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Weak polynomial identities and their applications

Vesselin Drensky

Abstract. Let R be an associative algebra over a field K generated by
a vector subspace V . The polynomial f(x1, . . . , xn) of the free associative
algebra K〈x1, x2, . . .〉 is a weak polynomial identity for the pair (R, V ) if it
vanishes in R when evaluated on V . We survey results on weak polynomial
identities and on their applications to polynomial identities and central
polynomials of associative and close to them nonassociative algebras and
on the finite basis problem. We also present results on weak polynomial
identities of degree three.

1 Introduction
In what follows K will be an arbitrary field and all algebras and vector spaces will
be over K. One of our main objects will be the free associative algebra K〈X〉 =
K〈x1, x2, . . .〉 (with or without 1). Sometimes we shall use also other symbols for
its generators, e.g. x, y, yi, etc. We shall fix the characteristic of K when necessary.
Let R be an associative algebra (with or without 1) and let V be a vector subspace
of R which generates R as an algebra. The element f(x1, . . . , xn) of K〈X〉 is a
weak polynomial identity for the pair (R, V ) if

f(v1, . . . , vn) = 0 for all v1, . . . , vn ∈ V.

The set T (R, V ) of all weak polynomial identities of the pair (R, V ) is called a weak
T-ideal and is an ideal of K〈X〉 closed under all linear endomorphisms of K〈X〉.
(This means that if f(x1, . . . , xn) ∈ T (R, V ) and u1, . . . , un are linear combinations
of elements in X, then f(u1, . . . , un) ∈ T (R, V ).)

Weak polynomial identities were introduced by Razmyslov [122], [123] as a
method to attack two classical problems:
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• To find the polynomial identities of the (associative) algebra Md(K) of the
d× d matrices over K.

• To prove that for any d > 2 there exist central polynomials for Md(K).

See also the book by Razmyslov [126] for the account of his methods and results.
It is a natural question to describe the weak polynomial identities of a given

pair (R, V ) and the generating set of the weak T-ideal T (R, V ). Initially the vector
subspace V generating the algebra R was assumed to be a Lie subalgebra of the
adjoint Lie algebra R(−) of R with respect to the multiplication defined by the Lie
bracket [r1, r2] = r1r2 − r2r1, r1, r2 ∈ R (and R is an enveloping algebra of the
Lie algebra V ). Then the weak T-ideal T (R, V ) is closed under substitutions of
elements of the free Lie algebra L(X) canonically embedded in the free associative
algebra K〈X〉. Later one considered also the case when V is a subalgebra of the
Jordan algebra R(+) of R with respect to the Jordan multiplication r1 ◦ r2 =
1

2
(r1r2 + r2r1), r1, r2 ∈ R. Finally, one may consider the case when the vector

subspace V does not have any additional structure. In all these three cases one can
define varieties of pairs: varieties of Lie and Jordan pairs and varieties of arbitrary
pairs or L-varieties.

The first purpose of the present paper is to survey results on weak polynomial
identities related with their applications to polynomial identities and central poly-
nomials of associative and close to them nonassociative algebras and on the finite
basis problem. These are the main topics on Sections 2, 3, 4 and 7. In these sections
we include also related results obtained without using weak identities. In Section
5 we discuss what happens if we consider arbitrary nonassociative algebras. In
Section 6 we survey results on L-varieties with special attention on the case when
they satisfy a weak polynomial identity of degree 3.

A significant part of the paper deals with associative, Lie and Jordan algebras
satisfying polynomial identities. For a background and further reading we refer
e.g. to Drensky [32], Drensky and Formanek [34], Giambruno and Zaicev [56],
Kanel-Belov, Karasik and Rowen [76] for associative algebras, Bahturin [6] for Lie
algebras and Zhevlakov, Slinko, Shestakov and Shirshov [143] for Jordan algebras.

Besides varieties of pairs one may consider also varieties of representations of
Lie algebras and groups. This is a topic intensively developed by the school of
Plotkin in Riga. For details see e.g. [112], [113] and [141].

2 Weak polynomial identities and polynomial identities of matri-
ces

One of the most attracting and most important problems in the theory of algebras
with polynomial identities (or PI-algebras) is to find a generating system (or a
basis) of the polynomial identities of the d × d matrix algebra Md(K). In other
words, we consider the T-ideal T (Md(K)) of the polynomial identities of Md(K) (in
the language of weak polynomial identities T (Md(K)) coincides with the weak T-
ideal T (Md(K),Md(K)) of the pair (Md(K),Md(K))). We want to find a system
of polynomial identities fi(x1, . . . , xni) ∈ T (Md(K)) which generate T (Md(K))
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as a T-ideal, i.e. T (Md(K)) is the minimal ideal of K〈X〉 which contains all
fi(x1, . . . , xni

) and their substitutions fi(u1, . . . , uni
), u1, . . . , uni

∈ K〈X〉.
We shall survey some of the results for the explicit form of the polynomial

identities of M2(K) and partial results on the identities of Md(K) for any d ≥ 2.
The most important case is when the field K is of characteristic 0. Razmyslov
[122] solved this problem for 2 × 2 matrices. He considered the weak polynomial
identities of the pair (M2(K), sl2(K)), where sl2(K) is the Lie algebra of the 2× 2
traceless matrices. A typical example of a weak polynomial identity for this pair
comes from the Cayley-Hamilton theorem. If a ∈M2(K), then

a2 − tr(a)a+ det(a)e = 0, e = e2 =

(
1 0
0 1

)
.

If a ∈ sl2(K), then tr(a) = 0 and a2 = −det(a)e. Hence a2 is a scalar matrix and

[a2, b] = 0 for all b ∈M2(K).

Hence
[x2, y] (1)

is a weak polynomial identity for the pair (M2(K), sl2(K)). The main results in
[122] are the following.

Theorem 1. Let char(K) = 0.
(i) The weak polynomial identities of the pair (M2(K), sl2(K)) follow from the

weak identity [x2, y] (allowing substitutions in the variables by Lie elements).
(ii) The polynomial identities of the Lie algebra sl2(K) follow from its identities

of fifth degree.
(iii) The polynomial identities of M2(K) follow from nine identities of degree

≤ 6.
In both cases (ii) and (iii) the identities are explicitly given.

Depending on the field K the bases of the polynomial identities of the algebras
M2(K) and sl2(K) are known for fields K of any characteristic with one exception.
The results are due to the work of many people starting from Wagner [142] and
continuing nowadays.

In 1936 Wagner [142] showed that the algebra M2(K) satisfies the polynomial
identity

[[x1, x2]2, x3]. (2)

The proof of (2) is similar to the proof of (1) because the trace of the commutator
of two matrices is equal to 0. In 1943 Hall [60] showed that if a noncommutative di-
vision algebra satisfies the polynomial identity (2) then it is generalized quaternion,
i.e. four-dimensional over its center. (Since the algebra M2(R) and the quaternion
algebra have the same polynomial identities for a long period the identity (2) was
called the Hall identity. We shall use the name Wagner-Hall identity.) Wagner [142]
showed also an explicit polynomial identity for the algebra Md(K) of d×d matrices
for any d. Later his idea was further developed to produce polynomial identities
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for Md(K) which are simpler than the original ones and are known as identities of
algebraicity, see Theorem 2 below. Recall that the standard polynomial of degree
d and the Capelli polynomial in d alternating variables are, respectively,

sd(x1, . . . , xd) =
∑
σ∈Sd

sign(σ)xσ(1) · · ·xσ(d),

cd(x1, . . . , xd; y1, . . . , yd−1) =
∑
σ∈Sd

sign(σ)xσ(1)y1xσ(2)y2 · · · yd−1xσ(d),

where Sd is the symmetric group acting on the symbols 1, 2, . . . , d. Both polynomi-
als vanish when x1, . . . , xd are replaced by linearly dependent elements r1, . . . , rd
in an algebra R.

Theorem 2. The algebra Md(K) satisfies the polynomial identities

sd([x, y], [x2, y], . . . , [xd, y]), (3)

cd+1(1, x, x2, . . . , xd; y1, . . . , yd) =
∑

σ∈Sd+1

sign(σ)xσ(0)y1x
σ(1) · · · ydxσ(d), (4)

where Sd+1 acts on the symbols 0, 1, 2, . . . , d.

Both identities follow from the Cayley-Hamilton theorem. If a ∈ Md(K), then
it satisfies its characteristic equation

fa(a) = ad + α1a
d−1 + · · ·+ αd−1a+ αde = 0 (5)

for suitable α1, . . . , αd−1, αd ∈ K. Hence the matrices e = ed, a, a
2, . . . , ad are

linearly dependent which proves the identity (4). If we take the commutator of the
characteristic equation (5) of a with an arbitrary b ∈Md(K), we shall obtain

[fa(a), b] = [ad, b] + α1[ad−1, b] + · · ·+ αd−1[a, b] = 0,

i.e. the commutators [ad, b], [ad−1, b], . . . , [a, b] are linearly dependent, which gives
the identity (3).

In 1950 Amitsur and Levitzki [3] proved their famous theorem.

Theorem 3. The matrix algebra Md(K) satisfies the standard identity

s2d(x1, . . . , x2d)

of degree 2d. Every identity of degree ≤ 2d for Md(K) is equal to the standard
identity up to a multiplicative constant. The only exceptions are the cases when
d = 1, 2 and K = F2 is the field with two elements because M1(F2) = F2 satisfies
the identity x2 − x and M2(F2) satisfies a nonhomogeneous identity of degree four
in three variables.

In the same 1950 another important paper by Specht [133] appeared where he
stated a problem which was one of the main driving forces in the theory for more
than 30 years.
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Problem 1. Is it true that the polynomial identities of any PI-algebra R follow
from a finite number?

The Specht problem is a partial case for associative algebras for the finite basis
problem in universal algebra (stated for groups by Neumann [106] in 1937). But
its influence was so big that the name Specht problem nowadays is used also for
groups and nonassociative algebras. In particular, a variety of algebras satisfies
the Specht property if it and every of its proper subvarieties can be defined by a
finite number of identities.

Let us go back to 2 × 2 matrices. After Razmyslov established Theorem 1
there were several attempts to minimize and simplify the bases of the polynomial
identities of M2(K) and sl2(K), char(K) = 0. Filippov [46] reduced the identities
of sl2(K) found by Razmyslov to one identity:

Theorem 4. Over a field K of characteristic 0 the polynomial identities of the Lie
algebra sl2(K) follow from the identity[[

[x2, x3], [x4, x1]
]
, x1

]
+
[[

[x2, x1], [x3, x1]
]
, x4

]
. (6)

Using a computer, in the 1970s Rosset, see [95], showed that the polynomial
identities of degree 5 for M2(K), char(K) = 0, follow from the standard identity
s4(x1, x2, x3, x4) and the Wagner-Hall identity (2). Bui [13] reduced the basis of
Razmyslov from Theorem 1 to s4(x1, x2, x3, x4), (2) and two more identities of
degree 6. Finally, the author [28] found a minimal basis of the identities of M2(K),
char(K) = 0. The proof is based on representation theory of the symmetric and
the general linear groups. It uses the result of Razmyslov that the polynomial
identities of M2(K) follow from those of degree ≤ 6 but does not use the explicit
form of the nine identities of the basis of Razmyslov.

Theorem 5. Over a field K of characteristic 0 the polynomial identities of the
algebra M2(K) follow from the identities

s4(x1, x2, x3, x4) and
[
[x1, x2]2, x1

]
.

In the same paper [28] the author obtained the following basis of the polynomial
identities of the Lie algebra sl2(K), char(K) = 0:∑

σ∈S3

sign(σ)[xσ(1), x1, x1, xσ(2), xσ(3)]

and the Lie standard identity

x1s4(ad(x1), ad(x2), ad(x3), ad(x4)) =
∑
σ∈S3

sign(σ)[x1, xσ(1), xσ(2), xσ(3), xσ(4)].

(The Lie brackets are left normed: [u1, . . . , un−1, un] = [[u1, . . . , un−1], un], n ≥ 3,
and u1ad(u2) = [u1, u2].)

Razmyslov had a conjecture that for d > 2 the polynomial identities of Md(K),
char(K) = 0, follow from the standard identity s2d(x1, . . . , x2d) and the identity of
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algebraicity (3) in Theorem 2. The result of Theorem 5 gives that this conjecture
holds for d = 2. The problem for the description of the bases of the polynomial iden-
tities of Md(K), char(K) = 0, d > 2, is still open even for d = 3. Leron [95] proved
that for d > 2 all polynomial identities of degree 2d+ 1 for Md(K) follow from the
standard identity s2d(x1, . . . , x2d). For d = 3 Drensky and Kasparian [36] made one
more step and showed that the same holds for the polynomial identities of degree
8. The computations were done by hand, without using any computers, and were
based on representation theory of the general linear group. Combining theoretical
results (representation theory of the general linear group again) and computer cal-
culations, Benanti, Demmel, Drensky and Koev [12] showed that the identities of
degree 2d+ 2 for Md(K) follow from the standard identity s2d(x1, . . . , x2d) also for
d = 4, 5. Drensky and Kasparian [35] showed that for d ≥ 3 the identity (4) does
not follow from s2d(x1, . . . , x2d) and (3). Okhitin [109] described all polynomial
identities for M3(K) of degree 9 in two variables and found one which does not
follow from s6(x1, . . . , x6) and (4). Domokos [21] exhibited another three new poly-
nomial identities for M3(K) which are of degree 9 and in three variables. See [12]
for a survey on other computational results on polynomial identities of matrices in
characteristic 0.

The picture and the methods for the polynomial identities of matrices in positive
characteristic are quite different from the case of characteristic 0. If in characteristic
0 many of the investigations are based on representation theory of the symmetric
and the general linear group, the methods in positive characteristic depend also on
the number of elements of the field. When K is a finite field then one uses a lot
of structure ring theory and for infinite fields combinatorial methods are combined
with characteristic free invariant theory.

In 1964 Oates and Powell [107] proved that the variety generated by a finite
group is finitely based and has a finite number of subvarieties. In 1973 the methods
of [107] were transferred successfully by Kruse [91] and L’vov [98] and they estab-
lished the result for finite associative rings and for finite dimensional associative
algebras over finite fields. The study of polynomial identities of (not only associa-
tive) finite rings and algebras was very popular in the theory of PI-algebras in the
1970s and 1980s.

Theorem 6. The polynomial identities of every finite associative ring and of every
finite dimensional associative algebra over a finite field follow from a finite number
of identities.The variety generated by such a ring or an algebra has a finite number
of subvarieties which also are generated by a finite object.

In the special case when K = Fq is a finite field the polynomial identities of
M1(Fq) = Fq follow from the identity xq − x. The proof uses the theorem of
Jacobson, see e.g. [62, Theorem 3.1.2], that if for any element a in a ring R there
exists an integer n = n(a) > 1 such that an = a, then R is commutative. The
identities of M2(Fq) were described by Mal’tsev and Kuz’min [102].

Theorem 7. The following polynomial identities form a basis of the polynomial
identities of M2(Fq)

(x− xq)(y − yq)(1− [x, y]q−1),
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(x− xq) ◦ (y − yq)−
(
(x− xq) ◦ (y − yq)

)q
.

(In the case of fields of characteristic 2 we assume that u1 ◦ u2 = u1u2 + u2u1.)

Later Genov [52] and Genov and Siderov [53], [54] found, respectively, bases of
the polynomial identities of M3(Fq) and M4(Fq).

Bakhturin and Ol’shanskĭı [7] developed further the methods of Oates and Pow-
ell [107], Kruse [91] and L’vov [98] involving also quasivarieties and proved ana-
logues for finite Lie rings and finite dimensional Lie algebras over finite fields. Then
Semenov [132] found a basis of the identities of sl2(Fq), char(Fq) > 3 (and to the
best of our knowledge the case char(Fq) = 3 is still open):

Theorem 8. The following polynomial identities form a basis of the polynomial
identities of sl2(Fq), char(Fq) > 3:

[x, y](1− adq
2−1(x)− adq−1(y) + adq

2−1(x)adq−1(y))

+ [x, y](adq
2

(x)− ad(x))adq−2([x, y])(adq
2

(y)− ad(y))

− y((adq
2

(x)− ad(x))ad(x))q(adq
2−2(y)− adq−2(y)),

[y, x, x](adq
2

(x)− ad(x)).

When char(K) = 2 the algebra sl2(K) is nilpotent and the Lie algebra gl2(K) =

M
(−)
2 (K) of all 2× 2 matrices satisfies the center-by-metabelian identity

[[[x1, x2], [x3, x4]], x5].

The basis of the polynomial identities of gl2(Fq), q = 2m, was found by the author
[26]:

Theorem 9. The following polynomial identities form a basis of the polynomial
identities of gl2(Fq), char(Fq) = 2:[[

[x1, x2], [x3, x4]
]
, x5

]
,

[
[x1, x2], [x3, x4]

]
+
[
[x1, x3], [x2, x4]

]
+
[
[x1, x4], [x2, x3]

]
.

(This identity is equal to the standard identity s4(x1, x2, x3, x4) which in charac-
teristic 2 can be expressed as a Lie element.)[[

[x1, x2], x3
]
, [x1, x2]

]
,

[
[x1, x2]adq−1(x1), [x1, x3]

]
−
[
[x1, x2], [x1, x3]

]
,[

[x1, x2], x3(1 + adq−1(x1))(1 + adq−1(x2))(1 + adq−1(x3))
]
− [x1, x2]adq(x3).
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In characteristic 2 there is another simple three-dimensional Lie algebra which
is an analogue of the Lie algebra R3 equipped with the cross product (or the vector
multiplication). It would be interesting to find a basis of the polynomial identities
of this Lie algebra.

Finally, we shall survey the results for the polynomial identities of M2(K) and
sl2(K) when K is an infinite field of positive characteristic. Partial results were ob-
tained by Koshlukov [89] and then Colombo and Koshlukov [15] obtained a minimal
basis of the identities of M2(K) when K is an infinite field of odd characteristic.

Theorem 10. Let K be an infinite field of characteristic p > 2. If char(K) > 3,
then the polynomial identities of M2(K) follow from the identities

s4(x1, x2, x3, x4) and
[
[x1, x2] ◦ [x3, x4], x5

]
.

If char(K) = 3, then one has to add the polynomial identity

2[x1, x2] ◦ (u ◦ v)− [x1, u, v, x2]− [x1, v, u, x2] + [x2, u, x1, v] + [x2, v, x1, u].

The case for the polynomial identities of M2(K) over an infinite field of char-
acteristic 2 is still open. In virtue of the result for the polynomial identities of
M2(K) considered as a Lie algebra, see Theorem 12, very probably the following
conjecture is true.

Conjecture 1. The polynomial identities of M2(K) over an infinite field of charac-
teristic 2 do not follow from a finite number.

The polynomial identities of the Lie algebra sl2(K) over an infinite field of odd
characteristic were described by Vasilovskij [135].

Theorem 11. When K is an infinite field of characteristic p > 2 the polynomial
identities of the Lie algebra sl2(K) follow from the identity of Filippov (6).

As in the case of finite fields of characteristic 2 instead of the algebra sl2(K)
which is nilpotent of class 2 one considers the algebra gl2(K). In 1970 Vaughan-
Lee [137] proved that this algebra does not have a finite basis of its polynomial
identities. In his Ph.D. Thesis from 1979 [25] the author found an explicit infinite
basis of these identities but the result was not published in a journal paper. Later
the same result was obtained independently by Lopatin [97].

Theorem 12. Let K be an infinite field of characteristic 2. Then the polynomial
identities of the Lie algebra gl2(K) do not have a finite basis and follow from the
identities [[

[x1, x2], [x3, x4]
]
, x5

]
,[

[x1, x2, x3, . . . , xn], [x1, x2]
]
, n = 3, 4, . . . ,

[[x4, x1, x5, . . . , xn], [x2, x3]] + [[x3, x1, x5, . . . , xn], [x4, x2]]

+ [[x2, x1, x5, . . . , xn], [x3, x4]], n = 4, 5, . . . .
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Vaughan-Lee [137] proved that a basis of the identities of gl2(K) consists of
the center-by-metabelian identity, the identities [[x1, x2, x3, . . . , xn], [x1, x2]] and
multilinear identities which do not have consequences of higher degree modulo the
center-by-metabelian identity. The author [25] used a theorem of Kuz’min [93] to
find these multilinear identities. Lopatin [97] described these multilinear identities
with direct computations modulo the center-by-metabelian identity.

As in the case of finite fields of characteristic 2 it is interesting to find the
polynomial identities in the three-dimensional analogue of R3.

Conjecture 2. For an infinite field K of characteristic 2 the polynomial identities
of the three-dimensional simple Lie algebra K3 equipped with the cross product
do not follow from a finite number.

We shall conclude this section with some comments on the solution of different
versions of the Specht problem for associative and Lie algebras. For further reading
we refer to the book by Kanel-Belov, Karasik and Rowen [76].

In 1987 Kemer [81], see his book [83] for an account, solved into affirmative the
original Specht problem [133] for algebras over a field of characteristic 0. Then he
proved a weaker version of the Specht problem for finitely generated algebras over
an infinite field [82].

Theorem 13. (i) Every T-ideal of the free associative algebra K〈X〉 over a field of
characteristic 0 has a finite basis.

(ii) The polynomial identities in d variables in every T-ideal of the finitely
generated free associative algebra K〈x1, . . . , xd〉 over an infinite field follow from a
finite number.

Later Theorem 13 (ii) was generalized by Belov [10] for T-ideals of finitely
generated associative algebras over commutative associative noetherian rings, see
also Belov-Kanel, Rowen and Vishne [11] for detailed exposition.

On the other hand, the Specht problem has a negative solution over fields of
positive characteristic. The first counterexamples were given in 1999 by Belov [8],
[9].

Theorem 14. Over an arbitrary field of positive characteristic there are T-ideals
which do not have finite bases of their polynomial identities.

In the same 1999 Grishin [57], [58] and in 2002 Gupta and Krasilnikov [59]
constructed simple counterexamples to the Specht problem in characteristic 2.

Theorem 15. Let K be a field of characteristic 2. Then the following systems of
polynomial identities do not follow from a finite number:

(i) The system of Grishin:

y41z
4
1x

2
1 · · ·x2nz42y42y41z41x2n+1 · · ·x22nz42y42 , n = 0, 1, 2, . . . ;

(ii) The system of Gupta and Krasilnikov:

[x, y2]x21 · · ·x2n[x, y2]3, n = 0, 1, 2, . . . .
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The example of Grishin in Theorem 15 gives that the algebras satisfying his
polynomial identities satisfy the polynomial identity x32 and hence are nil of
bounded index. By the theorem of Levitzki [96] such algebras are locally nilpotent
(i.e. finitely generated algebras are nilpotent).

The Specht problem is still open for Lie algebras over a field of characteristic
0. In the positive direction we shall state the following result of Il’tyakov [66], see
also [67] for a more detailed exposition.

Theorem 16. (i) If L is a finitely generated Lie algebra over a field of characteristic
0 and if L has an enveloping algebra R which is a PI-algebra, then every pair
satisfying all weak polynomial identities of the pair (R,L) has a finite basis of its
weak identities.

(ii) If L is a finitely generated Lie algebra and its algebra of multiplications
ad(L) is an (associative) PI-algebra, then the variety of Lie algebras generated by
L satisfies the Specht property. In particular, this holds when the Lie algebra L is
finite dimensional.

3 Weak polynomial identities and central polynomials
Definition 1. The polynomial c(x1, . . . , xn) ∈ K〈X〉 is a central polynomial for the
associative algebra R, if c(x1, . . . , xn) is not a polynomial identity for R and for all
r1, . . . , rn ∈ R it holds that c(r1, . . . , rn) belongs to the center of R.

An example of a central polynomial for the algebra M2(K) of 2× 2 matrices is

c(x1, x2) = [x1, x2]2.

For the proof the Wagner-Hall identity (2) gives that c(x1, x2) has only central
values when evaluated on M2(K) and it is easy to see that it is not a polyno-
mial identity because there are commutators [a1, a2], a1, a2 ∈ M2(K) which have
nonzero determinants.

In a talk given in 1956 Kaplansky [77] (see also the revised version [78] from
1970) asked several problems which motivated significant research activity. One of
the problems is for the existence of central polynomials for the d×d matrix algebra
Md(K), d > 2.

Latyshev and Shmelkin [94] constructed a central (clearly non-homogeneous)
polynomial in one variable for the matrix algebra Md(Fq) over a finite field Fq.
The first central polynomials over an arbitrary ground field were constructed by
Formanek [47] and Razmyslov [123] and this gave rise to a serious revision of the
theory of algebras with polynomial identities, see e.g. the books by Procesi [121],
Jacobson [74], Rowen [131], Formanek [51], Drensky and Formanek [34], Giambruno
and Zaicev [56]. In particular, important theorems on PI-algebras were established
or simplified using central polynomials. Later Kharchenko [84] gave a short proof
for the existence of central polynomials for Md(K) using classical results of Amitsur
[1], [2].

The following theorem of Formanek [47] gives the existence of central polyno-
mials for Md(K) over an arbitrary field K.
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Theorem 17. For any d ≥ 1 and any field K the algebra Md(K) has a central
polynomial of degree d2.

The central polynomials of Formanek are obtained with the following construc-
tion. Let K[u1, . . . , ud+1] be the polynomial algebra in d+ 1 commuting variables.
We define a linear mapping θ (not an algebra homomorphism) from K[u1, . . . , ud+1]
to the free algebra K〈x, y1, . . . , yd〉 of rank d+ 1 in the following way. If

g(u1, . . . , ud+1) =
∑

αnu
n1
1 · · ·u

nd+1

d+1 , αn ∈ K,

then
θ(g)(x, y1, . . . , yd) =

∑
αax

n1y1x
n2y2x

n3y3 · · ·xndydx
nd+1 .

Let
g(u1, . . . , ud+1) =

∏
2≤i≤d

(u1 − ui)(ud+1 − ui)
∏

2≤i<j≤d

(ui − uj)2.

Then the polynomial of the free associative algebra K〈x, y1, . . . , yd〉

c(x, y1, . . . , yd) = θ(g)(x, y1, . . . , yd) + θ(g)(x, y2, . . . , yd, y1)

+ · · ·+ θ(g)(x, yd, y1, . . . , yd−1)

is the central polynomial for the matrix algebra Md(K) from Theorem 17.
The approach of Razmyslov [123] is based on weak polynomial identities. The

key role plays the following map called the Razmyslov transform. Let the polyno-
mial f(x, y1, . . . , yn) ∈ K〈x, y1, . . . , yn〉 be linear (i.e. homogeneous of degree 1) in
the variable x. We write f in the form

f =
∑

gixhi, gi, hi ∈ K〈y1, . . . , yn〉,

and define the Razmyslov transform of f as

f∗(x, y1, . . . , yn) =
∑

hixgi.

For example, if

f(x, y1, y2) = [xy1 + y1x, y2] = 1 · x · y1y2 + y1 · x · y2 − y2 · x · y1 − y2y1 · x · 1,

then

f∗(x, y1, y2) = y1y2 · x · 1 + y2 · x · y1 − y1 · x · y2 − 1 · x · y2y1
= [y2, x]y1 + y1[y2, x] = 2[y2, x] ◦ y1.

Now the central polynomials are obtained using the following lemma.

Lemma 1. Let the polynomial

f(x, y1, . . . , yn) ∈ K〈x, y1, . . . , yn〉

be homogeneous of first degree in x and let f∗(x, y1, . . . , yn) be the polynomial
obtained by the Razmyslov transform. Then:
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(i) f(x, y1, . . . , yn) is a polynomial identity for the matrix algebra Md(K) if and
only if f∗(x, y1, . . . , yn) is a polynomial identity.

(ii) f∗(x, y1, . . . , yn) is a central polynomial for the algebra Md(K) if and only if
f(x, y1, . . . , yn) is a weak polynomial identity for the pair (Md(K), sld(K))
and f([x, y0], y1, . . . , yn) is a polynomial identity for Md(K).

Example 1. If we linearize the weak polynomial identity [x2, y] for the pair
(M2(K), sl2(K)), we shall obtain the weak polynomial identity [x ◦ y1, y]. Then we
replace y1 by [y1, y2] and obtain the polynomial

f(x, y1, y2, y3) = [x ◦ [y1, y2], y3].

Now f([x, y0], y1, y2, y3) =
[
[x, y0] ◦ [y1, y2], y3

]
is a polynomial identity for M2(K)

and hence
f∗(x, y1, y2, y3) = [x ◦ [y1, y2], y3] = [y3, x] ◦ [y1, y2]

is a central polynomial for M2(K).

The central polynomials of Razmyslov [123] were obtained using the Capelli
polynomial.

Theorem 18. Let

f = f(x, z1, . . . , z2d2−2, y1, . . . , yd2−1)

= cd2(x, [z1, z2], . . . , [z2d2−3, z2d2−2]; y1, . . . , yd2−1)

where cn(x1, . . . , xn; y1, . . . , yn−1) is the Capelli polynomial. The Razmyslov trans-
form applied to f gives a multilinear central polynomial for Md(K) of degree 3d2−2
over any field K.

Halpin [61] used the Cayley-Hamilton theorem to construct another weak poly-
nomial identity for the pair (Md(K), sld(K)). The matrix a ∈ Md(K) satisfies its
characteristic equation

ad + α1a
d−1 + · · ·+ αd−1a1 + αde = 0

and α1 = −tr(a). If a ∈ sld(K), then tr(a) = 0 and ad, ad−2, ad−3, . . . , a, e are
linearly dependent. Hence the Capelli identity

f(x, y1, . . . , yd−1) = cd(1, x, x
2, . . . , xd−2, xd; y1, . . . , yd−1)

is a weak polynomial identity. It is of degree
1

2
(d2−d+ 2) in x and it is easy to see

that it is not a polynomial identity. The complete linearization of f(x, y1, . . . , yd−1)

in x gives a polynomial g(x, z1, . . . , zk; y1, . . . , yd−1), k =
1

2
(d − 1)d. As in Exam-

ple 1, g(x, [z1, z2], . . . , [z2k−1, z2k]; y1, . . . , yd−1) is a weak polynomial identity of
degree d2 which becomes a polynomial identity when x is replaced by a commuta-
tor. Applying Lemma 1 we obtain a central polynomial of degree d2.
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Hence both methods of Formanek and Razmyslov produce central polynomials
for Md(K) of degree d2. It is easy to see that the minimal degree of the central
polynomials for M1(K) = K and M2(K) is, respectively, equal to 1 and 4. There
was a conjecture that the minimal degree of the central polynomials for Md(K) is
d2. For d = 3 Drensky and Azniv Kasparian [37] proved that the minimal degree
of the central polynomials is 8 (with computations by hand, without computers).
Formanek [51] stated the following conjecture.

Conjecture 3. The minimal degree of the central polynomials for Md(K) over a

field K of characteristic 0 is equal to
1

2
(d2 + 3d− 2).

Drensky and Piacentini-Cattaneo [40] constructed a central polynomial of de-
gree 13 for the algebra M4(K) (but we still do not know whether M4(K) has central
polynomials of lower degree). Later Drensky [31] extended this construction to cen-
tral polynomials of degree (d−1)2+4 for all d > 2 (but (d−1)2+4 > (d2+3d−2)/2
for d > 4).

In all examples above the degree of the weak polynomial identity is lower than
the degree of the central polynomial produced by the method of Razmyslov and
this is a big advantage from computational point of view. Starting with the weak
polynomial identity of degree 3 in Example 1 we obtain a central polynomial of
degree 4. Drensky and Rashkova [41] described the weak polynomial identities of
degree 6 for the pair (M3(K), sl3(K)) and one of them produced a central poly-
nomial of degree 8, as in [37]. The central polynomial of degree 13 for M4(K) in
[40] was obtained from a weak polynomial identity of degree 9. The results in [41]
and [40] were obtained as a combination of computer search and representation
theory of the general linear group. For the central polynomial of degree (d−1)2 +4
for Md(K), d > 2 in [31] the author used a weak polynomial identity of degree
1

2
(d2 − d+ 6) which was similar to those in [41] and [40].

Other central polynomials with different additional properties were constructed
by several authors. Confirming a conjecture of Regev [130] Formanek [49] showed
that a polynomial in two sets of d2 skew-symmetric variables is a central polynomial
for Md(F ). The existence of such a polynomial has important consequences for the
study of the sequence of cocharacters of matrices, see [48]. Giambruno and Valenti
[55] described other central polynomials with a similar property.

4 Weak polynomial identities and Jordan algebras
Given an associative algebra R over a field K of characteristic different from 2, we
shall equip it with the structure of Jordan algebra (denoted by R(+)) with respect

to the Jordan multiplication r1 ◦ r2 =
1

2
(r1r2 + r2r1). Considering the applications

of weak polynomial identities to Jordan algebras, most of the investigations concern
two algebras. One of them is the Jordan algebra Hd(K) of the symmetric d × d
matrices. The other algebra is the Jordan algebra of a nondegenerate symmetric
bilinear form of the d-dimensional vector space Vd, d = 2, 3, . . . ,∞. When the field
K is algebraically closed all nondegenerate symmetric bilinear forms are equivalent.
In the general case Vd may have several nonequivalent nondegenerate symmetric
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bilinear forms. This implies that there are several nonisomorphic Jordan algebras
associated with the forms. When the field K is infinite, all these algebras have the
same polynomial identities. We shall fix one of the forms of Vd and shall denote
the corresponding Jordan algebra by Bd. As a vector space Bd is the direct sum
of K and Vd. The multiplication of Bd is defined by

(α1 + a1)(α2 + a2) = (α1α2 + 〈a1, a2〉) + (α1a2 + α2a1),

where α1, α2 ∈ K, a1, a2 ∈ Vd and 〈a1, a2〉 is the value of the nondegenerate
symmetric bilinear form of Vd. The algebra Bd is a subalgebra of the Clifford
algebra Cd = C(Vd) on the vector space Vd considered as a Jordan algebra. Recall
that if the vector space Vd has a basis {v1, . . . , vd}, then Cd is the unitary associative
algebra generated by {v1, . . . , vd} with defining relations

vi ◦ vj = 〈vi, vj〉, 1 ≤ i, j ≤ d.

As a vector space Cd has a basis consisting of all products

vi1 · · · vin , 1 ≤ i1 < · · · < in ≤ d.

Below we shall survey some results on the bases of the weak and ordinary
polynomial identities of H2(K) and Bd. For more details and additional results we
refer to the corresponding papers and the references there.

The Dniester Notebook [20] is one of the main sources of open problems in the
theory of polynomial identities of Jordan algebras. In [20, Problem 2.96] Slinko
asked the following problem:

Problem 2. Find a basis of the weak identities of the pair (M2(K), H2(K)). Do
they all follow from the standard identity s4(x1, x2, x3, x4)?

The answer was given by the author in [29].

Theorem 19. When K is a field of characteristic zero all weak polynomial identities
of the pair (M2(K), H2(K)) follow (as Jordan consequences) from the standard
identity s4(x1, x2, x3, x4) and the metabelian identity [[x1, x2], [x3, x4]].

Several problems were stated by Shestakov [20, Problems 2.126 and 2.127].

Problem 3. (i) Find a basis of identities of the Jordan algebraBd, d = 2, 3, . . . ,∞,
of a bilinear form over an infinite field. Does this algebra generate a Specht
variety?

(ii) Are the varieties generated by the Jordan algebras Hd(K) and M
(+)
d (K)

finitely based or Specht?

The answer of the first part of Problem 3 (i) was given by Vasilovskij [136].
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Theorem 20. Let K be an infinite field of characteristic different from 2. If
char(K) 6= 3, 5, 7, then the polynomial identities of the algebra B∞ follow from
the identities

([x, y]2, z, t) and
∑
σ∈S3

sign(σ)(xσ(1), (xσ(2), x, xσ(3)), x).

For the basis of the identities of the algebra Bd, d <∞, one has to add the identities∑
σ∈Sd+1

sign(σ)(xσ(1), y1, xσ(2), . . . , yd, xσ(d+1)),

∑
σ∈Sd+1

sign(σ)(xσ(1), y1, xσ(2), . . . , yd−1, xσ(d))(yd, xσ(d+1), yd+1).

When char(K) = 3, 5, 7 additional explicit identities are given to complete the
basis.

Here the multiplications are in the free Jordan algebra and

(x, y, z) = (x, y)z − x(yz)

is the associator. The square of the commutator [x, y]2 can be expressed as a
Jordan element because

[x, y]2 = 4
(

(x ◦ x) ◦ (y ◦ y) + (x ◦ y) ◦ (x ◦ y)−
(
(x ◦ x) ◦ y

)
◦ y − ((y ◦ y) ◦ x) ◦ x

)
in the free associative algebra.

The second part of Problem 3 (i) was solved into affirmative for unitary Jordan
algebras over a field of characteristic 0. Il’tyakov [65] proved that the subvarieties
of the variety of Jordan algebras var(Bd) generated by Bd, d < ∞, and var(Bd)
itself have finite bases of their identities. Koshlukov [88] showed that the T-ideals
containing the T-ideal of the identities of B∞ satisfy the ascending chain condition
which in combination with the basis of B∞ found by Vasilovskij [136] establishes
the Specht property of T (B∞). The result of Koshlukov uses the description of
the relatively free algebra F (var(B∞)) = J(X)/T (B∞) given by the author of the
present paper in [30] in the language of representation theory of the symmetric and
the general linear groups.

Theorem 21. Let K be a field of characteristic zero. Then every T-ideal of the
free unitary Jordan algebra J(X) containing the polynomial identities of B∞ is
generated by a finite number of identities.

Later Drensky and Koshlukov [39] found a complete description, with explicitly
given polynomial identities, of the subvarieties of the variety of unitary algebras
generated by B∞.

The answer to Problem 3 (ii) in the case of characteristic 0 follows from the
following theorem of Vajs and Zel’manov [134].
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Theorem 22. Let K be a field of characteristic zero. Then every variety generated
by a finitely generated Jordan algebra satisfies the Specht property.

Medvedev [104] established an analogue for Jordan algebras of the results of
Kruse [91] and L’vov [98] for finite associative rings and algebras.

Theorem 23. Let Φ be a finite commutative associative ring containing 1
2 . Then

the polynomial identities of every finite Jordan Φ-algebra follow from a finite num-
ber. The variety generated by the algebra has a finite number of subvarieties which
are generated by finite algebras.

A similar theorem was established by L’vov [100] for finite alternative rings and
algebras.

In his Ph.D. Thesis [68], see also [69], Isaev found a basis of the polynomial
identities of the algebras Bd and B∞ over a finite field Fq of characteristic different
from 2.

Theorem 24. Let the finite field Fq be of characteristic p > 2. Then the polynomial
identities

([x, y]2, y, z), ((x− xq)(y − yq), z, t),
(x− xq)(y − yq)−

(
(x− xq)(y − yq)

)q
,

(x1, x2, x3)(y1, y2, y3)−
(
(x1, x2, x3)(y1, y2, y3)

)q
form a basis of the identities of the algebra B∞.

Isaev [68], [69] found also the explicit form of the polynomial identities of the
algebras Bd over Fq, char(Fq) > 2. It is interesting that for each d < ∞ there
are two nonisomorphic algebras Bd which have different systems of polynomial
identities.

5 Algebras far from associative
Every variety generated by a finite associative, Lie and Jordan algebra satisfies the
finite basis property and has a finite number of subvarieties also generated by finite
algebras. One may expect that the same is true for any finite nonassociative ring
or algebra. But Polin [115] gave an example of a finite dimensional algebra over
a finite field which does not have a finite basis of its polynomial identities. L’vov
[99] gave another simple counterexample:

Theorem 25. Let K be an arbitrary field and let the matrix algebra Md(K) act
canonically from the right on the d-dimensional vector space Vd. Consider the
algebra Ad = Vd +Md(K) with multiplication defined by

(v1 + a1)(v2 + a2) = v1a2, v1, v2 ∈ Vd, a1, a2 ∈Md(K).

(i) The algebra A2 does not have a finite basis of its polynomial identities.

(ii) The variety var(A3) generated by the algebra A3 has an infinite strictly de-
scending chain of subvarieties whose intersection coincides with the variety
var(A2).
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The simplest example in this direction is due to Mal’tsev and Parfenov [103] in
characteristic 0 and Isaev and Kislitsin [72] over an arbitrary field. The approach
in [72] is based on weak polynomial identities.

Theorem 26. Let R = V2 + T2(K) be the subalgebra of the algebra A2 = V2 +
M2(K) from Theorem 25, where T2(K) is the algebra of 2×2 upper triangular ma-
trices. Then the algebra R does not have a finite basis of its polynomial identities.

(i) When the field K is infinite, the basis of the identities of R consists of

x1(x2x3) and x1[x2, x3]y1 · · · yn[x4, x5], n = 0, 1, 2, . . . .

(ii) Over a finite field K = Fq the basis of the identities of R consists of the
identities in (i) and the identities

x1(x2 − xq2)(x3 − xq3), x1[x2, x3](x4 − xq4), x1(x2 − xq2)[x3, x4].

(iii) Over an arbitrary field K every finite dimensional algebra which contains R
as a subalgebra does not have a finite basis of its polynomial identities.

Except the first identity in Theorem 26 the parentheses are left normed, e.g.

x1x
q
2 = ((x1 x2) · · · )x2︸ ︷︷ ︸

q times

and x1[x2, x3] = (x1x2)x3 − (x1x3)x2.

The subalgebras of the algebra A2 = V2 +M2(K) have other interesting prop-
erties. Let V2 have a basis {vi | i = 1, 2} and the matrix units ejk ∈M2(K) act on
the basis vectors of V2 by the rule viejk = δijvk, i, j, k = 1, 2, where δij is the Kro-
necker symbol. Let R1 and R2 be the subalgebras of A2 with bases {v1, v2, e11, e12}
and {v1, v2 + e11, e21}, respectively. Both algebras satisfy the polynomial identity
x1(x2x3). The following theorem was established by Isaev [71].

Theorem 27. Let K be a field of characteristic zero. Then the varieties of algebras
R1 = var(R1) and R2 = var(R2) generated, respectively, by the algebras R1 and R2

defined above satisfy the Specht property. The bases of the polynomial identities
of the varieties R1 and R2 consist of the identity x1(x2x3) and

x1[x2, x3]x4 for R1;

x1[x2, x3]x4 − x4[x2, x3]x1 and s3(x1, x2, x3) for R2.

The basis of the identities of the union R1 ∪R2 = var(R1 ⊕R2) consists of

x1(x2x3), x1[x2, x3]x4 − x4[x2, x3]x1, x1s3(x2, x3, x4), x1x2[x3, x4]x5,

x1[x2, x3]y1 · · · yn[x4, x5], n = 0, 1, 2, . . . .

The variety R1 ∪R2 does not have a finite basis of its identities.
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Dorofeev [23] proved that if two varieties of algebras M1 and M2 satisfy the
descending chain condition for their subvarieties, the same holds for their union
M1 ∪M2. Here M1 ∪M2 is the minimal variety containing both M1 and M2.
Hence the variety R1 ∪R2 is infinitely based but all of its proper subvarieties have
finite bases of identities modulo the identities of R1 ∪R2.

Another result of Isaev and Kislitsin [73] related with the algebra A2 = V2 +
M2(K) gives an example of a four-dimensional algebra over a finite field without
finite basis of its polynomial identities. It would be interesting to see whether there
are three-dimensional algebras with this property.

Theorem 28. Over any finite field Fq the subalgebra R of A2 = V2 +M2(Fq) with
basis {v1, v2, e11 + e12, e22} does not have a finite basis of its polynomial identities.
The same assertion holds when we consider R as a ring.

As in the proof of Theorem 26, the proofs of Theorems 27 and 28 depend
essentially on weak polynomial identities.

We shall mention also the result of Isaev [70] that over an arbitrary field K
there exists a finite dimensional right alternative algebra without a finite basis
of its identities which answers a question of L’vov [20, Problem 1.95]. (As we
discussed in Section 4, by [100] every finite alternative algebra has a finite basis of
its identities.) Finally, see the paper by Oates-MacDonald and Vaughan-Lee [108]
for other differences between varieties generated by associative and nonassociative
algebras.

6 L-varieties
In this section we shall introduce the notion of L-varieties of pairs and shall survey
some results emphasizing on weak polynomial identities of degree 3.

Definition 2. Let Ω ⊂ K〈X〉 be a family of polynomials and let

F = {fi(x1, . . . , xni
) ∈ K〈X〉 | i ∈ I}.

• The pair (R, V ) is an Ω-pair if ω(v1, . . . , vn) = 0 for all ω(x1, . . . , xn) ∈ Ω
and all v1, . . . , vn ∈ V .

• The class of all Ω-pairs satisfying the weak polynomial identities from the
system F is the variety of Ω-pairs defined by the weak polynomial identities
from F .

• The polynomial f(x1, . . . , xn) ∈ K〈X〉 is an Ω-consequence of the system of
polynomials F if f belongs to the ideal ofK〈X〉 generated by all fi(ω1, . . . , ωni

),
ω1, . . . , ωni

∈ Ω. The system F is a basis of the weak polynomial identities
of the variety of Ω-pairs defined by the identities of F .

As we mentioned in the introduction, when Ω is the free Lie algebra L(X)
embedded in K〈X〉 and V is a Lie subalgebra of R(−), we have varieties of Lie
pairs. When Ω is the free special Jordan algebra SJ(X) embedded in K〈X〉 and
V is a Jordan subalgebra of R(+), we consider varieties of Jordan pairs. When Ω is
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the vector space KX spanned by the free generators X of K〈X〉, we have varieties
of arbitrary pairs or L-varieties. Clearly, in the case Ω = K〈X〉 the pair (R,R)
can be identified with the algebra R and we have the usual notion of varieties of
associative algebras.

Below, if not explicitly stated, we shall consider the case Ω = KX only. Then
the ideals of weak polynomial identities are invariant under the linear substitutions
of the variables, i.e. under the linear endomorphisms of K〈X〉. If W is such an
ideal of K〈X〉, it coincides with the ideal of weak polynomial identities of the pair
(K〈X〉/W,KX). This is an analogue of the well known fact that every ideal W of
K〈X〉 which is invariant under all endomorphisms of K〈X〉 is the T-ideal of the
identities of the algebra K〈X〉/W .

Our first goal is to survey results on the L-varieties over a field of characteristic 0
satisfying a weak polynomial identity of degree 3. The following result was stated
in 1950 by Malcev [101] where he suggested, independently from Specht [133],
to use representation theory of the symmetric group in the study of PI-algebras.
Anan’in and Kemer [4] used this to describe the varieties of associative algebras
with distributive lattice of subvarieties. Since over a field of characteristic 0 every
identity is equivalent to a system of multilinear identities, we shall consider the
case when f(x1, x2, x3) is multilinear.

Proposition 1. Every multilinear polynomial identity of degree 3 is equivalent to
the linearization of one or several of the identities

x3, α[x, y]x+ βx[x, y], α, β ∈ K, (α, β) 6= (0, 0), s3(x1, x2, x3). (7)

There are many papers devoted to the description of the varieties of associative
algebras satisfying an identity of degree 3: Anan’in and Kemer [4], James [75],
Klein [87], Nagata [105], Olsson and Regev [110], [111], Regev [127], [128], [129].
The complete description of these varieties was given in the language of lattices
of subvarieties by Vladimirova and Drensky [139]. Now we shall state the corre-
sponding results for L-varieties comparing them with the results for varieties of
(not necessarily unitary) associative algebras. We shall consider separately each of
the identities (7).

In 1952 Nagata [105] proved the following theorem.

Theorem 29. Over a field of characteristic 0 the algebras satisfying the polynomial
identity xn are nilpotent, i.e. satisfy the polynomial identity x1 · · ·xN for some
N = N(n) depending on n.

Later Higman [64] generalized this theorem for algebras of characteristic p > n
and gave the bound N(n) ≤ 2n − 1 for the class of nilpotency. Higman showed
also that N(3) = 6. In the 1980s Gerald Schwarz discovered that Theorem 29 was
established in 1943 by Dubnov and Ivanov [45] but was completely overlooked by
the algebraic community. See the paper by Formanek [50] for the history of the
Dubnov-Ivanov-Nagata-Higman theorem. In particular, the value N(3) = 6 was
found by Dubnov [44] already in 1935. The better upper and lower bounds for
N(n) are due to Razmyslov [124] and Kuz’min [92]:

1

2
n(n+ 1) ≤ N(n) ≤ n2.
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There is a conjecture that N(n) = 1
2n(n + 1) and this is confirmed for n ≤ 4, see

the comments in [34, Part A, Chapter 6]. It has turned out that for L-varieties the
situation is completely different. The author of the present paper [33] constructed
an L-variety satisfying the identity x3 which does not have a finite basis of weak
identities.

Theorem 30. Over a field of characteristic zero the L-ideal generated by the weak
polynomial identities

x3, x1sn(x1, . . . , xn)x2 − x2sn(x1, . . . , xn)x1, n ≥ 2,

is not finitely generated.

The proof uses free products of Grassmann algebras and ideas of the author
from 1974 for the construction of nonfinitely based varieties of Lie algebras over a
field of positive characteristic [24].

Detailed information for the consequences of the polynomial identities of the
form

α[x, y]x+ βx[x, y], α, β ∈ K, (α, β) 6= (0, 0), (8)

was obtained by Klein [87], Olsson and Regev [110], Regev [128] and Anan’in and
Kemer [4]. The simplest cases are given in the following theorem of Klein [87].

Theorem 31. Over a field of characteristic zero every variety of associative algebras
which satisfies an identity (8) satisfies the identity

x1 · · ·x5 − xσ(1) · · ·xσ(5), σ ∈ S5,

except the cases when (8) is equivalent to one of the identities [x, y]x, x[x, y] or
[y, x, x].

The set Λ(M) of the subvarieties of any variety M of algebras or of pairs is a
lattice with respect to the intersection and union of subvarieties. By definition, the
lattice is distributive if

M1 ∩ (M2 ∪M3) = (M1 ∩M2) ∪ (M1 ∩M3), M1,M2,M3 ⊆M.

Anan’in and Kemer [4] proved the following theorem.

Theorem 32. The lattice Λ(M) of subvarieties of a variety M of associative alge-
bras over a field of characteristic zero is distributive if and only if M satisfies an
identity of the form (8).

The cases when α+β 6= 0 in (8) are not very complicated and the only difficult
case is the identity [y, x, x] which is equivalent to the identity [x1, x2, x3]. It is
known that this identity is a basis of the polynomial identities of the Grassmann
algebra (Krakowski and Regev [90]). See also [139] where the results are stated in
a compact form.

Many important varieties of algebras over a field of characteristic zero have a
distributive lattice of subvarieties. This holds for the variety of unitary associative
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algebras var(M2(K)) and the variety of Lie algebras var(sl2(K)) (Drensky [27]), the
variety of unitary associative algebras var(E ⊗ E) generated by the tensor square
of the Grassmann algebra E (Popov [117]), the variety of unitary Jordan algebras
var(B∞) generated by the algebra of a symmetric bilinear form B∞ (Drensky
[30]). An analogue of Theorem 32 for unitary associative algebras was established
by Popov [116], with collaboration with Chekova [118], [119] and Nikolaev [120].
The result is in the spirit of Theorem 32 but, instead one identity (8) the variety
has to satisfy four identities of degree 5.

The counterpart of Theorem 32 for varieties of Lie pairs was established by
Drensky and Vladimirova [42].

Theorem 33. The lattice Λ(M) of subvarieties of a variety M of Lie pairs over a
field of characteristic zero is distributive if and only if M satisfies an identity of the
form (8).

As in the case of x3, the structure of the L-varieties satisfying (8) is more
complicated than the structure of the varieties of associative algebras satisfying
the same identity.

Theorem 34. Let K be a field of characteristic zero.

(i) Every L-variety satisfying the weak polynomial identity (8) has a finite basis
of its identities.

(ii) The lattice of subvarieties of an L-variety is distributive if and only if it
satisfies the weak identity (8) for some (α, β) 6= (0, 0).

The case α+β = 0 in Theorem 34 (which is equivalent to the weak polynomial
identity [x1, x2, x3]) is due to Volichenko [140] as an important step in his proof that
the variety AN2 of Lie algebras over a field of characteristic zero (which is defined
by the identity [[x1, x2, x3], [x4, x5, x6]]) satisfies the Specht property. Volichenko
proved even more. He gave a complete description of the weak T-ideals containing
[x1, x2, x3] and closed with respect to affine endomorphisms, i.e. when the set Ω
in the definition of weak T-ideals is spanned by K and X. The case α = β which
is equivalent to the weak polynomial identity (1) was established by Drensky and
Koshlukov [38], with the complete description of the L-varieties satisfying this weak
identity. As a byproduct [38] contains another proof of Theorem 1 (i). Finally, the
simpler cases α 6= ±β are handled by the author [33].

The weak identities [x1, x2, x3] and (1) have been studied also from other points
of view. Recall that the algebra Mp,q consists of block matrices

a =

(
a11 a12
a21 a22

)
, (9)

where a11 ∈ Mp(E0), a12 ∈ Mp×q(E1), a21 ∈ Mq×p(E1), a22 ∈ Mq(E0), and
E = E0⊕E1 is the Grassmann algebra with its canonical Z2-grading, Mp(E0) and
Mp×q(E1) are, respectively, the p× p and p× q matrices with entries from E0 and
E1, and similarly for Mq(E0) and Mq×p(E1). The algebras Mp,q play a key role
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in the structure theory of T-ideals discovered by Kemer in [80], see also [83]. For
Mp,q the analogue of the usual trace for Md(K) is the supertrace defined as

str(a) = tr(a11)− tr(a22),

where a ∈Mp,q is as in (9). The following theorem which connects the polynomial
identities of M1,1 and E ⊗E was established by Kemer [80] in characteristic 0 and
by Azevedo, Fidelis and Koshlukov [5] in positive characteristic.

Theorem 35. (i) Over a field of characteristic zero the algebras M1,1 and E⊗E
have the same polynomial identities.

(ii) Over an infinite field of characteristic p > 2 the algebras M1,1 and E ⊗ E
have the same multilinear polynomial identities but T (M1,1) $ T (E ⊗ E).

The polynomial identity [xp
2

1 , x2] is satisfied by E ⊗E and does not hold for
M1,1.

The weak polynomial identities of E ⊗ E were studied by Kemer [79] in his
study of nonmatrix polynomial identities. The description of the weak polynomial
identities of M1,1 was obtained by Di Vincenzo and La Scala in [18] when char(K) =
0 and in [19] in the general case.

Theorem 36. Let K be an infinite field of characteristic different from 2 and let
W be the subspace of M1,1 of the elements of supertrace equal to zero. Then the
weak T-ideal of the polynomial identities of the pair (M1,1,W ) is generated as an
ideal invariant under the affine transformations by the weak identities

[x1, x2, x3] and [x2, x1][x3, x1][x4, x1].

Vaughan-Lee [138] proved that the variety of Lie algebras AN2 over a field of
characteristic 2 does not satisfy the Specht property. The main step in his proof
was the following result.

Theorem 37. Over a field of characteristic 2 the L-variety defined by the weak
identities

[x1, x2, x3], [x1, x2][x2, x3] · · · [xn−1, xn][xn, x1], n = 2, 3, . . . ,

is not finitely based.

It is an open problem whether the variety of Lie algebras AN2 satisfies the
Specht property when char(K) = p > 2 and the corresponding problem for the
L-variety defined by the weak identity [x1, x2, x3].

The weak polynomial identity [x21, x2] is involved in the description of the L-
variety generated by the pair (Cd, Vd), where Vd is the d-dimensional vector space
with a nondegenerate symmetric bilinear form embedded in the Clifford algebra
Cd. The following theorem is due to Drensky and Koshlukov [38].
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Theorem 38. Let char(K) = 0.

(i) The weak polynomial identities of the pair (C∞, V∞) follow from the weak
identity [x21, x2] from (1).

(ii) The basis of the weak identities of the pair (Cd, Vd), d <∞, consists of

[x21, x2] and sd+1(x1, . . . , xd+1).

Now we shall state some results on the L-varieties satisfying the weak standard
identity s3(x1, x2, x3). Part (i) of the following theorem was established by Kislitsin
[85] and part (ii) is due to Isaev and Kislitsin [72]. It shows that the L-variety
defined by the weak identity s3(x1, x2, x3) does not satisfy the Specht property
over an arbitrary infinite field. Since the infinite system of weak identities in (ii)
consists of multilinear polynomials, it is easy to see that this L-variety does not
have a finite basis also for finite fields.

Theorem 39. Let the field K be infinite and let M1 and M2 be the L-varieties
generated, respectively, by the pairs (A1, A1) and (A2, A2), where

A1 =

(
α β
0 0

)
and A2 =

(
α 0
β 0

)
, α, β ∈ K.

(i) The L-ideals of the weak polynomial identities of M1 and M2 are generated,
respectively, by the weak identities

[x1, x2]x3 and x1[x2, x3].

(ii) The L-ideal of the weak polynomial identities of the union M = M1 ∪M2 of
the L-varieties M1 and M2 is not finitely generated and is generated by the
weak identities

s3(x1, x2, x3), x1[x2, x3]x4, [x1, x2]y1 · · · yn[x3, x4], n = 0, 1, 2, . . . .

The L-variety M is generated by the pair (A, V ), where

A =

{((
α β
0 0

)
,

(
α 0
γ 0

))
, α, β, γ ∈ K

}
⊂M2(K)⊕M2(K),

V =

{((
α β
0 0

)
,

(
α 0
β 0

))
, α, β ∈ K

}
.

Hence dim(A) = 3 and dim(V ) = 2.

Kislitsin [86] proved the following result.

Theorem 40. (i) Over an infinite field every L-ideal containing one of the weak
polynomial identities [x1, x2]x3 or x1[x2, x3] is finitely generated.
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(ii) Over the finite field Fq every L-ideal I, containing one of the pairs of weak
identities [x1, x2]x3 and (xq1 − x1)x2 or x1[x2, x3] and x1(xq2 − x2), is finitely
generated.

In characteristic 0 the identity [x1, x2]x3 is equivalent to the pair of identities
[x1, x2]x1 and s3(x1, x2, x3). The following result of the author [33] strengthens
Theorem 40.

Theorem 41. (i) Over a field of characteristic zero the following L-ideals are all
L-ideals which contain the weak identity [x1, x2]x3:

• The L-ideal generated by [x1, x2]x3;

• The L-ideal generated by [x1, x2]x3 and the weak identity xn1 [x1, x2],
n ≥ 0;

• The L-ideal generated by [x1, x2]x3 and the weak identity xm1 , m ≥ 1;

• The L-ideal generated by [x1, x2]x3 and the weak identities xm1 , m ≥ 2,
and xn1 [x1, x2], 0 ≤ n ≤ m− 2.

There is also a dual theorem for the weak identity x1[x2, x3].

(ii) Over an arbitrary field every L-ideal which contains one of the weak polyno-
mial identities [x1, x2]x3 or x1[x2, x3] is finitely generated.

The proof of part (i) is based on representation theory of the general linear
group and methods developed by the author in the early 1980s for the description
of the lattices of subvarieties of varieties of linear algebras [27]. The proof of part
(ii) follows almost immediately from a theorem of Cohen [14] from 1967 using the
method of Higman [63] from 1952 for partially well ordered sets. This method is
still used to prove the finitely generation of ideals of polynomial identities.

7 Weak central polynomials
Definition 3. The polynomial c(x1, . . . , xn) ∈ K〈X〉 is a weak central polynomial
for the pair (R, V ) if c(x1, . . . , xn) is not a weak polynomial identity for the pair
and c(v1, . . . , vn) belongs to the center of R for all v1, . . . , vn ∈ V .

We shall discuss the following natural problem.

Problem 4. How to construct weak central polynomials?

The following theorem is due to Drensky and Zaicev [43].

Theorem 42. Let c(x1, . . . , xn) be a multilinear central polynomial for the algebra
R. There is an algorithm which, starting with c(x1, . . . , xn), produces a weak
central polynomial c′(x1, . . . , xN ) for the pair (R, V ). If dim(R) = d and dim(V ) =
m, then deg(c′) ≤ n(d−m+ 1).
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A modification of the algorithm works also for central polynomials of R, which
are not multilinear. The most important application of Theorem 42 concerns finite
dimensional simple (nonassociative) algebras.

We start with a finite dimensional simple (nonassociative) algebra A. We as-
sume that R = EndK(A) is the associative algebra of the endomorphisms of A as a
vector space, and V =M(A) is the vector space of the operators of left and right
multiplication of A:

ra : A→ A, ra(b) = ba, `a : A→ A, `a(b) = ab, a, b ∈ A.

By a result of Polikarpov and Shestakov [114] V generates the algebra R, i.e. (R, V )
is a pair.

Remark 1. Obviously, every central polynomial of the algebra R is either a weak
central polynomial or a weak polynomial identity of the pair (R, V ). The main
difficulty in the proof of Theorem 42 is to find a central polynomial of R which
does not vanish evaluated on V . On the other hand the algorithm in Theorem
42 has the disadvantage that does not give weak central polynomials for the pair
(R, V ) which are not central polynomials for R. For example, let dim(R) = d and
let R have a basis

{r1 = z1, . . . , rk = zk, rk+1, . . . , rd},

where {z1, . . . , zk} is a basis of the center of R. We shall search for a central
polynomial of R of the form

c(x1, . . . , xn) =
∑
σ∈Sn

ξσxσ(1) · · ·xσ(n)

with n! unknown coefficients ξσ. Then c(x1, . . . , xn) is a cental polynomial if
c(ri1 , . . . , rin) belongs to the center of R for all dn replacements with elements
of the basis of R. If

c(ri1 , . . . , rin) =

d∑
j=1

αijrj , i = (i1, . . . , in),

where αij are linear combinations of ξσ, this means that ξσ are solutions of the
linear system with (d− 1)dn equations

αi1 = · · · = αik, αij = 0, j = k + 1, . . . , d,

and at least one αi1 is different from 0. If we search for a weak central polynomial
for the pair (R, V ), dim(V ) = m and V has a basis {v1, . . . , vm}, then c(vi1 , . . . , vin)
belongs to the center of R for all mn replacements with elements of the basis of
V . Hence the system which we have to solve has only (d − 1)mn equations. The
naive expectations are that weak central polynomials for the pair (R, V ) are more
than the central polynomials for R. But the algorithm gives less weak central
polynomials.
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Example 2. Let A = sl2(K), R = EndK(sl2(K)) = M3(K), V = ad(sl2(K)) is
the three-dimensional vector subspace of M3(K) of the multiplications of sl2(K).
Starting with the central polynomial of Formanek of degree 9, the algorithm gives
a weak central polynomial of degree 10. But the pair

(M3(K), V ) = (EndK(sl2(K)), ad(sl2(K)))

has weak central polynomials of degree 6:

[x1, x2]x31x2 − [x1, x2]x2x
3
1 − x31[x1, x2]x2 + x1x2x1[x1, x2]x1.

and even a weak central polynomial of degree 3: the standard polynomial s3(x1, x2, x3).
In the recent paper with Domokos [22] we described all weak central polynomials
of the pair

(M3(K), V ) = (EndK(sl2(K)), ad(sl2(K))), char(K) = 0.

Example 3. Let A = H2(K) be the Jordan algebra of the symmetric 2×2 matrices.
Then V = M(H2(K)) is the three-dimensional vector subspace of M3(K) of the
multiplications of H2(K) and R = EndK(H2(K)) = M3(K). Starting with the
central polynomial of Formanek of degree 9 our algorithm gives a weak central
polynomial of degree 10. But the pair (M3(K), V ) = (EndK(H2(K)),M(H2(K)))
has also weak central polynomials of degree eight:

[x1, x2, x1][x1, x2][x1, x2, x2]− [x1, x2, x2][x1, x2][x1, x2, x1]

+2[x1, x2][x1, x2][x1, x2][x1, x2].

Let U(sl2(C)) be the universal enveloping algebra of sl2(C). Razmyslov [125]
studied the weak polynomial identities of the Lie pair (U(sl2(C)), sl2(C)) and of
the pairs associated with irreducible representations of sl2(C).

Theorem 43. (i) The variety of Lie pairs generated by the pair (U(sl2(C)), sl2(C))
satisfies the Specht property.

(ii) Let % : sl2(C)→ EndC(Vq) ∼= Mq(C) be a q-dimensional irreducible represen-
tation of sl2(C). Then the basis of the weak polynomial identities of the Lie
pair (Mq(C), %(sl2(C))) consists of three weak polynomial identities:

s3(x1, x2, x3)x4 − x4s3(x1, x2, x3),

δ
∑
σ∈S3

sign(σ)[x4, xσ(1), xσ(2), xσ(3)]− 2x4s3(x1, x2, x3),

where δ = (q2−1)/4 is the value of the Casimir element in the representation
%, and one more identity in two variables

ARTq(x1, x2) = Ad(x2)

q−1∏
i=1

(
`x2
−
(
i− 1− q

2

)
Ad(x2)

)
x1.

Here `r : R → R, r ∈ R, is the operator of left multiplication of the algebra
R, and Ad(r)(r′) = [r, r′], r, r′ ∈ R.
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For q = 2 this gives that the weak polynomial identities of the pair (M2(C), sl2(C))
follow from the weak identity [x21, x2].

Finally we shall describe some of the results in the Ph.D. thesis of da Silva
Mâcedo [16] obtained jointly with his advisor Koshlukov, see also [17]. Recall that
the algebra R is a superalgebra if R = R0⊕R1 as a vector space and RiRj ⊆ Ri+j
where i, j = 0, 1 and i+j is taken modulo 2. Then the Grassmann envelope of R is
the algebra (R0 ⊗E0)⊕ (R1 ⊗E1), where E = E0 ⊕E1 is the Grassmann algebra.
The Lie superalgebra V = V0 ⊕ V1 satisfies the super skew-symemtric identity

[x, y] + (−1)|x||y|[y, x]

and the super Jacobi identity

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]],

where x, y, z ∈ V0 ∪ V1 and |x| = 0 or 1 if x ∈ V0 or x ∈ V1, respectively. One
of the main results of the theory of Kemer, see [80] and [83], is that over a field
of characteristic 0 any proper variety of associative algebras is generated by the
Grassmann envelope of a finite dimensional associative superalgebra. The following
theorem in [16], [17] gives a partial analogue of the result of Kemer for varieties of
Lie pairs.

Theorem 44. Let char(K) = 0 and let V = var(R, V ) be a variety of Lie pairs such
that R is a PI-algebra. Then there exists a Lie pair (A,L) = (A0 ⊕ A1, L0 ⊕ L1)
where both A and L are superalgebras such that V is generated by the pair of
Grassmann envelopes ((A0 ⊗ E0)⊕ (A1 ⊗ E1), (L0 ⊗ E0)⊕ (L1 ⊗ E1)).

As a consequence of Theorem 44 the authors obtain the following result.

Theorem 45. Let the field K be algebraically closed, char(K) = 0 and let V =
var(R, V ) be a variety of Lie pairs such that R is a PI-algebra. Let V do not contain
any pair (End(W ), %(sl2(K))) for any representation % : sl2(K)→ End(W ). Then
the Lie algebra V in the pair (R, V ) is solvable.

We shall finish our paper with the following problem.

Problem 5. Describe the weak polynomial identities and the weak central polyno-
mials of the algebra of multiplications of concrete simple nonassociative algebras
of small dimension.
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Izv. 15 (2018) 1498–1505.

[72] I.M. Isaev, A.V. Kislitsin: Identities in vector spaces and examples of finite-dimensional
linear algebras having no finite basis of identities (Russian). Algebra i Logika 52 (4)
(2013) 435–460. Translation: Algebra and Logic 52 (4) (2013) 290–307.

[73] I.M. Isaev, A.V. Kislitsin: On identities of vector spaces embedded in finite associative
algebras (Russian). Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform. 15 (3) (2015)
69–77. Translation: J. Math. Sci. 221 (2017) 849–856.

[74] N. Jacobson: PI-algebras. An Introduction. Springer (1975). Lecture Notes in
Mathematics, 441.

[75] G.D. James: A note on the T-ideal generated by S3[X1, X2, X3]. Isr. J. Math. 29 (1)
(1978) 105–112.

[76] A. Kanel-Belov, Ya. Karasik, L.H. Rowen: Computational Aspects of Polynomial
Identities: Volume l, Kemer’s Theorems. CRC Press, Boca Raton, FL (2016).

[77] I. Kaplansky: Problems in the theory of rings. In: Report of a Conference on Linear
Algebras, June, 1956. National Acad. of Sci.–National Research Council, Washington,
Publ. (1957) 1–3.

[78] I. Kaplansky: Problems in the theory of rings revised. Amer. Math. Monthly 77 (5)
(1970) 445–454.

[79] A.R. Kemer: Nonmatrix varieties (Russian). Algebra i Logika 19 (3) (1980) 255–283.
Translation: Algebra and Logic 19 (1980) 157–178.

[80] A.R. Kemer: Varieties and Z2-graded algebras (Russian). Izv. Akad. Nauk SSSR, Ser.
Mat. 48 (5) (1984) 1042–1059. Translation: Math. USSR, Izv. 25 (2) (1985) 359–374.

[81] A.R. Kemer: Finite basis property of identities of associative algebras (Russian).
Algebra i Logika 26 (5) (1987) 362–397. Algebra and Logic 26 (5) (1987) 362–397.

[82] A.R. Kemer: Identities of finitely generated algebras over an infinite field. Izv. Akad.
Nauk SSSR, Ser. Mat. 54 (4) (1990) 726–753. Translation: Math. USSR, Izv. 37 (1)
(1991) 69–96.

[83] A.R. Kemer: Ideals of Identities of Associative Algebras. American Mathematical
Society, Providence (1991).

[84] V.K. Kharchenko: A remark on central polynomials (Russian). Mat. Zametki 26 (3)
(1979) 345–346. Translation: Math. Notes 26 (3) (1979) p. 665.



322 Vesselin Drensky

[85] A.V. Kislitsin: On identities of spaces of linear transformations over infinite field
(Russian). Izvestiya Altai State Univ. 65 (1-2) (2010) 37–41.

[86] A.V. Kislitsin: The Specht property of L-varieties of vector spaces over an arbitrary field
(Russian). Algebra i Logika 57 (5) (2018) 556–566. Translation: Algebra and Logic 57
(5) (2018) 360–367.

[87] A.A. Klein: PI-algebras satisfying identities of degree 3. Trans. Amer. Math. Soc. 201
(1975) 263–277.

[88] P. Koshlukov: Polynomial identities for a family of simple Jordan algebras. Commun. in
Algebra 16 (7) (1988) 1325–1371.

[89] P. Koshlukov: Basis of the identities of the matrix algebra of order two over a field of
characteristic p 6= 2. J. Algebra 241 (1) (2001) 410–434.

[90] D. Krakowski, A. Regev: The polynomial identities of the Grassman algebra. Trans.
Amer. Math. Soc. (1973) 429–438.

[91] R.L. Kruse: Identities satisfied by a finite ring. J. Algebra 26 (2) (1973) 298–318.

[92] E.N. Kuz’min: On the Nagata-Higman theorem (Russian). In: Proc. dedicated to the
60th birthday of Acad. Iliev. Sofia (1975) 101–107.

[93] Yu.V. Kuz’min: Free center-by-metabelian groups, Lie algebras, and D-groups. Izv.
Akad. Nauk SSSR, Ser. Mat. 41 (1) (1977) 3–33. Translation: Math. USSR, Izv. 11
(1977), 1–30.

[94] V.N. Latyshev, A.L. Shmelkin: A certain problem of Kaplansky (Russian). Algebra i
logika 8 (4) (1969) 447–448. Translation: Algebra and Logic 8 (1969) p. 257.

[95] U. Leron: Multilinear identities of the matrix ring. Trans. Amer. Math. Soc. 183 (1973)
175–202.

[96] J. Levitzki: On a problem of A. Kurosch. Bull. Amer. Math. Soc. 52 (12) (1946)
1033–1035.

[97] A. Lopatin: Identities for the Lie algebra gl(2) over an infinite field of characteristic two.
arXiv: 1612.07748v1 [math.RA]

[98] I.V. L’vov: On varieties of associative rings. I (Russian). Algebra i Logika 12 (3) (1973)
269–297. Translation: Algebra and Logic 12 (1973) 150–167.

[99] I.V. L’vov: Finite-dimensional algebras with infinite bases of identities (Russian). Sib.
Mat. Zh. 19 (1) (1978) 91–99. Translation: Sib. Math. J. 19 (1) (1978) 63–69.

[100] I.V. L’vov: Varieties generated by finite alternative rings (Russian). Algebra i Logika 17
(3) (1978) 282–286. Translation: Algebra and Logic 17 (3) (1978) 195–198.

[101] A.I. Malcev: On algebras defined by identities (Russian). Mat. Sb. 26 (1950) 19–33.

[102] Yu.N. Mal’tsev, E.N. Kuz’min: A basis for the identities of the algebra of second-order
matrices over a finite field (Russian). Algebra i Logika 17 (1) (1978) 28–32. Translation:
Algebra and Logic 17 (1978) 18–21.

[103] Yu.N. Mal’tsev, V.A. Parfenov: A nonassociative algebra having no finite basis for its
laws (Russian). Sib. Mat. Zh. 18 (6) (1977) 1420–1421. Translation: Sib. Math. J. 18
(1977) 1007–1008.

[104] Yu.A. Medvedev: Identities of finite Jordan Φ-algebras (Russian). Algebra i Logika 18
(6) (1979) 723–748. Translation: Algebra and Logic 18 (6) (1979) 460–478.

[105] M. Nagata: On the nilpotency of nil-algebras. J. Math. Soc. Japan 4 (3-4) (1952)
296–301.

[106] B.H. Neumann: Identical relations in groups. I. Math. Ann. 114 (1) (1937) 506–525.



Weak polynomial identities and their applications 323

[107] S. Oates, M.B. Powell: Identical relations in finite groups. J. Algebra 1 (1) (1964) 11–39.

[108] S. Oates-MacDonald, M.R. Vaughan-Lee: Varieties that make one Cross. J. Aust. Math.
Soc., Ser. A 26 (3) (1978) 368–382.

[109] S.V. Okhitin: On varieties defined by two-variable identities (Russain). Ref. Zh. Mat.
6A366DEP (1986).

[110] J.B. Olsson, A. Regev: Colength sequence of some T -ideals. J. Algebra 38 (1) (1976)
100–111.

[111] J.B. Olsson, A. Regev: On the T -ideal generated by a standard identity. Isr. J. Math. 26
(2) (1977) 97–104.

[112] B.I. Plotkin: Varieties of group representations (Russian). Usp. Mat. Nauk 32 (5) (1977)
3–68. Translation: Russ. Math. Surv. 32 (5) (1977) 1–72.

[113] P.I. Plotkin, S.V. Vovsi: Varieties of Group Representations. General Theory, Relations
and Applications (Russian). Zinatne, Riga (1983).

[114] S.V. Polikarpov, I.P. Shestakov: Nonassociative affine algebras (Russian). Algebra i
Logika 29 (6) (1990) 709–723. Translation: Algebra and Logic 29 (6) (1990) 458–466.

[115] S.V. Polin: Identities of finite algebras (Russian). Sibirsk. Mat. Zh. 17 (6) (1976)
1356–1366. Translation: Sib. Math. J. 17 (6) (1976) 992–999.

[116] A. Popov: Varieties of associative algebras with unity whose lattice of subvarieties is
distributive. I (Russian). Annuaire Univ. Sofia Fac. Math. Méc 79 (1) (1985) 223–244.

[117] A. Popov: Identities of the tensor square of a Grassmann algebra (Russian). Algebra i
Logika 21 (4) (1982) 442–471. Translation: Algebra and Logic 21 (1982) 296–316.

[118] A. Popov, P. Chekova: Varieties of associative algebras with identity whose lattice of
subvarieties is distributive (Russian). Annuaire Univ. Sofia Fac. Math. Méc. 77 (1)
(1983) 205–222.

[119] A. Popov, P. Chekova: Some distributive lattices of unitary varieties of associative
algebras (Russian). Annuaire Univ. Sofia Fac. Math. Inform. 81 (1) (1987) 243–260.

[120] A. Popov, R. Nikolaev: Varieties of associative algebras with unity whose lattice of
subvarieties is distributive. II (Russian). Annuaire Univ. Sofia Fac. Math. Méc. 80 (1)
(1986) 15–23.

[121] C. Procesi: Rings with Polynomial Identities. Marcel Dekker (1973).

[122] Yu.P. Razmyslov: Finite basing of the identities of a matrix algebra of second order over
a field of characteristic zero (Russian). Algebra i Logika 12 (1) (1973) 83–113.
Translation: Algebra and Logic 12 (1) (1973) 47–63.

[123] Yu.P. Razmyslov: On a problem of Kaplansky (Russian). Izv. Akad. Nauk SSSR, Ser.
Mat. 37 (3) (1973) 483–501. Translation: Math. USSR, Izv. 7 (3) (1973) 479–496.

[124] Yu.P. Razmyslov: Trace identities of full matrix algebras over a field of characteristic
zero (Russian). Izv. Akad. Nauk SSSR, Ser. Mat. 38 (4) (1974) 723–756. Translation:
Math. USSR, Izv. 8 (4) (1974) 727–760.

[125] Yu.P. Razmyslov: Finite basis property for identities of representations of a simple
three-dimensional Lie algebra over a field of characteristic zero (Russian). In: Algebra,
Work Collect., dedic. O. Yu. Shmidt. Moskva (1982) 139–150. Translation: Transl.
Amer. Math. Soc. Ser. 2 140 (1988), 101–109.

[126] Yu.P. Razmyslov: Identities of Algebras and Their Representations (Russian). Nauka,
Moscow (1989). Translation: Translations of Math. Monographs 138, AMS, Providence,
R.I. (1994).



324 Vesselin Drensky

[127] A. Regev: The T -ideal generated by the standard identity s3[x1, x2, x3]. Isr. J. Math. 26
(2) (1977) 105–125.

[128] A.Regev: T -Ideals of degree 3 are finitely generated. Bull. Lond. Math. Soc. 10 (3)
(1978) 261–266.

[129] A. Regev: Algebras satisfying a Capelli identity. Isr. J. Math. 33 (2) (1979) 149–154.

[130] A. Regev: The polynomial identities of matrices in characteristic zero. Commun. in
Algebra 8 (15) (1980) 1417–1467.

[131] L.H. Rowen: Polynomial Identities in Ring Theory. Academic Press (1980).

[132] K.N. Semenov: A basis of identities of the Lie algebra sl(2) over a finite field (Russian).
Mat. Zametki 52 (2) (1992) 114–119. Translation: Math. Notes 52 (2) (1992) 835–839.

[133] W. Specht: Gesetze in Ringen. I. Math. Z. 52 (1) (1950) 557–589.

[134] A.Ya. Vajs, E.I. Zel’manov: Kemer’s theorem for finitely generated Jordan algebras
(Russian). Izv. Vyssh. Uchebn. Zaved., Mat. (6) (1989) 42–51. Translation: Sov. Math.
(Izvestiya VUZ. Matematika) 33 (6) (1990) 38–47.

[135] S.Yu. Vasilovskij: Basis of identities of a three-dimensional simple Lie algebra over an
infinite field (Russian). Algebra i Logika 28 (5) (1989) 534–554. Translation: Algebra
and Logic 28 (5) (1989) 355–368.

[136] S.Yu. Vasilovskij: Basis of identities of a Jordan algebra of a bilinear form over an
infinite field (Russian). Tr. Inst. Mat. (Novosibirsk) 16 (1989) 5–37. Translation:
Siberian Adv. Math. 1 (1991) 142–185.

[137] M.R. Vaughan-Lee: Varieties of Lie algebras. Q. J. Math., Oxf. II. Ser. 21 (3) (1970)
297–308.

[138] M.R. Vaughan-Lee: Abelian-By-Nilpotent Varities of Lie Algebras. J. Lond. Math. Soc.,
II. Ser. 11 (3) (1975) 263–266.

[139] L.A. Vladimirova, V.S. Drensky: Varieties of associative algebras with identity of degree
three (Russian). Pliska, Stud. Math. Bulgar. 8 (1986) 144–157.

[140] I.B. Volichenko: Varieties of Lie algebras with the identity
[[X1, X2, X3], [X4, X5, X6]] = 0 over a field of characteristic zero (Russian). Sibirsk.
Mat. Zh. 25 (3) (1984) 40–54. Translation: Sib. Math. J. 25 (1984) 370–382.

[141] S.M. Vovsi: Triangular Products of Group Representations and Their Applications.
Birkhäuser, Boston, Mass. (1981).

[142] W. Wagner: Über die Grundlagen der projektiven Geometrie und allgemeine
Zahlsysteme. Math. Ann. 113 (1936) 528–567.

[143] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov, A.I. Shirshov: Rings That Are Nearly
Associative (Russian). Nauka, Moscow (1978). Translation: Academic Press, New York
(1982).

Received: 27 July, 2020
Accepted for publication: 14 September, 2020
Communicated by: Cristina Draper


