(ϕ, φ)-derivations on semiprime rings and Banach algebras

Bilal Ahmad Wani

Abstract

Let \mathcal{R} be a semiprime ring with unity e and ϕ, φ be automorphisms of \mathcal{R}. In this paper it is shown that if \mathcal{R} satisfies $$
2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right)
$$

for all $x \in \mathcal{R}$ and some fixed integer $n \geq 2$, then \mathcal{D} is an (ϕ, φ)-derivation. Moreover, this result makes it possible to prove that if \mathcal{R} admits an additive mappings $\mathcal{D}, \mathcal{G}: \mathcal{R} \rightarrow \mathcal{R}$ satisfying the relations

$$
\begin{aligned}
& 2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{G}(x)+\mathcal{G}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{G}\left(x^{n-1}\right), \\
& 2 \mathcal{G}\left(x^{n}\right)=\mathcal{G}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right),
\end{aligned}
$$

for all $x \in \mathcal{R}$ and some fixed integer $n \geq 2$, then \mathcal{D} and \mathcal{G} are (ϕ, φ) --derivations under some torsion restriction. Finally, we apply these purely ring theoretic results to semi-simple Banach algebras.

1 Introduction and Results

Throughout this paper \mathcal{R} will denote an associative ring with the center $\mathcal{Z}(\mathcal{R})$. Recall that a ring \mathcal{R} is said to be prime if for any $a, b \in \mathcal{R}, a \mathcal{R} b=\{0\}$ implies $a=0$ or $b=0$, and \mathcal{R} is semiprime if for any $a \in \mathcal{R}, a \mathcal{R} a=\{0\}$ implies $a=0$. A ring \mathcal{R} is said to be n-torsion free, where $n>1$ is an integer, if $n x=0$ implies $x=0$ for all $x \in \mathcal{R}$. For any $x, y \in \mathcal{R}$, the symbol $[x, y]$ will denote the commutator $x y-y x$. By a Banach algebra \mathfrak{B} we mean an algebra equipped with a norm $\|\cdot\|$ that makes it into a Banach space and additionally satisfies the inequality $\|u v\| \leq\|u\|\|v\|$ for all $u, v \in \mathfrak{B}$ (see [3]). The Jacobson radical of \mathfrak{B}, denoted by $\operatorname{rad}(\mathfrak{B})$, is the intersection of all the primitive ideals of \mathfrak{B}. An algebra \mathfrak{B} is called semi-simple Banach algebra if $\operatorname{rad}(\mathfrak{B})=0$.

[^0]An additive mapping $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a derivation (resp. Jordan derivation)on \mathcal{R} if

$$
\mathcal{D}(x y)=\mathcal{D}(x) y+x \mathcal{D}(y)
$$

(resp. $\left.\mathcal{D}\left(x^{2}\right)=\mathcal{D}(x) x+x \mathcal{D}(x)\right)$ holds for all $x, y \in \mathcal{R}$. A derivation \mathcal{D} is inner if there exists $a \in \mathcal{R}$ such that $\mathcal{D}(x)=[a, x]$ holds for all $x \in \mathcal{R}$. It is easy to verify that every derivation is a Jordan derivation but the converse is not true in general. A classical result of Herstein [10] states that every Jordan derivation is a derivation on a prime ring of characteristic different from two. A brief proof of Herstein's result can be found in [6]. An additive mapping $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is called a Jordan triple derivation if

$$
\mathcal{D}(x y x)=\mathcal{D}(x) y x+x \mathcal{D}(y) x+x y \mathcal{D}(x)
$$

holds for all $x, y \in \mathcal{R}$. Obviously, every derivation is a Jordan triple derivation but not conversely. Brešar [5, Theorem 4.3], established that a Jordan triple derivation on a 2 -torsion free semiprime ring is a derivation. Motivated by the above result, Vukman [17] recently showed that if $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ an additive mapping on a 2-torsion free semiprime ring \mathcal{R} satisfying either

$$
\mathcal{D}(x y x)=\mathcal{D}(x y) x+x y \mathcal{D}(x)
$$

for all pairs $x, y \in \mathcal{R}$ or

$$
\mathcal{D}(x y x)=\mathcal{D}(x) y x+x \mathcal{D}(y x)
$$

for all pairs $x, y \in \mathcal{R}$, then \mathcal{D} is a derivation. In 2016 Širovnik [16] generalized the above result. In fact, he established that if $\mathcal{D}, \mathcal{G}: \mathcal{R} \rightarrow \mathcal{R}$ are two additive mappings on a 2 -torsion free semiprime ring \mathcal{R} satisfying either

$$
\mathcal{D}(x y x)=\mathcal{D}(x y) x+x y \mathcal{G}(x)
$$

and

$$
\mathcal{G}(x y x)=\mathcal{G}(x y) x+x y \mathcal{D}(x)
$$

for all pairs $x, y \in \mathcal{R}$ or

$$
\mathcal{D}(x y x)=\mathcal{D}(x) y x+x \mathcal{G}(y x)
$$

and

$$
\mathcal{G}(x y x)=\mathcal{G}(x) y x+x \mathcal{D}(y x)
$$

for all pairs $x, y \in \mathcal{R}$, then \mathcal{D} and \mathcal{G} are derivations and $\mathcal{D}=\mathcal{G}$. Following the same line, a number of results have been obtained by several authors (see [1], [2], [4], [8], [12], [13], [14], [15], [18], [19], [20]), where further references can be found.

Let ϕ, φ be any two mappings on \mathcal{R}. An additive mapping $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is said to be an (ϕ, φ)-derivation (resp. Jordan (ϕ, φ)-derivation) on \mathcal{R} if

$$
\mathcal{D}(x y)=\mathcal{D}(x) \phi(y)+\varphi(x) \mathcal{D}(y)
$$

(resp. $\left.\mathcal{D}\left(x^{2}\right)=\mathcal{D}(x) \phi(x)+\varphi(x) \mathcal{D}(x)\right)$ holds for all $x, y \in \mathcal{R}$. An additive mapping $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is called a Jordan triple (ϕ, φ)-derivation if

$$
\mathcal{D}(x y x)=\mathcal{D}(x) \phi(y x)+\varphi(x) \mathcal{D}(y) \phi(x)+\varphi(x y) \mathcal{D}(x)
$$

holds for all $x, y \in \mathcal{R}$. Obviously, every (ϕ, φ)-derivation is a Jordan (ϕ, φ) derivation and a Jordan triple (ϕ, φ)-derivation, but not conversely. Brešar and Vukman [7] obtained that every Jordan (ϕ, φ)-derivation is a (ϕ, φ)-derivation on a prime ring of characteristic different from two . For these kind of results we refer the reader to ([9], [11]), where further references can be found. Liu and Shiue [11] have recently generalized the above result to 2 -torsion free semiprime rings. Moreover in the same paper they showed that every Jordan triple (ϕ, φ)-derivation is a (ϕ, φ)-derivation on a 2 -torsion free semiprime ring.

In view of the above results we begin our investigation by extending the results of Vukman [17] to (ϕ, φ)-derivations. In fact, we have shown that an additive mapping \mathcal{D} on a semiprime ring \mathcal{R} which satisfies either of the identities

$$
\mathcal{D}(x y x)=\mathcal{D}(x y) \phi(x)+\varphi(x y) \mathcal{D}(x)
$$

or

$$
\mathcal{D}(x y x)=\mathcal{D}(x) \phi(y x)+\varphi(x) \mathcal{D}(y x)
$$

for all $x, y \in \mathcal{R}$ is a (ϕ, φ)-derivation. Further, it is also shown that if the additive mapping \mathcal{D} on \mathcal{R} satisfies

$$
2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right)
$$

for all $x \in \mathcal{R}$, then \mathcal{D} is a (ϕ, φ)-derivation. Finally, we have shown that under what conditions and additive mapping \mathcal{D} on \mathcal{R} satisfying

$$
\mathcal{D}\left(x^{n}\right)=\sum_{j=1}^{n} \phi\left(x^{n-j}\right) \mathcal{D}(x) \varphi\left(x^{j-1}\right) \text { for all } x \in \mathcal{R}
$$

is an (ϕ, φ)-derivations.

2 Main Results

We facilitate our investigation with the following theorem:
Theorem 1. Let \mathcal{R} be a 2 -torsion free semiprime ring and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is an additive mapping such that either

$$
\begin{equation*}
\mathcal{D}(x y x)=\mathcal{D}(x y) \phi(x)+\varphi(x y) \mathcal{D}(x) \quad \text { for all } x, y \in \mathcal{R} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathcal{D}(x y x)=\mathcal{D}(x) \phi(y x)+\varphi(x) \mathcal{D}(y x) \quad \text { for all } x, y \in \mathcal{R} \tag{2}
\end{equation*}
$$

Then \mathcal{D} is a (ϕ, φ)-derivation.
For developing the proof of our theorem, we need the following Lemma.

Lemma 1. Let \mathcal{R} be a semiprime ring and ϕ be an automorphism of \mathcal{R}. Suppose $f: \mathcal{R} \rightarrow \mathcal{R}$ is an additive mapping such that either $f(x) \phi(x)=0$ holds for all $x \in \mathcal{R}$ or $\phi(x) f(x)=0$ holds for all $x \in \mathcal{R}$, then $f=0$.

Proof. Since, we have

$$
\begin{equation*}
f(x) \phi(x)=0 \quad \text { for all } x \in \mathcal{R} \tag{3}
\end{equation*}
$$

The linearization of the above relation gives

$$
\begin{equation*}
f(x) \phi(y)+f(y) \phi(x)=0 \text { for all } x, y \in \mathcal{R} \tag{4}
\end{equation*}
$$

Replace y by y^{2} in the above equation, we see that

$$
\begin{equation*}
f(x) \phi\left(y^{2}\right)+f\left(y^{2}\right) \phi(x)=0 \text { for all } x, y \in \mathcal{R} \tag{5}
\end{equation*}
$$

Right multiplication of (4) by $\phi(y)$ gives

$$
\begin{equation*}
f(x) \phi\left(y^{2}\right)+f(y) \phi(x) \phi(y)=0 \text { for all } x, y \in \mathcal{R} \tag{6}
\end{equation*}
$$

By comparing (5) and (6), we obtain

$$
\begin{equation*}
f\left(y^{2}\right) \phi(x)-f(y) \phi(x) \phi(y)=0 \text { for all } x, y \in \mathcal{R} \tag{7}
\end{equation*}
$$

Since ϕ is an automorphism, we have

$$
f\left(y^{2}\right) z-f(y) z \phi(y)=0 \text { for all } y, z \in \mathcal{R}
$$

Replace z by $\phi(x) f(y)$ in the above relation, and use (3), we obtain,

$$
f\left(y^{2}\right) \phi(x) f(y)=0 \text { for all } x, y \in \mathcal{R}
$$

In view of the above relation right multiplication of (7) by $f(y)$ yields

$$
f(y) \phi(x) \phi(y) f(y)=0
$$

for all $x, y \in \mathcal{R}$, which leads to $\phi(y) f(y) \phi(x) \phi(y) f(y)=0$ for all $x, y \in \mathcal{R}$. Hence we have

$$
\begin{equation*}
\phi(y) f(y)=0 \text { for all } y \in \mathcal{R} \tag{8}
\end{equation*}
$$

Right multiplication of (4) by $f(x)$ and using (8), we find that

$$
f(x) \phi(y) f(x)=0 \text { for all } x, y \in \mathcal{R}
$$

Since \mathcal{R} is semiprime, it follows that $f=0$, which completes the proof.
Proof. [Proof of Theorem 1] We will restrict our attention on the relation (1), the proof in case when \mathcal{R} satisfies the relation (2) is similar and will therefore be omitted. Linearize the relation (1), we see that

$$
\mathcal{D}(x y z+z y x)=\mathcal{D}(x y) \phi(z)+\mathcal{D}(z y) \phi(x)+\varphi(x y) \mathcal{D}(z)+\varphi(z y) \mathcal{D}(x),
$$

for all $x, y, z \in \mathcal{R}$. In particular for $z=x^{2}$, the above relation gives

$$
\begin{equation*}
\mathcal{D}\left(x y x^{2}+x^{2} y x\right)=\mathcal{D}(x y) \phi\left(x^{2}\right)+\mathcal{D}\left(x^{2} y\right) \phi(x)+\varphi(x y) \mathcal{D}\left(x^{2}\right)+\varphi\left(x^{2} y\right) \mathcal{D}(x) \tag{9}
\end{equation*}
$$

for all $x, y, \in \mathcal{R}$. Putting $x y+y x$ for y in (1) and applying the relation (1), we obtain

$$
\begin{align*}
\mathcal{D}\left(x y x^{2}+x^{2} y x\right)= & \mathcal{D}\left(x^{2} y+x y x\right) \phi(x)+\varphi\left(x^{2} y+x y x\right) \mathcal{D}(x) \tag{10}\\
= & \mathcal{D}\left(x^{2} y\right) \phi(x)+\mathcal{D}(x y) \phi\left(x^{2}\right)+\varphi(x y) \mathcal{D}(x) \phi(x) \\
& +\varphi\left(x^{2} y\right) \mathcal{D}(x)+\varphi(x y x) \mathcal{D}(x),
\end{align*}
$$

for all $x, y \in \mathcal{R}$. By comparing (9) and (10), we have

$$
\begin{equation*}
\varphi(x) \varphi(y) A(x)=0, \text { for all } x, y \in \mathcal{R} \tag{11}
\end{equation*}
$$

where $A(x)$ stands for $\mathcal{D}\left(x^{2}\right)-\mathcal{D}(x) \phi(x)-\varphi(x) \mathcal{D}(x)$. Since φ is surjective, we have

$$
\begin{equation*}
\varphi(x) z A(x)=0, \text { for all } x, z \in \mathcal{R} \tag{12}
\end{equation*}
$$

Right multiplication of (12) by $\varphi(x)$ and left multiplication by $A(x)$ gives,

$$
A(x) \varphi(x) z A(x) \varphi(x)=0, \text { for all } x, z \in \mathcal{R}
$$

By the semiprimeness of \mathcal{R}, it follows that

$$
\begin{equation*}
A(x) \varphi(x)=0, \text { for all } x \in \mathcal{R} \tag{13}
\end{equation*}
$$

The substitution of $A(x) y \varphi(x)$ for z in the relation (12), gives

$$
\varphi(x) A(x) y \varphi(x) A(x)=0
$$

for all pairs $x, y \in \mathcal{R}$. Hence, we obtain

$$
\begin{equation*}
\varphi(x) A(x)=0, \text { for all } x \in \mathcal{R} \tag{14}
\end{equation*}
$$

The linearization of the relation (13) gives

$$
B(x, y) \varphi(x)+A(x) \varphi(y)+B(x, y) \varphi(y)+A(y) \varphi(x)=0
$$

for all pairs $x, y \in \mathcal{R}$, where $B(x, y)$ denotes

$$
\mathcal{D}(x y+y x)-\mathcal{D}(x) \phi(y)-\varphi(x) \mathcal{D}(y)-\mathcal{D}(y) \phi(x)-\varphi(y) \mathcal{D}(x)
$$

Putting in the above relation $-x$ for x and comparing the relation so obtained with the above relation one obtains

$$
B(x, y) \varphi(x)+A(x) \varphi(y)=0, \text { for all } x, y \in \mathcal{R}
$$

In view of the relation (14), right multiplication by $A(x)$ gives, $A(x) \varphi(y) A(x)=0$ for all pairs $x, y \in \mathcal{R}$. Hence it follows that $A(x)=0$ for all $x \in \mathcal{R}$. In other words,
\mathcal{D} is a Jordan (ϕ, φ)-derivation. By [11, Corollary 1] one can conclude that \mathcal{D} is a (ϕ, φ)-derivation. It is our aim to show that Theorem 1 can be proved without using [11, Corollary 1]. From the fact that \mathcal{D} is a $\operatorname{Jordan}(\phi, \varphi)$-derivation, it follows that \mathcal{D} is a Jordan triple (ϕ, φ)-derivation. Now, comparing the relation $\mathcal{D}(x y x)=\mathcal{D}(x) \phi(y x)+\varphi(x) \mathcal{D}(y) \phi(x)+\varphi(x y) \mathcal{D}(x)$, for all $x, y \in \mathcal{R}$, with the relation (1), we get

$$
(\mathcal{D}(x y)-\mathcal{D}(x) \phi(y)-\varphi(x) \mathcal{D}(y)) \phi(x)=0, \text { for all } x, y \in \mathcal{R}
$$

For any fixed $y \in \mathcal{R}$, we have an additive mapping $x \mapsto \mathcal{D}(x y)-\mathcal{D}(x) \phi(y)-$ $\varphi(x) \mathcal{D}(y)$ on \mathcal{R}. Thus from the above relation and Lemma 1 it follows that $\mathcal{D}(x y)-$ $\mathcal{D}(x) \phi(y)-\varphi(x) \mathcal{D}(y)=0$ for all pairs $x, y \in \mathcal{R}$. In other words, \mathcal{D} is a $(\phi, \varphi)-$ derivation. This completes the proof.

Remark 1. It is to be noted that if ϕ and φ are the identity automorphisms on \mathcal{R}, then the above result reduces to the [17, Theorem 2].

Theorem 2. Let \mathcal{R} be a 2-torsion free semiprime ring and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is an additive mapping such that either

$$
\begin{equation*}
\mathcal{D}(x y x)=\mathcal{D}(x y) \phi(x)-\varphi(x y) \mathcal{D}(x) \text { for all } x, y \in \mathcal{R}, \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathcal{D}(x y x)=\mathcal{D}(x) \phi(y x)-\varphi(x) \mathcal{D}(y x) \text { for all } x, y \in \mathcal{R} . \tag{16}
\end{equation*}
$$

Then $\mathcal{D}=0$.
Proof. We will restrict our attention on the relation (15), the proof in the other case is similar. Linearization of the relation (15) gives

$$
\mathcal{D}(x y z+z y x)=\mathcal{D}(x y) \phi(z)+\mathcal{D}(z y) \phi(x)-\varphi(x y) \mathcal{D}(z)-\varphi(z y) \mathcal{D}(x),
$$

for all $x, y, z \in \mathcal{R}$. Following the same procedure as used in the above theorem we get, $A(x)=0$ for all pairs $x, y \in \mathcal{R}$, where $A(x)$ stands for $\mathcal{D}\left(x^{2}\right)-$ $\mathcal{D}(x) \phi(x)-\varphi(x) \mathcal{D}(x)$. Thus \mathcal{D} is a Jordan (ϕ, φ)-derivation and hence it follows that \mathcal{D} is a Jordan triple (ϕ, φ)-derivation. Now, comparing the relation $\mathcal{D}(x y x)=\mathcal{D}(x) \phi(y x)+\varphi(x) \mathcal{D}(y) \phi(x)+\varphi(x y) \mathcal{D}(x)$, for all $x, y \in \mathcal{R}$, with the relation (15), one obtains

$$
\begin{equation*}
\varphi(x) \varphi(y) \mathcal{D}(x)=0, \text { for all } x, y \in \mathcal{R} \tag{17}
\end{equation*}
$$

Since φ is surjective, we have

$$
\begin{equation*}
\varphi(x) z \mathcal{D}(x)=0, \text { for all } x, z \in \mathcal{R} \tag{18}
\end{equation*}
$$

Right multiplication of (18) by $\varphi(x)$ and left multiplication by $\mathcal{D}(x)$ gives

$$
\mathcal{D}(x) \varphi(x) z \mathcal{D}(x) \varphi(x)=0, \text { for all } x, z \in \mathcal{R} .
$$

By the semiprimeness of \mathcal{R} it follows that

$$
\begin{equation*}
\mathcal{D}(x) \varphi(x)=0, \text { for all } x \in \mathcal{R} \tag{19}
\end{equation*}
$$

The substitution of $\mathcal{D}(x) y \varphi(x)$ for z in the relation (18), gives

$$
\varphi(x) \mathcal{D}(x) y \varphi(x) \mathcal{D}(x)=0
$$

for all pairs $x, y \in \mathcal{R}$. Hence, we obtain

$$
\begin{equation*}
\varphi(x) \mathcal{D}(x)=0, \text { for all } x, y \in \mathcal{R} \tag{20}
\end{equation*}
$$

The linearization of the relation (19) gives

$$
\mathcal{D}(x) \varphi(y)+\mathcal{D}(y) \varphi(x)=0, \text { for all } x, y \in \mathcal{R}
$$

In view of the relation (20), right multiplication by $\mathcal{D}(x)$ gives,

$$
\mathcal{D}(x) \varphi(y) \mathcal{D}(x)=0, \text { for all } x, y \in \mathcal{R} .
$$

Hence it follows that $\mathcal{D}=0$, which completes the proof.
Corollary 1. Let \mathcal{R} be a 2-torsion free semiprime ring and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}, \mathcal{G}: \mathcal{R} \rightarrow \mathcal{R}$ is an additive mappings such that either

$$
\begin{gather*}
\mathcal{D}(x y x)=\mathcal{D}(x y) \phi(x)+\varphi(x y) \mathcal{G}(x) \tag{21}\\
\mathcal{G}(x y x)=\mathcal{G}(x y) \phi(x)+\varphi(x y) \mathcal{D}(x) \quad \text { for all } x, y \in \mathcal{R}
\end{gather*}
$$

or

$$
\begin{gather*}
\mathcal{D}(x y x)=\mathcal{D}(x) \phi(y x)+\varphi(x) \mathcal{G}(y x), \tag{22}\\
\mathcal{G}(x y x)=\mathcal{G}(x) \phi(y x)+\varphi(x) \mathcal{D}(y x) \quad \text { for all } x, y \in \mathcal{R}
\end{gather*}
$$

Then \mathcal{D} and \mathcal{G} are (ϕ, φ)-derivations and $\mathcal{D}=\mathcal{G}$.
Proof. We will restrict our attention on the relations (21), the proof in case we have the relations (22) is similar and will therefore be omitted. Thus the relations are

$$
\begin{align*}
& \mathcal{D}(x y x)=\mathcal{D}(x y) \phi(x)+\varphi(x y) \mathcal{G}(x), \text { for all } x, y \in \mathcal{R}, \tag{23}\\
& \mathcal{G}(x y x)=\mathcal{G}(x y) \phi(x)+\varphi(x y) \mathcal{D}(x), \text { for all } x, y \in \mathcal{R} . \tag{24}
\end{align*}
$$

Combining the relations (24) and (23), gives

$$
\begin{equation*}
T(x y x)=T(x y) \phi(x)-\varphi(x y) T(x), \text { for all } x, y \in \mathcal{R} \tag{25}
\end{equation*}
$$

where $T=\mathcal{D}-\mathcal{G}$. By applying Theorem 2 one obtains that $\mathcal{D}=\mathcal{G}$. Thus relation (21) reduces to

$$
\mathcal{D}(x y x)=\mathcal{D}(x y) \phi(x)+\varphi(x y) \mathcal{D}(x), \text { for all } x, y \in \mathcal{R} .
$$

Using Theorem 1, it follows that \mathcal{D} is a (ϕ, φ)-derivation, which completes the proof.

Disadvantage of Theorem 1 is that in identities (1) and (2) there is no symmetry. Therefore, Theorem 1, together with the desire for symmetry leads to the following conjecture.

Conjecture 1. Let \mathcal{R} be a 2 -torsion free semiprime ring and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is an additive mapping such that

$$
\begin{equation*}
2 \mathcal{D}(x y x)=\mathcal{D}(x y) \phi(x)+\varphi(x y) \mathcal{D}(x)+\mathcal{D}(x) \phi(y x)+\varphi(x) \mathcal{D}(y x), \tag{26}
\end{equation*}
$$

holds for all pairs $x, y \in \mathcal{R}$. Then \mathcal{D} is a (ϕ, φ)-derivation.

Note that in case a ring has the identity element, the proof of the above conjecture is immediate. The substitution $y=e$ in the relation (26), where e stands for the identity element, gives that \mathcal{D} is a $\operatorname{Jordan}(\phi, \varphi)$-derivation and then it follows from [11, Corollary 1] that \mathcal{D} is a (ϕ, φ)-derivation.

The substitution of $y=x^{n-2}$ in the relation (26) gives

$$
2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right)
$$

which leads to the following conjecture.

Conjecture 2. Let \mathcal{R} be a semiprime ring with a suitable torsion restriction and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is an additive mapping such that

$$
2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right)
$$

holds for all $x \in \mathcal{R}$ and some fixed integer $n \geq 2$. Then \mathcal{D} is a (ϕ, φ)-derivation.
Now we prove the above conjecture in case a ring has the identity element.

Theorem 3. Let \mathcal{R} be a ($n-1$)!-torsion free semiprime ring with identity e and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is an additive mapping such that

$$
2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right),
$$

for all $x \in \mathcal{R}$ and some fixed integer $n \geq 2$. Then \mathcal{D} is a (ϕ, φ)-derivation.

Proof. We have the relation

$$
\begin{equation*}
2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right) \tag{27}
\end{equation*}
$$

holds for all $x \in \mathcal{R}$. The substitution of $x=e$ in the relation (27) gives $\mathcal{D}(e)=0$. Let y be any element of the center $\mathcal{Z}(\mathcal{R})$. Putting $x+y$ for x in the above relation,
we obtain

$$
\begin{aligned}
2 \sum_{i=0}^{n}\binom{n}{i} \mathcal{D}\left(x^{n-i} y^{i}\right)= & \left(\sum_{i=0}^{n-1}\binom{n-1}{i} \mathcal{D}\left(x^{n-1-i} y^{i}\right)\right) \phi(x+y) \\
& +\left(\sum_{i=0}^{n-1}\binom{n-1}{i} \varphi\left(x^{n-1-i} y^{i}\right)\right) \mathcal{D}(x+y) \\
& +\mathcal{D}(x+y)\left(\sum_{i=0}^{n-1}\binom{n-1}{i} \phi\left(x^{n-1-i} y^{i}\right)\right) \\
& +\varphi(x+y)\left(\sum_{i=0}^{n-1}\binom{n-1}{i} \mathcal{D}\left(x^{n-1-i} y^{i}\right)\right) .
\end{aligned}
$$

Using (27) in the above relation and rearranging it in sense of collecting together terms involving equal number of factors of y, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n-1} f_{i}(x, y)=0 \tag{28}
\end{equation*}
$$

where $f_{i}(x, y)$ stands for the expression of terms involving i factors of y. Replace x by $x+2 y, x+3 y, \ldots, x+(n-1) y$ in the relation (27) and expressing the resulting system of $(n-2)$ homogeneous equations of variables $f_{i}(x, y)$ for $i=1,2, \ldots n-1$ together with (28), we see that the coefficient matrix of the system of $(n-1)$ homogenous equations is a Van-der Monde matrix

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2 & 2^{2} & \cdots & 2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
n-1 & (n-1)^{2} & \cdots & (n-1)^{n-1}
\end{array}\right)
$$

Since the determinant of this matrix is different from zero, it follows that the system has only a trivial solution. In particular, if y is replaced with the identity element e, we obtain

$$
\begin{aligned}
f_{n-2}(x, e)= & 2\binom{n}{n-2} \mathcal{D}\left(x^{2}\right)-\binom{n-1}{n-2} \mathcal{D}(x) \phi(x)-\binom{n-1}{n-3} \mathcal{D}\left(x^{2}\right) \\
& -\binom{n-1}{n-2} \varphi(x) \mathcal{D}(x)-\binom{n-1}{n-3} \varphi\left(x^{2}\right) \mathcal{D}(e)-\binom{n-1}{n-2} \mathcal{D}(x) \phi(x) \\
& -\binom{n-1}{n-3} \mathcal{D}(e) \phi\left(x^{2}\right)-\binom{n-1}{n-3} \mathcal{D}\left(x^{2}\right)-\binom{n-1}{n-2} \varphi(x) \mathcal{D}(x)
\end{aligned}
$$

After few calculations and considering the relation $\mathcal{D}(e)=0$, we obtain

$$
(n(n-1)-(n-1)(n-2)) \mathcal{D}\left(x^{2}\right)=2(n-1)(\mathcal{D}(x) \phi(x)+\varphi(x) \mathcal{D}(x))
$$

Since \mathcal{R} is $(n-1)$!-torsion free, it follows from the above relation that

$$
\mathcal{D}\left(x^{2}\right)=\mathcal{D}(x) \phi(x)+\varphi(x) \mathcal{D}(x) \text { for all } x \in \mathcal{R}
$$

Hence \mathcal{D} is a Jordan (ϕ, φ)-derivation. By [11, Corollary 1$], \mathcal{D}$ is a (ϕ, φ)-derivation, which completes the proof.

Theorem 4. Let \mathcal{R} be a ($n-1$)!-torsion free semiprime ring with identity e and ϕ, φ be automorphisms of \mathcal{R}. Suppose there exist additive mappings $\mathcal{D}, \mathcal{G}: \mathcal{R} \rightarrow \mathcal{R}$ satisfying the relations

$$
\begin{aligned}
& 2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{G}(x)+\mathcal{G}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{G}\left(x^{n-1}\right) \\
& 2 \mathcal{G}\left(x^{n}\right)=\mathcal{G}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right)
\end{aligned}
$$

for all $x \in \mathcal{R}$ and some fixed integer $n \geq 2$. Then \mathcal{D} and \mathcal{G} are (ϕ, φ)-derivations.
Proof. We have

$$
\begin{align*}
& 2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{G}(x)+\mathcal{G}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{G}\left(x^{n-1}\right) \tag{29}\\
& 2 \mathcal{G}\left(x^{n}\right)=\mathcal{G}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right) \tag{30}
\end{align*}
$$

for all $x \in \mathcal{R}$, where $n \geq 2$ is a fixed integer. Subtracting the two relations of equation, we obtain

$$
\begin{equation*}
2 T\left(x^{n}\right)=T\left(x^{n-1}\right) \phi(x)-\varphi\left(x^{n-1}\right) T(x)-T(x) \phi\left(x^{n-1}\right)-\varphi(x) T\left(x^{n-1}\right) \tag{31}
\end{equation*}
$$

where $T=\mathcal{D}-\mathcal{G}$. We denote the identity element of the $\operatorname{ring} \mathcal{R}$ by e. Putting e for x in the above relation gives

$$
\begin{equation*}
T(e)=0 \tag{32}
\end{equation*}
$$

Let y be any element of the center $\mathcal{Z}(\mathcal{R})$. Putting $x+y$ for x in the relation 31 and follow the same procedure as used in Theorem 3, we arrive at

$$
\begin{aligned}
f_{n-1}(x, e)= & 2\binom{n}{n-1} T(x)-\binom{n-1}{n-1}(T(e) \varphi(x)+e T(x)+T(x) e+\phi(x) T(e)) \\
& -\binom{n-1}{n-2}(T(x) e+\phi(x) T(e)+T(e) \varphi(x)+e T(x)) \\
= & 0
\end{aligned}
$$

Using 32 in the above identity, we obtain

$$
2 n T(x)=2 T(x)-2(n-1) T(x)
$$

Since \mathcal{R} is $(n-1)$!-torsion free, it follows from the above relation that $T(x)=0$ for all $x \in \mathcal{R}$. Therefore, we get $\mathcal{D}=\mathcal{G}$. Thus equations 29 and 30 reduces into one relation, which is

$$
2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right) .
$$

Using Theorem 3, we conclude that \mathcal{D} and \mathcal{G} are (ϕ, φ)-derivations. This completes the proof.

Following are the immediate consequences of above theorems.
Since every semi-simple Banach algebra \mathcal{B} is a semiprime ring (see [3] for details), we have the following results.

Corollary 2. Let \mathcal{B} be a semi-simple Banach algebra and ϕ, φ be automorphisms of \mathcal{B}. Suppose $\mathcal{D}, \mathcal{G}: \mathcal{B} \rightarrow \mathcal{B}$ are linear mappings such that either

$$
\begin{gathered}
\mathcal{D}(u v u)=\mathcal{D}(u v) \phi(u)+\varphi(u v) \mathcal{G}(u), \\
\mathcal{G}(u v u)=\mathcal{G}(u v) \phi(u)+\varphi(u v) \mathcal{D}(u) \quad \text { for all } u, v \in \mathcal{B}
\end{gathered}
$$

or

$$
\begin{gathered}
\mathcal{D}(u v u)=\mathcal{D}(u) \phi(v u)+\varphi(u) \mathcal{G}(v u), \\
\mathcal{G}(u v u)=\mathcal{G}(u) \phi(v u)+\varphi(u) \mathcal{D}(v u) \quad \text { for all } u, v \in \mathcal{B} .
\end{gathered}
$$

Then \mathcal{D} and \mathcal{G} are (ϕ, φ)-derivations and $\mathcal{D}=\mathcal{G}$.
Corollary 3. Let \mathcal{B} be a semi-simple Banach algebra with identity e and ϕ, φ be automorphisms of \mathcal{B}. Suppose $\mathcal{D}, \mathcal{G}: \mathcal{B} \rightarrow \mathcal{B}$ are additive mappings such that

$$
\begin{aligned}
& 2 \mathcal{D}\left(u^{n}\right)=\mathcal{D}\left(u^{n-1}\right) \phi(u)+\varphi\left(u^{n-1}\right) \mathcal{G}(u)+\mathcal{G}(u) \phi\left(u^{n-1}\right)+\varphi(u) \mathcal{G}\left(u^{n-1}\right), \\
& 2 \mathcal{G}\left(u^{n}\right)=\mathcal{G}\left(u^{n-1}\right) \phi(u)+\varphi\left(u^{n-1}\right) \mathcal{D}(u)+\mathcal{D}(u) \phi\left(u^{n-1}\right)+\varphi(u) \mathcal{D}\left(u^{n-1}\right),
\end{aligned}
$$

holds for all $u \in \mathcal{B}$ and some fixed integer $n \geq 2$. Then \mathcal{D} and \mathcal{G} are (ϕ, φ) derivations.

Theorem 4 and Corollary 1 leads to the following conjectures. So, we conclude our paper by giving the following conjectures:

Conjecture 3. Let \mathcal{R} be a semiprime ring with a suitable torsion restriction and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}, \mathcal{G}: \mathcal{R} \rightarrow \mathcal{R}$ are additive mappings satisfying the relations

$$
\begin{aligned}
& 2 \mathcal{D}\left(x^{n}\right)=\mathcal{D}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{G}(x)+\mathcal{G}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{G}\left(x^{n-1}\right) \\
& 2 \mathcal{G}\left(x^{n}\right)=\mathcal{G}\left(x^{n-1}\right) \phi(x)+\varphi\left(x^{n-1}\right) \mathcal{D}(x)+\mathcal{D}(x) \phi\left(x^{n-1}\right)+\varphi(x) \mathcal{D}\left(x^{n-1}\right)
\end{aligned}
$$

for all $x \in \mathcal{R}$ and some fixed integer $n \geq 2$. Then \mathcal{D} and \mathcal{G} are (ϕ, φ)-derivations.
Conjecture 4. Let \mathcal{R} be a semiprime ring with a suitable torsion restriction and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}, \mathcal{G}: \mathcal{R} \rightarrow \mathcal{R}$ are additive mappings such that either

$$
\begin{gather*}
\mathcal{D}\left(x^{3}\right)=\mathcal{D}\left(x^{2}\right) \phi(x)+\varphi\left(x^{2}\right) \mathcal{G}(x) \tag{33}\\
\mathcal{G}\left(x^{3}\right)=\mathcal{G}\left(x^{2}\right) \phi(x)+\varphi\left(x^{2}\right) \mathcal{D}(x) \quad \text { for all } x, y \in \mathcal{R}
\end{gather*}
$$

or

$$
\begin{gather*}
\mathcal{D}\left(x^{3}\right)=\mathcal{D}(x) \phi\left(x^{2}\right)+\varphi(x) \mathcal{G}\left(x^{2}\right) \tag{34}\\
\mathcal{G}\left(x^{3}\right)=\mathcal{G}(x) \phi\left(x^{2}\right)+\varphi(x) \mathcal{D}\left(x^{2}\right) \quad \text { for all } x, y \in \mathcal{R}
\end{gather*}
$$

Then \mathcal{D} and \mathcal{G} are (ϕ, φ)-derivations and $\mathcal{D}=\mathcal{G}$.

Conjecture 5. Let \mathcal{R} be a semiprime ring with a suitable torsion restriction and ϕ, φ be automorphisms of \mathcal{R}. Suppose $\mathcal{D}: \mathcal{R} \rightarrow \mathcal{R}$ is an additive mapping such that

$$
\mathcal{D}\left(x^{n}\right)=\sum_{j=1}^{n} \phi\left(x^{n-j}\right) \mathcal{D}(x) \varphi\left(x^{j-1}\right),
$$

holds for all $x \in \mathcal{R}$ and some fixed integer $n \geq 2$. Then \mathcal{D} is a (ϕ, φ)-derivation.

References

[1] M. Ashraf, N. Rehman, S. Ali: On Lie ideals and Jordan generalized derivations of prime rings. Indian Journal of Pure \& Applied Mathematics 34 (2) (2003) 291-294.
[2] M. Ashraf, N. Rehman: On Jordan ideals and Jordan derivations of a prime rings. Demonstratio Mathematica 37 (2) (2004) 275-284.
[3] F.F. Bonsall, J. Duncan: Complete Normed Algebras. Springer-Verlag, New York (1973).
[4] M. Brešar: Jordan derivations on semiprime rings. Proceedings of the American Mathematical Society 104 (4) (1988) 1003-1006.
[5] M. Brešar: Jordan mappings of semiprime rings. Journal of Algebra 127 (1) (1989) 218-228.
[6] M. Brešar, J. Vukman: Jordan derivations on prime rings. Bulletin of the Australian Mathematical Society 37 (3) (1988) 321-322.
[7] M. Brešar, J. Vukman: Jordan (θ, ϕ)-derivations. Glasnik Matematicki 16 (1991) 13-17.
[8] J.M. Cusack: Jordan derivations on rings. Proceedings of the American Mathematical Society 53 (2) (1975) 321-324.
[9] A. Fošner, J. Vukman: On certain functional equations related to Jordan triple (θ, ϕ)-derivations on semiprime rings. Monatshefte für Mathematik 162 (2) (2011) 157-165.
[10] I.N. Herstein: Jordan derivations of prime rings. Proceedings of the American Mathematical Society 8 (6) (1957) 1104-1110.
[11] C. K. Liu, W. K. Shiue: Generalized Jordan triple (θ, ϕ)-derivations on semiprime rings. Taiwanese Journal of Mathematics 11 (5) (2007) 1397-1406.
[12] N. Rehman, N. Širovnik, T. Bano: On certain functional equations on standard operator algebras. Mediterranean Journal of Mathematics 14 (1) (2017) 1-10.
[13] N. Rehman, T. Bano: A result on functional equations in semiprime rings and standard operator algebras. Acta Mathematica Universitatis Comenianae 85 (1) (2016) 21-28.
[14] N. Širovnik: On certain functional equation in semiprime rings and standard operator algebras. Cubo (Temuco) 16 (1) (2014) 73-80.
[15] N. Širovnik, J. Vukman: On certain functional equation in semiprime rings. In: Algebra Colloquium. World Scientific (2016) 65-70.
[16] N. Širovnik: On functional equations related to derivations in semiprime rings and standard operator algebras. Glasnik Matematički 47 (1) (2012) 95-104.
[17] J. Vukman: Some remarks on derivations in semiprime rings and standard operator algebras. Glasnik Matematički 46 (1) (2011) 43-48.
[18] J. Vukman: Identities with derivations and automorphisms on semiprime rings. International Journal of Mathematics and Mathematical Sciences 2005 (7) (2005) 1031-1038.
[19] J. Vukman: Identities related to derivations and centralizers on standard operator algebras. Taiwanese Journal of Mathematics 11 (1) (2007) 255-265.
[20] J. Vukman, I. Kosi-Ulbl: A note on derivations in semiprime rings. International Journal of Mathematics and Mathematical Sciences 2005 (20) (2005) 3347-3350.

Received: 23 February 2019
Accepted for publication: 4 December 2019
Communicated by: Eric Swartz

[^0]: 2020 MSC: 16N60, 46J10, 16W25
 Key words: Prime ring, semiprime ring, Banach algebra, Jordan derivation, (ϕ, φ)-derivation Affiliation:

 Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India
 E-mail: bilalwanikmr@gmail.com

