 0$, we have

$$
\begin{aligned}
& \sum_{k=0}^{m}\binom{m}{k}(n+k)^{\underline{q}}(s f)^{m-k} B_{n-q+k, \chi}(x) \\
& \quad-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(m+k)^{\underline{q}}(s f)^{n-k} B_{m-q+k, \chi}(x) \\
= & (q+1)!\sum_{a=1}^{f} \chi(a) \sum_{r=0}^{s-1} \sum_{j=0}^{q+1}\binom{m}{q+1-j}\binom{n}{j}(a+x+r f)^{m-q-1+j}(a+x+(r-s) f)^{n-j} .
\end{aligned}
$$

One observes that the left hand side of the previous identity can be expressed as

$$
\frac{\mathrm{d}^{q+1}}{\mathrm{~d} x^{q+1}} \sum_{a=1}^{f} \chi(a) \sum_{r=0}^{s-1}(a+x+r f)^{m}(a+x+(r-s) f)^{n}
$$

By taking respectively $q=0$ and $q=1$ in Corollary 3 , we get Theorems 2.3 and 2.4 of Agoh [1].

The following corollary enables us to obtain Sun's result by giving different values to q.

Corollary 4. Let $\left(R_{k}(x)\right)_{n \geq 0}$ and $\left(R_{k}^{*}(x)\right)_{n \geq 0}$ be the polynomial sequences defined by (3), then for any non-negative integers n, m and q and for any complex number α, we have

$$
\begin{align*}
&(-1)^{n-1} \sum_{k=0}^{m}\binom{m}{k} \alpha^{m-k} \frac{R_{n+k+q}(x)}{(n+k+q)^{\underline{q}}} \\
&+(-1)^{m+q} \sum_{k=0}^{n}\binom{n}{k} \alpha^{n-k} \frac{R_{m+k+q}^{*}(1-x-\alpha)}{(m+k+q)^{q}} \\
&=\frac{1}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k} \frac{m!(n+q-k-1)!}{(m+n+q-k)!} \alpha^{m+n+q-k} R_{k}(x) \tag{21}
\end{align*}
$$

$$
\begin{align*}
& (-1)^{n-1} \sum_{k=0}^{m}\binom{m}{k} \alpha^{m-k}(n+k)^{\underline{q}} R_{n-q+k}(x) \\
& \quad+(-1)^{m-q} \sum_{k=0}^{n}\binom{n}{k} \alpha^{n-k}(m+k)^{q} R_{m-q+k}^{*}(1-x-\alpha)=0 \tag{22}
\end{align*}
$$

Proof. If

$$
F(z)=\sum_{k=0}^{\infty} u_{k} \frac{z^{k}}{k!}
$$

denotes the exponential generating function for the sequence u, then it is easy to see that the polynomial sequences $\left(R_{k}(x)\right)_{k \geq 0}$ and $\left(R_{k}^{*}(x)\right)_{k \geq 0}$ satisfy

$$
\sum_{k=0}^{+\infty} R_{k}(x) \frac{z^{k}}{k!}=F(-z) \mathrm{e}^{z x} \quad \text { and } \quad \sum_{k=0}^{+\infty} R_{k}^{*}(x) \frac{z^{k}}{k!}=F(z) \mathrm{e}^{z(x-1)}
$$

Thus, it comes immediately that

$$
R_{k}(x)=(-1)^{k} R_{k}^{*}(1-x) .
$$

With this, a direct application of Theorem 1 and Corollary 1 for the polynomial sequence $\left(R_{k}(x)\right)_{k \geq 0}$ gives (21) and (22).

For $q=1$ in (21) and $q \in\{0,1\}$ in (22) we obtain respectively Sun's results (4), (5), and (6).

To conclude this section, we deal with Apostol-Bernoulli polynomials $\left(\mathcal{B}_{k}(x ; \lambda)\right)_{k \geq 0}$ defined [9] for any complex number λ, by means of the following generating function

$$
\frac{z \mathrm{e}^{x z}}{\lambda \mathrm{e}^{z}-1}=\sum_{k=0}^{\infty} \mathcal{B}_{k}(x ; \lambda) \frac{z^{n}}{n!}
$$

with $|z+\ln \lambda|<2 \pi$. Let ℓ be a positive integer. Expanding the both sides of the functional relation

$$
\frac{\lambda^{\ell} z \mathrm{e}^{(\ell+x) z}}{\lambda \mathrm{e}^{z}-1}=\frac{z \mathrm{e}^{x z}}{\lambda \mathrm{e}^{z}-1}+\sum_{i=0}^{\ell-1} \lambda^{i} z \mathrm{e}^{i z} \mathrm{e}^{x z}
$$

into power series of z and then equating the coefficients of $\frac{z^{k}}{k!}(k \geq 0)$, yields

$$
\lambda^{\ell} \mathcal{B}_{0}(x+\ell ; \lambda)=\mathcal{B}_{0}(x ; \lambda)
$$

and

$$
\lambda^{\ell} \mathcal{B}_{k}(x+\ell ; \lambda)=\mathcal{B}_{k}(x ; \lambda)+\sum_{i=0}^{\ell-1} \lambda^{i} k(x+i)^{k-1}
$$

for $k \geq 1$. One can see that the previous equality also holds true even when $k=0$. Therefore, for any positive integer ℓ and any non-negative integer k

$$
\begin{equation*}
\lambda^{\ell} \mathcal{B}_{k}(x+\ell ; \lambda)=\mathcal{B}_{k}(x ; \lambda)+\sum_{i=0}^{\ell-1} \lambda^{i} k(x+i)^{k-1} . \tag{23}
\end{equation*}
$$

Theorem 1 enables us to obtain simply the following corollary due to Prévost [11, Theorem 2].

Corollary 5. For any integers $n, m, p \geq 0$ and $\ell \geq 1$, if $p \geq n+m+1$ then

$$
\begin{array}{r}
\sum_{k=0}^{m}\binom{m}{k} \lambda^{\ell} \frac{(n+m-k)!\mathcal{B}_{p-k}(x ; \lambda)}{(p-k)!\ell^{p-k}}-\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{(n+m-k)!\mathcal{B}_{p-k}(x ; \lambda)}{(p-k)!\ell^{p-k}} \\
=\sum_{i=0}^{\ell-1} \lambda^{i} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{(n+m-k)!(x+i)^{p-k-1}}{(p-k-1)!\ell^{p-k}} \\
\quad-\lambda^{\ell} \frac{(-1)^{n} n!m!}{p!} \sum_{k=0}^{p-m-n-1}\binom{p}{k}\binom{p-m-k-1}{n} \frac{\mathcal{B}_{k}(x ; \lambda)}{\ell^{k}} \tag{24}
\end{array}
$$

and if $p \leq n+m$ then

$$
\begin{align*}
\sum_{k=0}^{\min \{m, p\}}\binom{m}{k} \lambda^{\ell} & \frac{(n+m-k)!\mathcal{B}_{p-k}(x ; \lambda)}{(p-k)!!^{p-k}} \\
& -\sum_{k=0}^{\min \{n, p\}}\binom{n}{k}(-1)^{k} \frac{(n+m-k)!\mathcal{B}_{p-k}(x ; \lambda)}{(p-k)!\ell^{p-k}} \\
& =\sum_{i=0}^{\ell-1} \lambda^{i} \sum_{k=0}^{\min (p-1, n)}\binom{n}{k}(-1)^{k} \frac{(n+m-k)!(x+i)^{p-k-1}}{(p-k-1)!\ell^{p-k}} . \tag{25}
\end{align*}
$$

Proof. Applying Theorem 1 and Corollary 1 for $S(z)=\frac{z}{\lambda \mathrm{e}^{z}-1}$ and $\alpha=\ell$, multiplying the whole by λ^{ℓ} and using identity (23) give

$$
\begin{gathered}
\sum_{k=0}^{m}\binom{m}{k} \frac{\lambda^{\ell} \mathcal{B}_{n+q+k}(x ; \lambda)}{(n+q+k)^{\underline{\underline{q}} \ell^{n+q+k}}-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{\mathcal{B}_{m+q+k}(x ; \lambda)}{(m+q+k)^{\underline{q}} \ell^{m+q+k}}} \\
=\sum_{i=0}^{\ell-1} \lambda^{i} \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{(m+q+k)(x+i)^{m+q+k-1}}{(m+q+k)^{\underline{q} \ell^{m+q+k}}} \\
+\lambda^{\ell} \frac{(-1)^{n+1}}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k} \frac{m!(n+q-k-1)!}{(n+m+q-k)!} \frac{\mathcal{B}_{k}(x ; \lambda)}{\ell^{k}}, \\
\begin{array}{c}
\sum_{k=0}^{m}\binom{m}{k}(n+k)^{\underline{q}} \frac{\lambda^{\ell} \mathcal{B}_{n-q+k}(x ; \lambda)}{\ell^{n-q+k}}-\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(m+k)^{\underline{q}} \frac{\mathcal{B}_{m-q+k}(x ; \lambda)}{\ell^{m-q+k}} \\
=\sum_{i=0}^{\ell-1} \lambda^{i} \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(m+k)^{\underline{q}} \frac{(m-q+k)(x+i)^{m-q+k-1}}{\ell^{m-q+k}}
\end{array}
\end{gathered}
$$

Reverse the order of summations in the two previous relations to obtain

$$
\left.\begin{array}{l}
\begin{array}{rl}
\sum_{k=0}^{m}\binom{m}{k} & \frac{\lambda^{\ell} \mathcal{B}_{n+m+q-k}(x ; \lambda)}{(n+m+q-k)^{\underline{q}} \ell^{n+m+q-k}} \\
& \quad-\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{\mathcal{B}_{n+m+q-k}(x ; \lambda)}{(n+m+q-k)^{\underline{q}} \ell^{m+n+q-k}}
\end{array} \\
=\sum_{i=0}^{\ell-1} \lambda^{i} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{(n+m+q-k)(x+i)^{n+m+q-k-1}}{(n+m+q-k)^{q} \ell^{n+m+q-k}} \\
\\
\quad+\lambda^{\ell} \frac{(-1)^{n+1}}{(q-1)!} \sum_{k=0}^{q-1}\binom{q-1}{k} \frac{m!(n+q-k-1)!}{(n+m+q-k)!} \frac{\mathcal{B}_{k}(x ; \lambda)}{\ell^{k}}, \\
\sum_{k=0}^{m}\binom{m}{k}(n+m-k)^{\underline{q}} \frac{\lambda^{\ell} \mathcal{B}_{n+m-q-k}(x ; \lambda)}{\ell^{n+m-q-k}} \\
\quad-\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(n+m-k)^{\underline{q}} \frac{\mathcal{B}_{n+m-q-k}(x ; \lambda)}{\ell^{n+m-q-k}}
\end{array}\right] \begin{aligned}
& =\sum_{i=0}^{\ell-1} \lambda^{i} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(n+m-k)^{\underline{q}} \frac{(n+m-q-k)(x+i)^{n+m-q-k-1}}{\ell^{n+m-q+k}} .
\end{aligned}
$$

Suppose first that $p \geq n+m+1$. Substituting q by $p-n-m$ in (26) gives

$$
\begin{array}{r}
\sum_{k=0}^{m}\binom{m}{k} \lambda^{\ell} \frac{(n+m-k)!\mathcal{B}_{p-k}(x ; \lambda)}{(p-k)!\ell^{p-k}}-\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{(n+m-k)!\mathcal{B}_{p-k}(x ; \lambda)}{(p-k)!\ell^{p-k}} \\
=\sum_{i=0}^{\ell-1} \lambda^{i} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} \frac{(n+m-k)!(x+i)^{p-k-1}}{(p-k-1)!\ell^{p-k}} \\
\quad-\lambda^{\ell} \frac{(-1)^{n} n!m!}{p!} \sum_{k=0}^{p-n-m-1}\binom{p}{k}\binom{p-m-k-1}{n} \frac{\mathcal{B}_{k}(x ; \lambda)}{\ell^{k}}
\end{array}
$$

Thus, we obtain relation (24). Suppose now that $p \leq n+m$. Taking $q=n+m-p$ in (27) gives

$$
\begin{align*}
& \sum_{k=0}^{m}\binom{m}{k}(n+m-k)^{n+m-p} \frac{\lambda^{\ell} \mathcal{B}_{p-k}(x ; \lambda)}{\ell^{p-k}} \\
& -\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(n+m-k)^{n+m-p} \frac{\mathcal{B}_{p-k}(x ; \lambda)}{\ell^{p-k}} \\
& =\sum_{i=0}^{\ell-1} \lambda^{i} \sum_{k=0}^{n}\binom{n}{k}(-1)^{k}(n+m-k)^{n+m-p} \frac{(p-k)(x+i)^{p-k-1}}{\ell^{p+k}} \text {. } \tag{28}
\end{align*}
$$

Noting that the factor $(n+m-k)^{n+m-p}$ in the left hand side vanishes when $k>p$, and the factor $(n+m-k)^{n+m-p}(p-k)$ in the right hand side vanishes when $k>p-1$, relation (28) leads to relation (25).

Remark 3. In a similar way, by making use of

$$
\lambda^{\ell} \mathcal{E}_{k}(x+\ell ; \lambda)=(-1)^{\ell} \mathcal{E}_{k}(x ; \lambda)+2(-1)^{\ell-1} \sum_{i=0}^{\ell-1}(-1)^{i} \lambda^{i}(x+i)^{k}
$$

we obtain an identity due to Prévost [11, Theorem 2], for Apostol-Euler polynomials $\left(\mathcal{E}_{k}(x ; \lambda)\right)_{k \geq 0}$ defined [9] for $\lambda \in \mathbb{C} \backslash\{-1\}$ by means of the following generating function

$$
\frac{2}{\lambda \mathrm{e}^{z}+1} \mathrm{e}^{x z}=\sum_{n=0}^{\infty} \mathcal{E}_{n}(x ; \lambda) \frac{z^{n}}{n!} \quad(|z+\ln \lambda|<\pi)
$$

References

[1] T. Agoh: Shortened recurrence relations for generalized Bernoulli numbers and polynomials. Journal of Number Theory 176 (2017) 149-173.
[2] P. Appell: Sur une classe de polynômes. Annales Scientifiques de l'École Normale Supérieure 9 (1880) 119-144.
[3] W.Y.C. Chen,L.H. Sun: Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials. Journal of Number Theory 129 (9) (2009) 2111-2132.
[4] I.M. Gel'fand, G.E. Shilov: Generalized Functions, Vol. 1: Properties and Operations. Acad. Press, New York (1964).
[5] M.B. Gelfand: A note on a certain relation among Bernoulli numbers. Baškir. Gos. Univ. Ucen. Zap. Vyp 31 (1968) 215-216.
[6] I.M. Gessel: Applications of the classical umbral calculus. Algebra Univers. 49 (4) (2003) 397-434.
[7] Y. He, W. Zhang: Some symmetric identities involving a sequence of polynomials. The Electronic Journal of Combinatorics 17 (N7) (2010) 7pp.
[8] M. Kaneko: A recurrence formula for the Bernoulli numbers. Proceedings of the Japan Academy, Series A, Mathematical Sciences 71 (8) (1995) 192-193.
[9] Q.-M. Luo, H.M. Srivastava: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. Journal of Mathematical Analysis and Applications 308 (1) (2005) 290-302.
[10] H. Momiyama: A new recurrence formula for Bernoulli numbers. Fibonacci Quarterly 39 (3) (2001) 285-288.
[11] M. Prévost: Padé approximation and Apostol-Bernoulli and Apostol-Euler polynomials. Journal of computational and applied mathematics 233 (11) (2010) 3005-3017.
[12] G.-C. Rota: The number of partitions of a set. The American Mathematical Monthly 71 (5) (1964) 498-504.
[13] M. Stern: Beiträge zur Theorie der Bernoullischen und Eulerschen Zahlen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen 26 (1880) 3-46.
[14] Z.-W. Sun: Combinatorial identities in dual sequences. European Journal of Combinatorics 24 (6) (2003) 709-718.
[15] A. von Ettingshausen: Vorlesungen über die höhere Mathematik. C. Gerold, Vienna (1827).
[16] P.L. von Seidel: Uber eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen, Sitzungsberichte der Münch. Akad. Math. Phys. Classe 7 (1877) 157-187.
[17] K.-J. Wu, Z.-W. Sun, H. Pan: Some identities for Bernoulli and Euler polynomials. Fibonacci Quarterly 42 (4) (2004) 295-299.

Received: 18 January 2019
Accepted for publication: 19 June 2020
Communicated by: Karl Dilcher

[^0]: 2020 MSC: 05A19, 05A40, 11B68
 Key words: Appell sequence, Apostol-Bernoulli polynomial, Apostol-Euler polynomial, generalized Bernoulli polynomial, primitive Dirichlet character.

 Affiliation:
 Farid Bencherif - Faculté de Mathématiques, USTHB, Alger, Algérie E-mail: fbencherif@usthb.dz
 Rachid Boumahdi - Ecole Nationale Supérieure d'Informatique, Alger, Algérie E-mail: r_boumehdi@esi.dz
 Tarek Garici - Faculté de Mathématiques, USTHB, Alger, Algérie
 E-mail: tgarici@usthb.dz

