Conservative algebras of 2-dimensional algebras, III

Farhodjon Arzikulov, Nodirbek Umriaqov

Abstract. In the present paper we prove that every local and 2-local derivation on conservative algebras of 2-dimensional algebras are derivations. Also, we prove that every local and 2-local automorphism on conservative algebras of 2-dimensional algebras are automorphisms.

1 Introduction

The present paper is devoted to the study of conservative algebras. In 1972 Kantor [12] introduced conservative algebras as a generalization of Jordan algebras (also, see a good written survey about the study of conservative algebras [25]).

In 1990 Kantor [14] defined the multiplication \(\cdot \) on the set of all algebras (i.e. all multiplications) on the \(n \)-dimensional vector space \(V_n \) over a field \(\mathbb{F} \) of characteristic zero as follows: \(A \cdot B = [L^A_e, B] \), where \(A \) and \(B \) are multiplications and \(e \in V_n \) is some fixed vector. If \(n > 1 \), then the algebra \(W(n) \) does not belong to any well-known class of algebras (such as associative, Lie, Jordan, or Leibniz algebras). The algebra \(W(n) \) is a conservative algebra [12].

In [12] Kantor classified all conservative 2-dimensional algebras and defined the class of terminal algebras as algebras satisfying some certain identity. He proved that every terminal algebra is a conservative algebra and classified all simple finite-dimensional terminal algebras with left quasi-unit over an algebraically closed field of characteristic zero [13]. Terminal algebras were also studied in [18], [19].

In 2017 Kaygorodov and Volkov [16] described automorphisms, one-sided ideals, and idempotents of \(W(2) \). Also a similar problem is solved for the algebra \(W_2 \) of all commutative algebras on the 2-dimensional vector space and for the algebra

2020 MSC: 7A36, 17A30, 17A15

Key words: Conservative algebra, derivation, local derivation, 2-local derivation, automorphism, local automorphism, 2-local automorphism

Affiliation:
Farhodjon Arzikulov – V.I. Romanovskiy Institute of Mathematics Uzbekistan
Academy of Sciences, Universitet street 9, Tashkent 100174, Uzbekistan.
Andizhan State University, Universitet street 129, Andizhan, 170100, Uzbekistan.
E-mail: arzikulovfn@rambler.ru

Nodirbek Umriaqov – Andizhan State University, Universitet street 129, Andizhan, 170100, Uzbekistan.
E-mail: umriaqov2010@mail.ru
S_2 of all commutative algebras with zero multiplication trace on the 2-dimensional vector space. The papers [15], [17] are also devoted to the study of conservative algebras and superalgebras.

Let A be an algebra. A linear operator ∇ on A is called a local derivation if for every $x \in A$ there exists a derivation ϕ_x of A, depending on x, such that $\nabla(x) = \phi_x(x)$. The history of local derivations had begun from the paper of Kadison [11]. Kadison introduced the concept of local derivation and proved that each continuous local derivation from a von Neumann algebra into its dual Banach bimodule is a derivation.

A similar notion, which characterizes nonlinear generalizations of derivations, was introduced by Šemrl as 2-local derivations. In his paper [26] was proved that a 2-local derivation of the algebra $B(H)$ of all bounded linear operators on the infinite-dimensional separable Hilbert space H is a derivation. After his works, appear numerous new results related to the description of local and 2-local derivations of associative algebras (see, for example, [1], [3], [4], [20], [21], [23]).

The study of local and 2-local derivations of non-associative algebras was initiated in some papers of Ayupov and Kudaybergenov (for the case of Lie algebras, see [5], [6]). In particular, they proved that there are no non-trivial local and 2-local derivations on semisimple finite-dimensional Lie algebras. In [8] examples of 2-local derivations on nilpotent Lie algebras which are not derivations, were also given. Later, the study of local and 2-local derivations was continued for Leibniz algebras [7], Malcev algebras and Jordan algebras [2]. Local automorphisms and 2-local automorphisms, also were studied in many cases, for example, they were studied on Lie algebras [5], [10].

Now, a linear operator ∇ on A is called a local automorphism if for every $x \in A$ there exists an automorphism ϕ_x of A, depending on x, such that $\nabla(x) = \phi_x(x)$. The concept of local automorphism was introduced by Larson and Sourour [22] in 1990. They proved that, invertible local automorphisms of the algebra of all bounded linear operators on an infinite-dimensional Banach space X are automorphisms.

A similar notion, which characterizes non-linear generalizations of automorphisms, was introduced by Šemrl in [26] as 2-local automorphisms. Namely, a map $\Delta: A \to A$ (not necessarily linear) is called a 2-local automorphism, if for every $x, y \in A$ there exists an automorphism $\phi_{x,y}: A \to A$ such that $\Delta(x) = \phi_{x,y}(x)$ and $\Delta(y) = \phi_{x,y}(y)$. After the work of Šemrl, it appeared numerous new results related to the description of local and 2-local automorphisms of algebras (see, for example, [5], [7], [9], [10], [21]).

In the present paper, we continue the study of derivations, local and 2-local derivations of conservative algebras of 2-dimensional algebras. We prove that every local and 2-local derivation of the conservative algebras of 2-dimensional algebras are derivations. In the present paper, we continue the study of automorphisms, local and 2-local automorphisms in the case of conservative algebras of 2-dimensional algebras. We prove that every local and 2-local automorphism of the conservative algebras of 2-dimensional algebras are automorphisms.
2 Preliminaries

Throughout this paper \mathbb{F} is some fixed field of characteristic zero. A multiplication on 2-dimensional vector space is defined by a $2 \times 2 \times 2$ matrix. Their classification was given in many papers (see, for example, [24]). Let consider the space $W(2)$ of all multiplications on the 2-dimensional space V_2 with a basis v_1, v_2. The definition of the multiplication · on the algebra $W(2)$ is defined as follows: we fix the vector $v_1 \in V_2$ and define

$$(A \cdot B)(x, y) = A(v_1, B(x, y)) - B(A(v_1, x), y) - B(x, A(v_1, y))$$

for $x, y \in V_2$ and $A, B \in W(2)$. The algebra $W(2)$ is conservative [14]. Let consider the multiplications $\alpha^k_{i, j}$ $(i, j, k = 1, 2)$ on V_2 defined by the formula $\alpha^k_{i, j}(v_t, v_l) = \delta_{il}\delta_{jl}v_k$ for all $t, l \in \{1, 2\}$. It is easy to see that $\{\alpha^k_{i, j}|i, j, k = 1, 2\}$ is a basis of the algebra $W(2)$. The multiplication table of $W(2)$ in this basis is given in [15]. In this work we use another basis for the algebra $W(2)$ (from [16]). Let introduce the notation

$$e_1 = \alpha_{11}^1 - \alpha_{12}^2 - \alpha_{21}^2, \quad e_2 = \alpha_{12}^1, \quad e_3 = \alpha_{22}^2 - \alpha_{12}^1 - \alpha_{21}^1, \quad e_4 = \alpha_{22}^1, \quad e_5 = 2\alpha_{11}^1 + \alpha_{12}^2 + \alpha_{21}^2,$$

$$e_6 = 2\alpha_{22}^2 + \alpha_{12}^1 + \alpha_{21}^1, \quad e_7 = \alpha_{12}^1 - \alpha_{21}^1, \quad e_8 = \alpha_{12}^2 - \alpha_{21}^2.$$

It is easy to see that the multiplication table of $W(2)$ in the basis e_1, \ldots, e_8 is the following.

<table>
<thead>
<tr>
<th></th>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>e_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>$-e_1$</td>
<td>$-3e_2$</td>
<td>e_3</td>
<td>$3e_4$</td>
<td>$-e_5$</td>
<td>e_6</td>
<td>e_7</td>
<td>$-e_8$</td>
</tr>
<tr>
<td>e_2</td>
<td>$3e_2$</td>
<td>0</td>
<td>$2e_1$</td>
<td>e_3</td>
<td>0</td>
<td>$-e_5$</td>
<td>e_8</td>
<td>0</td>
</tr>
<tr>
<td>e_3</td>
<td>$-2e_3$</td>
<td>e_1</td>
<td>$-3e_4$</td>
<td>0</td>
<td>e_6</td>
<td>0</td>
<td>0</td>
<td>$-e_7$</td>
</tr>
<tr>
<td>e_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e_5</td>
<td>$-2e_1$</td>
<td>$-3e_2$</td>
<td>$-e_3$</td>
<td>0</td>
<td>$-2e_5$</td>
<td>$-e_6$</td>
<td>$-e_7$</td>
<td>$-2e_8$</td>
</tr>
<tr>
<td>e_6</td>
<td>$2e_3$</td>
<td>e_1</td>
<td>$3e_4$</td>
<td>0</td>
<td>$-e_6$</td>
<td>0</td>
<td>0</td>
<td>e_7</td>
</tr>
<tr>
<td>e_7</td>
<td>$2e_3$</td>
<td>e_1</td>
<td>$3e_4$</td>
<td>0</td>
<td>$-e_6$</td>
<td>0</td>
<td>0</td>
<td>e_7</td>
</tr>
<tr>
<td>e_8</td>
<td>0</td>
<td>$2e_2$</td>
<td>$-e_3$</td>
<td>$-2e_4$</td>
<td>0</td>
<td>$-e_6$</td>
<td>$-e_7$</td>
<td>0</td>
</tr>
</tbody>
</table>

The subalgebra generated by the elements e_1, \ldots, e_6 is the conservative (and, moreover, terminal) algebra W_2 of commutative 2-dimensional algebras. The subalgebra generated by the elements e_1, \ldots, e_4 is the conservative (and, moreover, terminal) algebra S_2 of all commutative 2-dimensional algebras with zero multiplication trace [15].

Let A be an algebra. A linear map $D: A \to A$ is called a derivation, if $D(xy) = D(x)y + xD(y)$ for any two elements $x, y \in A$.

Our main tool for study of local and 2-local derivations of the algebras S_2, W_2 and $W(2)$ is the following lemma [15, Theorem 6], where the matrix of a derivation is calculated in the new basis e_1, \ldots, e_8.

Lemma 1. A linear map $D : W(2) \to W(2)$ is a derivation if and only if the matrix of D has the following matrix form:

$$
\begin{pmatrix}
0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta & 0 & 0 & 0 & 0 & 0 & 0 \\
2\alpha & 0 & \beta & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3\alpha & 2\beta & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\alpha & \beta & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta & \alpha \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
$$

(1)

where α, β are elements in \mathbb{F}.

Now, we give a characterization of automorphisms on conservative algebras of 2-dimensional algebras.

Let A be an algebra. A bijective linear map $\phi : A \to A$ is called an automorphism, if $\phi(xy) = \phi(x)\phi(y)$ for any elements $x, y \in A$.

Our principal tool for study of local and 2-local automorphisms of the algebras S_2, W_2 and $W(2)$ is the following lemma, which was proved in [16, Theorem 11].

Lemma 2. A linear map $\phi : W(2) \to W(2)$ is an automorphism if and only if the matrix of ϕ has the following matrix form:

$$
\begin{pmatrix}
1 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{b} & 0 & 0 & 0 & 0 & 0 & 0 \\
2ab & a^2b & b & 0 & 0 & 0 & 0 & 0 \\
3a^2b^2 & a^3b^2 & 3ab^2 & b^2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -ab & b & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b & ab \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix},
$$

(2)

where a, b are elements in \mathbb{F} and $b \neq 0$.

3 Local derivations of conservative algebras of 2-dimensional algebras

In this section we give a characterization of derivations on conservative algebras of 2-dimensional algebras.

Let A be an algebra. A linear map $\nabla : A \to A$ is called a local derivation, if for any element $x \in A$ there exists a derivation $D_x : A \to A$ such that $\nabla(x) = D_x(x)$.

Theorem 1. Every local derivation of the algebra $W(2)$ is a derivation.

Proof. Let ∇ be an arbitrary local derivation of $W(2)$ and write

$$
\nabla(x) = B\bar{x}, x \in W(2),
$$
where \(B = (b_{i,j})_{j=1}^8, \bar{x} = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) \) is the vector corresponding to \(x \). Then for every \(x \in W(2) \) there exist elements \(a_x, b_x \) in \(\mathbb{F} \) such that

\[
B \bar{x} = \begin{pmatrix}
0 & a_x & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -b_x & 0 & 0 & 0 & 0 & 0 & 0 \\
2a_x & 0 & b_x & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3a_x & 2b_x & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a_x & b_x & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b_x & a_x \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7 \\
x_8
\end{pmatrix}.
\]

In other words

\[
\begin{align*}
b_{1,1}x_1 + b_{1,2}x_2 + b_{1,3}x_3 + b_{1,4}x_4 + b_{1,5}x_5 + b_{1,6}x_6 + b_{1,7}x_7 + b_{1,8}x_8 &= a_xx_2; \\
b_{2,1}x_1 + b_{2,2}x_2 + b_{2,3}x_3 + b_{2,4}x_4 + b_{2,5}x_5 + b_{2,6}x_6 + b_{2,7}x_7 + b_{2,8}x_8 &= -b_xx_2; \\
b_{3,1}x_1 + b_{3,2}x_2 + b_{3,3}x_3 + b_{3,4}x_4 + b_{3,5}x_5 + b_{3,6}x_6 + b_{3,7}x_7 + b_{3,8}x_8 &= 2a_xx_1 + b_xx_3; \\
b_{4,1}x_1 + b_{4,2}x_2 + b_{4,3}x_3 + b_{4,4}x_4 + b_{4,5}x_5 + b_{4,6}x_6 + b_{4,7}x_7 + b_{4,8}x_8 &= 3a_xx_3 + 2b_xx_4; \\
b_{5,1}x_1 + b_{5,2}x_2 + b_{5,3}x_3 + b_{5,4}x_4 + b_{5,5}x_5 + b_{5,6}x_6 + b_{5,7}x_7 + b_{5,8}x_8 &= 0; \\
b_{6,1}x_1 + b_{6,2}x_2 + b_{6,3}x_3 + b_{6,4}x_4 + b_{6,5}x_5 + b_{6,6}x_6 + b_{6,7}x_7 + b_{6,8}x_8 &= -a_xx_5 + b_xx_6; \\
b_{7,1}x_1 + b_{7,2}x_2 + b_{7,3}x_3 + b_{7,4}x_4 + b_{7,5}x_5 + b_{7,6}x_6 + b_{7,7}x_7 + b_{7,8}x_8 &= b_xx_7 + a_xx_8; \\
b_{8,1}x_1 + b_{8,2}x_2 + b_{8,3}x_3 + b_{8,4}x_4 + b_{8,5}x_5 + b_{8,6}x_6 + b_{8,7}x_7 + b_{8,8}x_8 &= 0.
\end{align*}
\]

Taking \(x = (1, 0, 0, 0, 0, 0, 0, 0) \), \(x = (0, 0, 1, 0, 0, 0, 0, 0) \), etc, from this it follows that

\[
\begin{align*}
b_{1,1} &= b_{1,3} = b_{1,4} = b_{1,5} = b_{1,6} = b_{1,7} = b_{1,8} = 1; \\
b_{2,1} &= b_{2,3} = b_{2,4} = b_{2,5} = b_{2,6} = b_{2,7} = b_{2,8} = 0; \\
b_{3,1} &= b_{3,2} = b_{3,4} = b_{3,5} = b_{3,6} = b_{3,7} = b_{3,8} = 0; \\
b_{4,1} &= b_{4,2} = b_{4,3} = b_{4,5} = b_{4,6} = b_{4,7} = b_{4,8} = 0; \\
b_{5,1} &= b_{5,2} = b_{5,3} = b_{5,4} = b_{5,5} = b_{5,6} = b_{5,7} = b_{5,8} = 0; \\
b_{6,1} &= b_{6,2} = b_{6,3} = b_{6,4} = b_{6,5} = b_{6,6} = b_{6,7} = b_{6,8} = 0; \\
b_{7,1} &= b_{7,2} = b_{7,3} = b_{7,4} = b_{7,5} = b_{7,6} = 0; \\
b_{8,1} &= b_{8,2} = b_{8,3} = b_{8,4} = b_{8,5} = b_{8,6} = b_{8,7} = b_{8,8} = 0.
\end{align*}
\]

Then for every \(x \in W(2) \) there exist elements \(a_x, b_x \) in \(\mathbb{F} \) such that

\[
\begin{align*}
b_{1,2}x_2 &= a_xx_2; \\
b_{2,2}x_2 &= -b_xx_2; \\
b_{3,1}x_1 + b_{3,3}x_3 &= 2a_xx_1 + b_xx_3; \\
b_{4,3}x_3 + b_{4,4}x_4 &= 3a_xx_3 + 2b_xx_4; \\
b_{6,5}x_5 + b_{6,6}x_6 &= -a_xx_5 + b_xx_6; \\
b_{7,7}x_7 + b_{7,8}x_8 &= b_xx_7 + a_xx_8.
\end{align*}
\]
Using 1-th and 3-th equalities of system (3) we get
\[
\begin{align*}
2b_{1,2}x_1x_2 &= 2a_xx_1x_2; \\
b_{3,1}x_1x_2 + b_{3,3}x_2x_3 &= 2a_xx_1x_2 + b_xx_2x_3.
\end{align*}
\]

and
\[
(b_{3,1} - 2b_{1,2})x_1x_2 + b_{3,3}x_2x_3 = b_xx_2x_3.
\]

Hence, \(b_{3,1} = 2b_{1,2}\). Similarly, using equalities of (3) we get
\[
b_{4,3} = 3b_{1,2}, b_{2,2} = -b_{3,3}, b_{4,4} = -2b_{2,2}.
\]

Using 1-th and 5-th equalities of system (3) we get
\[
\begin{align*}
b_{1,2}x_2x_5 &= a_xx_2x_5; \\
b_{6,5}x_5x_2 + b_{6,6}x_6x_2 &= -a_xx_5x_2 + b_xx_6x_2.
\end{align*}
\]

and
\[
(b_{6,5} + b_{1,2})x_2x_5 + b_{6,6}x_6x_2 = b_xx_6x_2.
\]

Hence, \(b_{6,5} = -b_{1,2}\).

Using 2-th and 5-th equalities of system (3) we get
\[
\begin{align*}
b_{2,2}x_2x_6 &= -b_xx_2x_6; \\
b_{6,5}x_5x_2 + b_{6,6}x_6x_2 &= -a_xx_5x_2 + b_xx_6x_2.
\end{align*}
\]

and
\[
b_{6,5}x_5x_2 + (b_{6,6} + b_{2,2})x_6x_2 = -a_xx_5x_2.
\]

Hence, \(b_{6,6} = -b_{2,2}\).

Using 1-th and 6-th equalities of system (3) we get
\[
\begin{align*}
b_{1,2}x_2x_8 &= a_xx_2x_8; \\
b_{7,7}x_7x_2 + b_{7,8}x_8x_2 &= b_xx_7x_2 + a_xx_8x_2.
\end{align*}
\]

and
\[
b_{7,7}x_7x_2 + (b_{7,8} - b_{1,2})x_8x_2 = b_xx_7x_2.
\]

Hence, \(b_{7,8} = b_{1,2}\).

Using 2-th and 6-th equalities of system (3) we get
\[
\begin{align*}
b_{2,2}x_2x_7 &= -b_xx_2x_7; \\
b_{7,7}x_7x_2 + b_{7,8}x_8x_2 &= b_xx_7x_2 + a_xx_8x_2.
\end{align*}
\]

and
\[
(b_{7,7} + b_{2,2})x_7x_2 + b_{7,8}x_8x_2 = a_xx_8x_2.
\]

Hence, \(b_{7,7} = -b_{2,2}\).

These equalities show that the matrix of the linear map \(\nabla\) is of the form (1). Therefore, by lemma 1 \(\nabla\) is a derivation. This completes the proof.

Since a derivation on \(W(2)\) is invariant on the subalgebras \(S_2\) and \(W_2\), we have the following corollary.

Corollary 1. Every local derivation of the algebras \(S_2\) and \(W_2\) is a derivation.
4 2-Local derivations of conservative algebras of 2-dimensional algebras

In this section we give another characterization of derivations on conservative algebras of 2-dimensional algebras.

A (not necessary linear) map $\Delta: A \rightarrow A$ is called a 2-local derivation, if for any elements $x, y \in A$ there exists a derivation $D_{x,y}: A \rightarrow A$ such that $\Delta(x) = D_{x,y}(x)$, $\Delta(y) = D_{x,y}(y)$.

Theorem 2. Every 2-local derivation of the algebras S_2, W_2 and $W(2)$ is a derivation.

Proof. We will prove that every 2-local derivation of $W(2)$ is a derivation.

Let Δ be an arbitrary 2-local derivation of $W(2)$. Then, by the definition, for every element $a \in W(2)$, there exists a derivation D_{a,e_2} of $W(2)$ such that

$$\Delta(a) = D_{a,e_2}(a), \quad \Delta(e_2) = D_{a,e_2}(e_2).$$

By lemma 1, the matrix A_{a,e_2} of the derivation D_{a,e_2} has the following matrix form:

$$A_{a,e_2} = \begin{pmatrix}
0 & \alpha_{a,e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta_{a,e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\
2\alpha_{a,e_2} & 0 & \beta_{a,e_2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3\alpha_{a,e_2} & 2\beta_{a,e_2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}.$$

Let v be an arbitrary element in $W(2)$. Then there exists a derivation D_{v,e_2} of $W(2)$ such that

$$\Delta(v) = D_{v,e_2}(v), \quad \Delta(e_2) = D_{v,e_2}(e_2).$$

By lemma 1, the matrix A_{v,e_2} of the derivation D_{v,e_2} has the following matrix form:

$$A_{v,e_2} = \begin{pmatrix}
0 & \alpha_{v,e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta_{v,e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\
2\alpha_{v,e_2} & 0 & \beta_{v,e_2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3\alpha_{v,e_2} & 2\beta_{v,e_2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}.$$

Since $\Delta(e_2) = D_{a,e_2}(e_2) = D_{v,e_2}(e_2)$, we have

$$\alpha_{a,e_2} = \alpha_{v,e_2}, \quad \beta_{a,e_2} = \beta_{v,e_2},$$
that it
\[D_{v,e_2} = D_{a,e_2}. \]
Therefore, for any element \(a \) of the algebra \(W(2) \)
\[\Delta(a) = D_{v,e_2}(a), \]
that it \(D_{v,e_2} \) does not depend on \(a \). Hence, \(\Delta \) is a derivation by lemma 1.

The cases of the algebras \(S_2 \) and \(W_2 \) are also similarly proved. This ends the proof. \(\square \)

5 2-Local automorphisms of conservative algebras of 2-dimensional algebras

A (not necessary linear) map \(\Delta : \mathcal{A} \to \mathcal{A} \) is called a 2-local automorphism, if for any elements \(x, y \in \mathcal{A} \) there exists an automorphism \(\phi_{x,y} : \mathcal{A} \to \mathcal{A} \) such that
\[\Delta(x) = \phi_{x,y}(x), \Delta(y) = \phi_{x,y}(y). \]

Theorem 3. Every 2-local automorphism of the algebras \(S_2, W_2 \) and \(W(2) \) is an automorphism.

Proof. We prove that every 2-local automorphism of \(W(2) \) is an automorphism.

Let \(\Delta \) be an arbitrary 2-local automorphism of \(W(2) \). Then, by the definition, for every element \(x \in W(2) \),
\[x = x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7 + x_8 e_8, \]
there exist elements \(a_{x,e_2}, b_{x,e_2} \) such that
\[
\begin{pmatrix}
1 & a_{x,e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2a_{x,e_2} b_{x,e_2} & a_{x,e_2}^2 b_{x,e_2} & b_{x,e_2} & 0 & 0 & 0 & 0 & 0 \\
3a_{x,e_2}^2 b_{x,e_2}^2 & a_{x,e_2}^3 b_{x,e_2}^2 & 3a_{x,e_2} b_{x,e_2}^2 & b_{x,e_2}^2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b_{x,e_2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{x,e_2} b_{x,e_2} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
\[\Delta(x) = A_{x,e_2} \bar{x}, \]
where \(\bar{x} = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8) \) is the vector corresponding to \(x \), and
\[\Delta(e_2) = A_{x,e_2} e_2 = (a_{x,e_2}, \frac{1}{b_{x,e_2}}, a_{x,e_2}^2 b_{x,e_2}, a_{x,e_2}^3 b_{x,e_2}^2, 0, 0, 0, 0). \]

Since the element \(x \) was chosen arbitrarily, we have
\[\Delta(e_2) = (a_{x,e_2}, \frac{1}{b_{x,e_2}}, a_{x,e_2}^2 b_{x,e_2}, a_{x,e_2}^3 b_{x,e_2}^2, 0, 0, 0, 0) \]
\begin{align*}
= (a_{y,e_2}, \frac{1}{b_{y,e_2}}, a_{y,e_2}^2 b_{y,e_2}, a_{y,e_2}^3 b_{y,e_2}^2, 0, 0, 0, 0),
\end{align*}
for each pair \(x, y \) of elements in \(W(2) \). Hence, \(a_{x,e_2} = a_{y,e_2}, b_{x,e_2} = b_{y,e_2} \). Therefore
\[\Delta(x) = A_{y,e_2} x \]
for any \(x \in W(2) \) and the matrix \(A_{y,e_2} \) does not depend on \(x \). Thus, by lemma 2 \(\Delta \) is an automorphism.

The cases of the algebras \(S_2 \) and \(W_2 \) are also similarly proved. The proof is complete. \(\square \)

6 Local automorphisms of conservative algebras of 2-dimensional algebras

Let \(A \) be an algebra. A linear map \(\nabla: A \to A \) is called a local automorphism, if for any element \(x \in A \) there exists an automorphism \(\phi_x: A \to A \) such that \(\nabla(x) = \phi_x(x) \).

Theorem 4. Every local automorphism of the algebras \(S_2, W_2 \) and \(W(2) \) is an automorphism.

Proof. We prove that every local automorphism of \(W(2) \) is an automorphism.

Let \(\nabla \) be an arbitrary local automorphism of \(W(2) \) and \(B \) be its matrix, i.e.,
\[\nabla(x) = B \bar{x}, x \in W(2), \]
where \(\bar{x} \) is the vector corresponding to \(x \). Then, by the definition, for every element \(x \in W(2) \),
\[x = x_1 e_1 + x_2 e_2 + x_3 e_3 + x_4 e_4 + x_5 e_5 + x_6 e_6 + x_7 e_7 + x_8 e_8, \]
there exist elements \(a_x, b_x \) such that
\[
A_x = \begin{pmatrix}
1 & a_x & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & b_x & 0 & 0 & 0 & 0 & 0 \\
2a_x b_x & a_x^2 b_x & 0 & 0 & 0 & 0 & 0 & 0 \\
3a_x^2 b_x^2 & a_x^3 b_x^2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]
and
\[\nabla(x) = B \bar{x} = A_x \bar{x}. \]
Using these equalities and by choosing subsequently \(x = e_1, x = e_2, \ldots, x = e_8 \) we get

\[
B = \begin{pmatrix}
1 & a_{e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{b_{e_2}} & a_{e_2}b_{e_2} & b_{e_3} & 0 & 0 & 0 & 0 \\
2a_{e_1}b_{e_1} & a_{e_2}^2b_{e_2} & b_{e_3} & 0 & 0 & 0 & 0 & 0 \\
3a_{e_1}^2b_{e_1}^2 & a_{e_2}^3b_{e_2}^2 & 3a_{e_3}b_{e_3}^2 & b_{e_4}^2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{e_7} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

Since \(\nabla (e_6 + e_7) = \nabla (e_6) + \nabla (e_7) \), we have

\[
b_{e_6 + e_7} = b_{e_6}, b_{e_6 + e_7} = b_{e_7}.
\]

Hence,

\[
b_{e_6} = b_{e_7}.
\]

Similarly to this equality we get \(b_{e_3} = b_{e_6} \) and \(b_{e_6} = b_{e_2} \neq 0 \). Hence,

\[
b_{e_2} = b_{e_3} = b_{e_6} = b_{e_7}.
\] (4)

Since \(\nabla (e_5 + e_8) = \nabla (e_5) + \nabla (e_8) \), we have

\[
a_{e_5 + e_8}b_{e_5 + e_8} = a_{e_5}b_{e_5}, a_{e_5 + e_8}b_{e_5 + e_8} = a_{e_8}b_{e_8}.
\]

From this it follows that

\[
a_{e_5}b_{e_5} = a_{e_8}b_{e_8}.
\]

Similarly to this equality we get \(a_{e_1}b_{e_1} = a_{e_8}b_{e_8} \). Hence,

\[
a_{e_1}b_{e_1} = a_{e_5}b_{e_5} = a_{e_8}b_{e_8}.
\] (5)

Since \(\nabla (e_4 + e_6) = \nabla (e_4) + \nabla (e_6) \), we have

\[
b_{e_4 + e_6}^2 = b_{e_4}^2, b_{e_4 + e_6}^2 = b_{e_6}^2.
\]

From this it follows that

\[
b_{e_4}^2 = b_{e_6}^2.
\]

Hence, by (4), we get

\[
b_{e_4}^2 = b_{e_2}^2.
\] (6)

Since \(\nabla (e_2 + e_8) = \nabla (e_2) + \nabla (e_8) \), we have

\[
a_{e_2} = a_{e_2 + e_8}, a_{e_2 + e_8}^2b_{e_2 + e_8} = a_{e_2}^2b_{e_2}, a_{e_2 + e_8}b_{e_2 + e_8} = a_{e_8}b_{e_8}.
\]

Hence,

\[
b_{e_2 + e_8} = b_{e_2}, a_{e_2 + e_8}b_{e_2 + e_8} = a_{e_2}b_{e_2}.
\]
and, therefore,
\[a_{e_2} b_{e_2} = a_{e_8} b_{e_8}. \] (7)

Similarly, since \(\nabla(e_2 + e_3) = \nabla(e_2) + \nabla(e_3) \), we have
\[
a_{e_2} = a_{e_2+e_3}, \quad b_{e_2}^{-1} = b_{e_2+e_3}^{-1}, \quad a_{e_2+e_3}^3 b_{e_2+e_3}^2 + 3a_{e_2+e_3} b_{e_2+e_3}^2 = a_{e_2}^3 b_{e_2}^2 + 3a_{e_3} b_{e_3}^2.
\]

Hence,
\[b_{e_2} = b_{e_2+e_3} \]
and by (4) and \(a_{e_2} = a_{e_2+e_3} \) we get
\[a_{e_2}^3 + 3a_{e_2} = a_{e_2}^3 + 3a_{e_3}.
\]
Therefore, \(a_{e_2} = a_{e_3} \) and
\[a_{e_2} b_{e_2}^2 = a_{e_3} b_{e_3}^2. \] (8)

Finally, since \(\nabla(e_1 + e_8) = \nabla(e_1) + \nabla(e_8) \), we have
\[
a_{e_1+e_8} b_{e_1+e_8} = a_{e_1} b_{e_1}, \quad a_{e_1+e_8} b_{e_1+e_8} = a_{e_8} b_{e_8}.
\]
Hence,
\[a_{e_1} b_{e_1} = a_{e_8} b_{e_8}. \]

By (7), from the last equalities it follows that
\[a_{e_1} b_{e_1} = a_{e_2} b_{e_2}, \quad a_{e_1}^2 b_{e_1}^2 = (a_{e_1} b_{e_1})^2 = (a_{e_2} b_{e_2})^2 = a_{e_2} b_{e_2}^2. \] (9)

By (4), (5), (6), (7), (8), (9) the matrix \(B \) has the following matrix form
\[
B = \begin{pmatrix}
1 & a_{e_2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & a_{e_2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & a_{e_2} & b_{e_2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & a_{e_2}^2 b_{e_2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & a_{e_2} b_{e_2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & a_{e_2} b_{e_2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & a_{e_2} b_{e_2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

Hence, by lemma 2, the local automorphism \(\nabla \) is an automorphism.

The cases of the algebras \(S_2 \) and \(W_2 \) are also similarly proved. This ends the proof. \[\square \]

The authors thank professor Ivan Kaygorodov for detailed reading of this work and for suggestions which improved the paper.
References

[2] Sh. Ayupov, F. Arzikulov: 2-Local derivations on associative and Jordan matrix rings

[7] Sh. Ayupov, K. Kudaybergenov, B. Omirov: Local and 2-local derivations and
automorphisms on simple Leibniz algebras. Bulletin of the Malaysian Mathematical

117–121.

[18] I. Kaygorodov, A. Khudoyberdiyev, A. Sattarov: One-generated nilpotent terminal

106625.

Received: 2 August 2020
Accepted for publication: 27 September 2020
Communicated by: Ivan Kaygorodov