Conservative algebras of 2-dimensional algebras, III

Farhodjon Arzikulov, Nodirbek Umrzaqov

Abstract

In the present paper we prove that every local and 2-local derivation on conservative algebras of 2-dimensional algebras are derivations. Also, we prove that every local and 2 -local automorphism on conservative algebras of 2 -dimensional algebras are automorphisms.

1 Introduction

The present paper is devoted to the study of conservative algebras. In 1972 Kantor [12] introduced conservative algebras as a generalization of Jordan algebras (also, see a good written survey about the study of conservative algebras [25]).

In 1990 Kantor [14] defined the multiplication • on the set of all algebras (i.e. all multiplications) on the n-dimensional vector space V_{n} over a field \mathbb{F} of characteristic zero as follows: $A \cdot B=\left[L_{e}^{A}, B\right]$, where A and B are multiplications and $e \in V_{n}$ is some fixed vector. If $n>1$, then the algebra $W(n)$ does not belong to any well-known class of algebras (such as associative, Lie, Jordan, or Leibniz algebras). The algebra $W(n)$ is a conservative algebra [12].

In [12] Kantor classified all conservative 2-dimensional algebras and defined the class of terminal algebras as algebras satisfying some certain identity. He proved that every terminal algebra is a conservative algebra and classified all simple finitedimensional terminal algebras with left quasi-unit over an algebraically closed field of characteristic zero [13]. Terminal algebras were also studied in [18], [19].

In 2017 Kaygorodov and Volkov [16] described automorphisms, one-sided ideals, and idempotents of $W(2)$. Also a similar problem is solved for the algebra W_{2} of all commutative algebras on the 2-dimensional vector space and for the algebra

[^0]S_{2} of all commutative algebras with zero multiplication trace on the 2-dimensional vector space. The papers [15], [17] are also devoted to the study of conservative algebras and superalgebras.

Let \mathcal{A} be an algebra. A linear operator ∇ on \mathcal{A} is called a local derivation if for every $x \in \mathcal{A}$ there exists a derivation ϕ_{x} of \mathcal{A}, depending on x, such that $\nabla(x)=\phi_{x}(x)$. The history of local derivations had begun from the paper of Kadison [11]. Kadison introduced the concept of local derivation and proved that each continuous local derivation from a von Neumann algebra into its dual Banach bimodule is a derivation.

A similar notion, which characterizes nonlinear generalizations of derivations, was introduced by Šemrl as 2-local derivations. In his paper [26] was proved that a 2-local derivation of the algebra $B(H)$ of all bounded linear operators on the infinite-dimensional separable Hilbert space H is a derivation. After his works, appear numerous new results related to the description of local and 2-local derivations of associative algebras (see, for example, [1], [3], [4], [20], [21], [23]).

The study of local and 2-local derivations of non-associative algebras was initiated in some papers of Ayupov and Kudaybergenov (for the case of Lie algebras, see [5], [6]). In particular, they proved that there are no non-trivial local and 2local derivations on semisimple finite-dimensional Lie algebras. In [8] examples of 2-local derivations on nilpotent Lie algebras which are not derivations, were also given. Later, the study of local and 2-local derivations was continued for Leibniz algebras [7], Malcev algebras and Jordan algebras [2]. Local automorphisms and 2-local automorphisms, also were studied in many cases, for example, they were studied on Lie algebras [5], [10].

Now, a linear operator ∇ on \mathcal{A} is called a local automorphism if for every $x \in \mathcal{A}$ there exists an automorphism ϕ_{x} of \mathcal{A}, depending on x, such that $\nabla(x)=$ $\phi_{x}(x)$. The concept of local automorphism was introduced by Larson and Sourour [22] in 1990. They proved that, invertible local automorphisms of the algebra of all bounded linear operators on an infinite-dimensional Banach space X are automorphisms.

A similar notion, which characterizes non-linear generalizations of automorphisms, was introduced by Šemrl in [26] as 2-local automorphisms. Namely, a map $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ (not necessarily linear) is called a 2-local automorphism, if for every $x, y \in \mathcal{A}$ there exists an automorphism $\phi_{x, y}: \mathcal{A} \rightarrow \mathcal{A}$ such that $\Delta(x)=\phi_{x, y}(x)$ and $\Delta(y)=\phi_{x, y}(y)$. After the work of Semrl, it appeared numerous new results related to the description of local and 2-local automorphisms of algebras (see, for example, [5], [7], [9], [10], [21]).

In the present paper, we continue the study of derivations, local and 2-local derivations of conservative algebras of 2-dimensional algebras. We prove that every local and 2-local derivation of the conservative algebras of 2-dimensional algebras are derivations. In the present paper, we continue the study of automorphisms, local and 2-local automorphisms in the case of conservative algebras of 2-dimensional algebras. We prove that every local and 2-local automorphism of the conservative algebras of 2-dimensional algebras are automorphisms.

2 Preliminaries

Throughout this paper \mathbb{F} is some fixed field of characteristic zero. A multiplication on 2 -dimensional vector space is defined by a $2 \times 2 \times 2$ matrix. Their classification was given in many papers (see, for example, [24]). Let consider the space $W(2)$ of all multiplications on the 2-dimensional space V_{2} with a basis v_{1}, v_{2}. The definition of the multiplication • on the algebra $W(2)$ is defined as follows: we fix the vector $v_{1} \in V_{2}$ and define

$$
(A \cdot B)(x, y)=A\left(v_{1}, B(x, y)\right)-B\left(A\left(v_{1}, x\right), y\right)-B\left(x, A\left(v_{1}, y\right)\right)
$$

for $x, y \in V_{2}$ and $A, B \in W(2)$. The algebra $W(2)$ is conservative [14]. Let consider the multiplications $\alpha_{i, j}^{k}(i, j, k=1,2)$ on V_{2} defined by the formula $\alpha_{i, j}^{k}\left(v_{t}, v_{l}\right)=\delta_{i t} \delta_{j l} v_{k}$ for all $t, l \in\{1,2\}$. It is easy to see that $\left\{\alpha_{i, j}^{k} \mid i, j, k=1,2\right\}$ is a basis of the algebra $W(2)$. The multiplication table of $W(2)$ in this basis is given in [15]. In this work we use another basis for the algebra $W(2)$ (from [16]). Let introduce the notation

$$
\begin{gathered}
e_{1}=\alpha_{11}^{1}-\alpha_{12}^{2}-\alpha_{21}^{2}, e_{2}=\alpha_{11}^{2}, e_{3}=\alpha_{22}^{2}-\alpha_{12}^{1}-\alpha_{21}^{1}, e_{4}=\alpha_{22}^{1}, e_{5}=2 \alpha_{11}^{1}+\alpha_{12}^{2}+\alpha_{21}^{2}, \\
e_{6}=2 a_{22}^{2}+\alpha_{12}^{1}+\alpha_{21}^{1}, e_{7}=\alpha_{12}^{1}-\alpha_{21}^{1}, e_{8}=\alpha_{12}^{2}-\alpha_{21}^{2} .
\end{gathered}
$$

It is easy to see that the multiplication table of $W(2)$ in the basis e_{1}, \ldots, e_{8} is the following.

	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}
e_{1}	$-e_{1}$	$-3 e_{2}$	e_{3}	$3 e_{4}$	$-e_{5}$	e_{6}	e_{7}	$-e_{8}$
e_{2}	$3 e_{2}$	0	$2 e_{1}$	e_{3}	0	$-e_{5}$	e_{8}	0
e_{3}	$-2 e_{3}$	$-e_{1}$	$-3 e_{4}$	0	e_{6}	0	0	$-e_{7}$
e_{4}	0	0	0	0	0	0	0	0
e_{5}	$-2 e_{1}$	$-3 e_{2}$	$-e_{3}$	0	$-2 e_{5}$	$-e_{6}$	$-e_{7}$	$-2 e_{8}$
e_{6}	$2 e_{3}$	e_{1}	$3 e_{4}$	0	$-e_{6}$	0	0	e_{7}
e_{7}	$2 e_{3}$	e_{1}	$3 e_{4}$	0	$-e_{6}$	0	0	e_{7}
e_{8}	0	e_{2}	$-e_{3}$	$-2 e_{4}$	0	$-e_{6}$	$-e_{7}$	0

The subalgebra generated by the elements e_{1}, \ldots, e_{6} is the conservative (and, moreover, terminal) algebra W_{2} of commutative 2-dimensional algebras. The subalgebra generated by the elements e_{1}, \ldots, e_{4} is the conservative (and, moreover, terminal) algebra S_{2} of all commutative 2-dimensional algebras with zero multiplication trace [15].

Let \mathcal{A} be an algebra. A linear map $D: \mathcal{A} \rightarrow \mathcal{A}$ is called a derivation, if $D(x y)=$ $D(x) y+x D(y)$ for any two elements $x, y \in \mathcal{A}$.

Our main tool for study of local and 2-local derivations of the algebras S_{2}, W_{2} and $W(2)$ is the following lemma [15, Theorem 6], where the matrix of a derivation is calculated in the new basis e_{1}, \ldots, e_{8}.

Lemma 1. A linear map $D: W(2) \rightarrow W(2)$ is a derivation if and only if the matrix of D has the following matrix form:

$$
\left(\begin{array}{cccccccc}
0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 \tag{1}\\
0 & -\beta & 0 & 0 & 0 & 0 & 0 & 0 \\
2 \alpha & 0 & \beta & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 \alpha & 2 \beta & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\alpha & \beta & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta & \alpha \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

where α, β are elements in \mathbb{F}.
Now, we give a characterization of automorphisms on conservative algebras of 2-dimensional algebras.

Let \mathcal{A} be an algebra. A bijective linear map $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is called an automorphism, if $\phi(x y)=\phi(x) \phi(y)$ for any elements $x, y \in \mathcal{A}$.

Our principal tool for study of local and 2-local automorphisms of the algebras S_{2}, W_{2} and $W(2)$ is the following lemma, which was proved in [16, Theorem 11].

Lemma 2. A linear map $\phi: W(2) \rightarrow W(2)$ is an automorphism if and only if the matrix of ϕ has the following matrix form:

$$
\left(\begin{array}{cccccccc}
1 & a & 0 & 0 & 0 & 0 & 0 & 0 \tag{2}\\
0 & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 a b & a^{2} b & b & 0 & 0 & 0 & 0 & 0 \\
3 a^{2} b^{2} & a^{3} b^{2} & 3 a b^{2} & b^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a b & b & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b & a b \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

where a, b are elements in \mathbb{F} and $b \neq 0$.

3 Local derivations of conservative algebras of 2-dimensional algebras

In this section we give a characterization of derivations on conservative algebras of 2-dimensional algebras.

Let \mathcal{A} be an algebra. A linear map $\nabla: \mathcal{A} \rightarrow \mathcal{A}$ is called a local derivation, if for any element $x \in \mathcal{A}$ there exists a derivation $D_{x}: \mathcal{A} \rightarrow \mathcal{A}$ such that $\nabla(x)=D_{x}(x)$.

Theorem 1. Every local derivation of the algebra $W(2)$ is a derivation.
Proof. Let ∇ be an arbitrary local derivation of $W(2)$ and write

$$
\nabla(x)=B \bar{x}, x \in W(2),
$$

where $B=\left(b_{i, j}\right)_{i, j=1}^{8}, \bar{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)$ is the vector corresponding to x. Then for every $x \in W(2)$ there exist elements a_{x}, b_{x} in \mathbb{F} such that

$$
B \bar{x}=\left(\begin{array}{cccccccc}
0 & a_{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -b_{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 a_{x} & 0 & b_{x} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 a_{x} & 2 b_{x} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a_{x} & b_{x} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b_{x} & a_{x} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8}
\end{array}\right) .
$$

In other words

$$
\left\{\begin{array}{l}
b_{1,1} x_{1}+b_{1,2} x_{2}+b_{1,3} x_{3}+b_{1,4} x_{4}+b_{1,5} x_{5}+b_{1,6} x_{6}+b_{1,7} x_{7}+b_{1,8} x_{8}=a_{x} x_{2} ; \\
b_{2,1} x_{1}+b_{2,2} x_{2}+b_{2,3} x_{3}+b_{2,4} x_{4}+b_{2,5} x_{5}+b_{2,6} x_{6}+b_{2,7} x_{7}+b_{2,8} x_{8}=-b_{x} x_{2} ; \\
b_{3,1} x_{1}+b_{3,2} x_{2}+b_{3,3} x_{3}+b_{3,4} x_{4}+b_{3,5} x_{5}+b_{3,6} x_{6}+b_{3,7} x_{7}+b_{3,8} x_{8}=2 a_{x} x_{1}+b_{x} x_{3} ; \\
b_{4,1} x_{1}+b_{4,2} x_{2}+b_{4,3} x_{3}+b_{4,4} x_{4}+b_{4,5} x_{5}+b_{4,6} x_{6}+b_{4,7} x_{7}+b_{4,8} x_{8}=3 a_{x} x_{3}+2 b_{x} x_{4} ; \\
b_{5,1} x_{1}+b_{5,2} x_{2}+b_{5,3} x_{3}+b_{5,4} x_{4}+b_{5,5} x_{5}+b_{5,6} x_{6}+b_{5,7} x_{7}+b_{5,8} x_{8}=0 \\
b_{6,1} x_{1}+b_{6,2} x_{2}+b_{6,3} x_{3}+b_{6,4} x_{4}+b_{6,5} x_{5}+b_{6,6} x_{6}+b_{6,7} x_{7}+b_{6,8} x_{8}=-a_{x} x_{5}+b_{x} x_{6} ; \\
b_{7,1} x_{1}+b_{7,2} x_{2}+b_{7,3} x_{3}+b_{7,4} x_{4}+b_{7,5} x_{5}+b_{7,6} x_{6}+b_{7,7} x_{7}+b_{7,8} x_{8}=b_{x} x_{7}+a_{x} x_{8} ; \\
b_{8,1} x_{1}+b_{8,2} x_{2}+b_{8,3} x_{3}+b_{8,4} x_{4}+b_{8,5} x_{5}+b_{8,6} x_{6}+b_{8,7} x_{7}+b_{8,8} x_{8}=0 .
\end{array}\right.
$$

Taking $x=(1,0,0,0,0,0,0,0), x=(0,0,1,0,0,0,0,0), x=(0,0,0,1,0,0,0,0)$, etc, from this it follows that

$$
\begin{gathered}
b_{1,1}=b_{1,3}=b_{1,4}=b_{1,5}=b_{1,6}=b_{1,7}=b_{1,8}= \\
=b_{2,1}=b_{2,3}=b_{2,4}=b_{2,5}=b_{2,6}=b_{2,7}=b_{2,8} \\
=b_{3,2}=b_{3,4}=b_{3,5}=b_{3,6}=b_{3,7}=b_{3,8} \\
=b_{4,1}=b_{4,2}=b_{4,5}=b_{4,6}=b_{4,7}=b_{4,8} \\
=b_{5,1}=b_{5,2}=b_{5,3}=b_{5,4}=b_{5,5}=b_{5,6}=b_{5,7}=b_{5,8} \\
=b_{6,1}=b_{6,2}=b_{6,3}=b_{6,4}=b_{6,7}=b_{6,8} \\
=b_{7,1}=b_{7,2}=b_{7,3}=b_{7,4}=b_{7,5}=b_{7,6} \\
=b_{8,1}=b_{8,2}=b_{8,3}=b_{8,4}=b_{8,5}=b_{8,6}=b_{8,7}=b_{8,8}=0 .
\end{gathered}
$$

Then for every $x \in W(2)$ there exist elements a_{x}, b_{x} in \mathbb{F} such that

$$
\left\{\begin{array}{l}
b_{1,2} x_{2}=a_{x} x_{2} \tag{3}\\
b_{2,2} x_{2}=-b_{x} x_{2} \\
b_{3,1} x_{1}+b_{3,3} x_{3}=2 a_{x} x_{1}+b_{x} x_{3} \\
b_{4,3} x_{3}+b_{4,4} x_{4}=3 a_{x} x_{3}+2 b_{x} x_{4} \\
b_{6,5} x_{5}+b_{6,6} x_{6}=-a_{x} x_{5}+b_{x} x_{6} \\
b_{7,7} x_{7}+b_{7,8} x_{8}=b_{x} x_{7}+a_{x} x_{8}
\end{array}\right.
$$

Using 1-th and 3 -th equalities of system (3) we get

$$
\left\{\begin{array}{l}
2 b_{1,2} x_{1} x_{2}=2 a_{x} x_{1} x_{2} \\
b_{3,1} x_{1} x_{2}+b_{3,3} x_{2} x_{3}=2 a_{x} x_{1} x_{2}+b_{x} x_{2} x_{3}
\end{array}\right.
$$

and

$$
\left(b_{3,1}-2 b_{1,2}\right) x_{1} x_{2}+b_{3,3} x_{2} x_{3}=b_{x} x_{2} x_{3}
$$

Hence, $b_{3,1}=2 b_{1,2}$. Similarly, using equalities of (3) we get

$$
b_{4,3}=3 b_{1,2}, b_{2,2}=-b_{3,3}, b_{4,4}=-2 b_{2,2} .
$$

Using 1 -th and 5 -th equalities of system (3) we get

$$
\left\{\begin{array}{l}
b_{1,2} x_{2} x_{5}=a_{x} x_{2} x_{5} \\
b_{6,5} x_{5} x_{2}+b_{6,6} x_{6} x_{2}=-a_{x} x_{5} x_{2}+b_{x} x_{6} x_{2} .
\end{array}\right.
$$

and

$$
\left(b_{6,5}+b_{1,2}\right) x_{2} x_{5}+b_{6,6} x_{6} x_{2}=b_{x} x_{6} x_{2} .
$$

Hence, $b_{6,5}=-b_{1,2}$.
Using 2 -th and 5 -th equalities of system (3) we get

$$
\left\{\begin{array}{l}
b_{2,2} x_{2} x_{6}=-b_{x} x_{2} x_{6} \\
b_{6,5} x_{5} x_{2}+b_{6,6} x_{6} x_{2}=-a_{x} x_{5} x_{2}+b_{x} x_{6} x_{2} .
\end{array}\right.
$$

and

$$
b_{6,5} x_{5} x_{2}+\left(b_{6,6}+b_{2,2}\right) x_{6} x_{2}=-a_{x} x_{5} x_{2}
$$

Hence, $b_{6,6}=-b_{2,2}$.
Using 1 -th and 6 -th equalities of system (3) we get

$$
\left\{\begin{array}{l}
b_{1,2} x_{2} x_{8}=a_{x} x_{2} x_{8} \\
b_{7,7} x_{7} x_{2}+b_{7,8} x_{8} x_{2}=b_{x} x_{7} x_{2}+a_{x} x_{8} x_{2}
\end{array}\right.
$$

and

$$
b_{7,7} x_{7} x_{2}+\left(b_{7,8}-b_{1,2}\right) x_{8} x_{2}=b_{x} x_{7} x_{2} .
$$

Hence, $b_{7,8}=b_{1,2}$.
Using 2 -th and 6 -th equalities of system (3) we get

$$
\left\{\begin{array}{l}
b_{2,2} x_{2} x_{7}=-b_{x} x_{2} x_{7} \\
b_{7,7} x_{7} x_{2}+b_{7,8} x_{8} x_{2}=b_{x} x_{7} x_{2}+a_{x} x_{8} x_{2}
\end{array}\right.
$$

and

$$
\left(b_{7,7}+b_{2,2}\right) x_{7} x_{2}+b_{7,8} x_{8} x_{2}=a_{x} x_{8} x_{2}
$$

Hence, $b_{7,7}=-b_{2,2}$.
These equalities show that the matrix of the linear map ∇ is of the form (1). Therefore, by lemma 1∇ is a derivation. This completes the proof.

Since a derivation on $W(2)$ is invariant on the subalgebras S_{2} and W_{2}, we have the following corollary.

Corollary 1. Every local derivation of the algebras S_{2} and W_{2} is a derivation.

4 2-Local derivations of conservative algebras of 2-dimensional algebras

In this section we give another characterization of derivations on conservative algebras of 2-dimensional algebras.

A (not necessary linear) map $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a 2-local derivation, if for any elements $x, y \in \mathcal{A}$ there exists a derivation $D_{x, y}: \mathcal{A} \rightarrow \mathcal{A}$ such that $\Delta(x)=D_{x, y}(x)$, $\Delta(y)=D_{x, y}(y)$.

Theorem 2. Every 2-local derivation of the algebras S_{2}, W_{2} and $W(2)$ is a derivation.

Proof. We will prove that every 2-local derivation of $W(2)$ is a derivation.
Let Δ be an arbitrary 2-local derivation of $W(2)$. T hen, by the definition, for every element $a \in W(2)$, there exists a derivation $D_{a, e_{2}}$ of $W(2)$ such that

$$
\Delta(a)=D_{a, e_{2}}(a), \quad \Delta\left(e_{2}\right)=D_{a, e_{2}}\left(e_{2}\right)
$$

By lemma 1, the matrix $A^{a, e_{2}}$ of the derivation $D_{a, e_{2}}$ has the following matrix form:

$$
A^{a, e_{2}}=\left(\begin{array}{cccccccc}
0 & \alpha_{a, e_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta_{a, e_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 \alpha_{a, e_{2}} & 0 & \beta_{a, e_{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 \alpha_{a, e_{2}} & 2 \beta_{a, e_{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\alpha_{a, e_{2}} & \beta_{a, e_{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta_{a, e_{2}} & \alpha_{a, e_{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Let v be an arbitrary element in $W(2)$. Then there exists a derivation $D_{v, e_{2}}$ of $W(2)$ such that

$$
\Delta(v)=D_{v, e_{2}}(v), \quad \Delta\left(e_{2}\right)=D_{v, e_{2}}\left(e_{2}\right)
$$

By lemma 1, the matrix $A^{v, e_{2}}$ of the derivation $D_{v, e_{2}}$ has the following matrix form:

$$
A^{v, e_{2}}=\left(\begin{array}{cccccccc}
0 & \alpha_{v, e_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\beta_{v, e_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 \alpha_{v, e_{2}} & 0 & \beta_{v, e_{2}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 \alpha_{v, e_{2}} & 2 \beta_{v, e_{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\alpha_{v, e_{2}} & \beta_{v, e_{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \beta_{v, e_{2}} & \alpha_{v, e_{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Since $\Delta\left(e_{2}\right)=D_{a, e_{2}}\left(e_{2}\right)=D_{v, e_{2}}\left(e_{2}\right)$, we have

$$
\alpha_{a, e_{2}}=\alpha_{v, e_{2}}, \beta_{a, e_{2}}=\beta_{v, e_{2}},
$$

that it

$$
D_{v, e_{2}}=D_{a, e_{2}}
$$

Therefore, for any element a of the algebra W (2)

$$
\Delta(a)=D_{v, e_{2}}(a),
$$

that it $D_{v, e_{2}}$ does not depend on a. Hence, Δ is a derivation by lemma 1 .
The cases of the algebras S_{2} and W_{2} are also similarly proved. This ends the proof.

5 2-Local automorphisms of conservative algebras of 2-dimensional algebras

A (not necessary linear) map $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a 2-local automorphism, if for any elements $x, y \in \mathcal{A}$ there exists an automorphism $\phi_{x, y}: \mathcal{A} \rightarrow \mathcal{A}$ such that $\Delta(x)=\phi_{x, y}(x), \Delta(y)=\phi_{x, y}(y)$.

Theorem 3. Every 2-local automorphism of the algebras S_{2}, W_{2} and $W(2)$ is an automorphism.

Proof. We prove that every 2-local automorphism of $W(2)$ is an automorphism.
Let Δ be an arbitrary 2-local automorphism of $W(2)$. Then, by the definition, for every element $x \in W(2)$,

$$
x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5}+x_{6} e_{6}+x_{7} e_{7}+x_{8} e_{8}
$$

there exist elements $a_{x, e_{2}}, b_{x, e_{2}}$ such that

$$
\begin{aligned}
& A_{x, e_{2}} \\
& =\left(\begin{array}{cccccccc}
1 & a_{x, e_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{b_{x, e_{2}}} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 a_{x, e_{2}} b_{x, e_{2}}^{2} & a_{x, e_{2}}^{2} b_{x, e_{2}}^{2} & b_{x, e_{2}} & 0 & 0 & 0 & 0 & 0 \\
3 a_{x, e_{2}}^{2} b_{x, e_{2}}^{2} & a_{x, e_{2}}^{2} b_{x, e_{2}}^{2} & 3 a_{x, e_{2} b_{x, e_{2}}^{2}} b_{x, e_{2}}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a_{x, e_{2}} b_{x, e_{2}} & b_{x, e_{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b_{x, e_{2}} & a_{x, e_{2}} b_{x, e_{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

$\Delta(x)=A_{x, e_{2}} \bar{x}$, where $\bar{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right)$ is the vector corresponding to x, and

$$
\Delta\left(e_{2}\right)=A_{x, e_{2}} e_{2}=\left(a_{x, e_{2}}, \frac{1}{b_{x, e_{2}}}, a_{x, e_{2}}^{2} b_{x, e_{2}}, a_{x, e_{2}}^{3} b_{x, e_{2}}^{2}, 0,0,0,0\right) .
$$

Since the element x was chosen arbitrarily, we have

$$
\Delta\left(e_{2}\right)=\left(a_{x, e_{2}}, \frac{1}{b_{x, e_{2}}}, a_{x, e_{2}}^{2} b_{x, e_{2}}, a_{x, e_{2}}^{3} b_{x, e_{2}}^{2}, 0,0,0,0\right)
$$

$$
=\left(a_{y, e_{2}}, \frac{1}{b_{y, e_{2}}}, a_{y, e_{2}}^{2} b_{y, e_{2}}, a_{y, e_{2}}^{3} b_{y, e_{2}}^{2}, 0,0,0,0\right)
$$

for each pair x, y of elements in $W(2)$. Hence, $a_{x, e_{2}}=a_{y, e_{2}}, b_{x, e_{2}}=b_{y, e_{2}}$. Therefore

$$
\Delta(x)=A_{y, e_{2}} x
$$

for any $x \in W(2)$ and the matrix $A_{y, e_{2}}$ does not depend on x. Thus, by lemma 2 Δ is an automorphism.

The cases of the algebras S_{2} and W_{2} are also similarly proved. The proof is complete.

6 Local automorphisms of conservative algebras of 2-dimensional algebras

Let \mathcal{A} be an algebra. A linear map $\nabla: \mathcal{A} \rightarrow \mathcal{A}$ is called a local automorphism, if for any element $x \in \mathcal{A}$ there exists an automorphism $\phi_{x}: \mathcal{A} \rightarrow \mathcal{A}$ such that $\nabla(x)=\phi_{x}(x)$.

Theorem 4. Every local automorphism of the algebras S_{2}, W_{2} and $W(2)$ is an automorphism.

Proof. We prove that every local automorphism of $W(2)$ is an automorphism.
Let ∇ be an arbitrary local automorphism of $W(2)$ and B be its matrix, i.e.,

$$
\nabla(x)=B \bar{x}, x \in W(2)
$$

where \bar{x} is the vector corresponding to x. Then, by the definition, for every element $x \in W(2)$,

$$
x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5}+x_{6} e_{6}+x_{7} e_{7}+x_{8} e_{8}
$$

there exist elements a_{x}, b_{x} such that

$$
A_{x}=\left(\begin{array}{cccccccc}
1 & a_{x} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{b_{x}} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 a_{x} b_{x} & a_{x}^{2} b_{x} & b_{x} & 0 & 0 & 0 & 0 & 0 \\
3 a_{x}^{2} b_{x}^{2} & a_{x}^{3} b_{x}^{2} & 3 a_{x} b_{x}^{2} & b_{x}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a_{x} b_{x} & b_{x} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b_{x} & a_{x} b_{x} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
\nabla(x)=B \bar{x}=A_{x} \bar{x}
$$

Using these equalities and by choosing subsequently $x=e_{1}, x=e_{2}, \ldots, x=e_{8}$ we get

$$
B=\left(\begin{array}{cccccccc}
1 & a_{e_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{b_{e_{2}}} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 a_{e_{1}} b_{e_{1}} & a_{e_{2}}^{2} b_{e_{2}} & b_{e_{3}} & 0 & 0 & 0 & 0 & 0 \\
3 a_{e_{1}}^{2} b_{e_{1}}^{2} & a_{e_{2}}^{3} b_{e_{2}}^{2} & 3 a_{e_{3}} b_{e_{3}}^{2} & b_{e_{4}}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a_{e_{5}} b_{e_{5}} & b_{e_{6}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b_{e_{7}} & a_{e_{8}} b_{e_{8}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Since $\nabla\left(e_{6}+e_{7}\right)=\nabla\left(e_{6}\right)+\nabla\left(e_{7}\right)$, we have

$$
b_{e_{6}+e_{7}}=b_{e_{6}}, b_{e_{6}+e_{7}}=b_{e_{7}} .
$$

Hence,

$$
b_{e_{6}}=b_{e_{7}} .
$$

Similarly to this equality we get $b_{e_{3}}=b_{e_{6}}$ and $b_{e_{6}}=b_{e_{2}} \neq 0$. Hence,

$$
\begin{equation*}
b_{e_{2}}=b_{e_{3}}=b_{e_{6}}=b_{e_{7}} \tag{4}
\end{equation*}
$$

Since $\nabla\left(e_{5}+e_{8}\right)=\nabla\left(e_{5}\right)+\nabla\left(e_{8}\right)$, we have

$$
a_{e_{5}+e_{8}} b_{e_{5}+e_{8}}=a_{e_{5}} b_{e_{5}}, a_{e_{5}+e_{8}} b_{e_{5}+e_{8}}=a_{e_{8}} b_{e_{8}} .
$$

From this it follows that

$$
a_{e_{5}} b_{e_{5}}=a_{e_{8}} b_{e_{8}}
$$

Similarly to this equality we get $a_{e_{1}} b_{e_{1}}=a_{e_{8}} b_{e_{8}}$. Hence,

$$
\begin{equation*}
a_{e_{1}} b_{e_{1}}=a_{e_{5}} b_{e_{5}}=a_{e_{8}} b_{e_{8}} \tag{5}
\end{equation*}
$$

Since $\nabla\left(e_{4}+e_{6}\right)=\nabla\left(e_{4}\right)+\nabla\left(e_{6}\right)$, we have

$$
b_{e_{4}+e_{6}}^{2}=b_{e_{4}}^{2}, b_{e_{4}+e_{6}}^{2}=b_{e_{6}}^{2} .
$$

From this it follows that

$$
b_{e_{4}}^{2}=b_{e_{6}}^{2} .
$$

Hence, by (4), we get

$$
\begin{equation*}
b_{e_{4}}^{2}=b_{e_{2}}^{2} . \tag{6}
\end{equation*}
$$

Since $\nabla\left(e_{2}+e_{8}\right)=\nabla\left(e_{2}\right)+\nabla\left(e_{8}\right)$, we have

$$
a_{e_{2}}=a_{e_{2}+e_{8}}, \quad a_{e_{2}+e_{8}}^{2} b_{e_{2}+e_{8}}=a_{e_{2}}^{2} b_{e_{2}}, \quad a_{e_{2}+e_{8}} b_{e_{2}+e_{8}}=a_{e_{8}} b_{e_{8}} .
$$

Hence,

$$
b_{e_{2}+e_{8}}=b_{e_{2}}, \quad a_{e_{2}+e_{8}} b_{e_{2}+e_{8}}=a_{e_{2}} b_{e_{2}}
$$

and, therefore,

$$
\begin{equation*}
a_{e_{2}} b_{e_{2}}=a_{e_{8}} b_{e_{8}} \tag{7}
\end{equation*}
$$

Similarly, since $\nabla\left(e_{2}+e_{3}\right)=\nabla\left(e_{2}\right)+\nabla\left(e_{3}\right)$, we have

$$
a_{e_{2}}=a_{e_{2}+e_{3}}, \quad b_{e_{2}}^{-1}=b_{e_{2}+e_{3}}^{-1}, a_{e_{2}+e_{3}}^{3} b_{e_{2}+e_{3}}^{2}+3 a_{e_{2}+e_{3}} b_{e_{2}+e_{3}}^{2}=a_{e_{2}}^{3} b_{e_{2}}^{2}+3 a_{e_{3}} b_{e_{3}}^{2} .
$$

Hence,

$$
b_{e_{2}}=b_{e_{2}+e_{3}}
$$

and by (4) and $a_{e_{2}}=a_{e_{2}+e_{3}}$ we get

$$
a_{e_{2}}^{3}+3 a_{e_{2}}=a_{e_{2}}^{3}+3 a_{e_{3}} .
$$

Therefore, $a_{e_{2}}=a_{e_{3}}$ and

$$
\begin{equation*}
a_{e_{2}} b_{e_{2}}^{2}=a_{e_{3}} b_{e_{3}}^{2} . \tag{8}
\end{equation*}
$$

Finally, since $\nabla\left(e_{1}+e_{8}\right)=\nabla\left(e_{1}\right)+\nabla\left(e_{8}\right)$, we have

$$
a_{e_{1}+e_{8}} b_{e_{1}+e_{8}}=a_{e_{1}} b_{e_{1}}, \quad a_{e_{1}+e_{8}} b_{e_{1}+e_{8}}=a_{e_{8}} b_{e_{8}} .
$$

Hence,

$$
a_{e_{1}} b_{e_{1}}=a_{e_{8}} b_{e_{8}}
$$

By (7), from the last equalities it follows that

$$
\begin{equation*}
a_{e_{1}} b_{e_{1}}=a_{e_{2}} b_{e_{2}}, a_{e_{1}}^{2} b_{e_{1}}^{2}=\left(a_{e_{1}} b_{e_{1}}\right)^{2}=\left(a_{e_{2}} b_{e_{2}}\right)^{2}=a_{e_{2}}^{2} b_{e_{2}}^{2} . \tag{9}
\end{equation*}
$$

By (4), (5), (6), (7), (8), (9) the matrix B has the following matrix form

$$
B=\left(\begin{array}{cccccccc}
1 & a_{e_{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{b_{e}} & 0 & 0 & 0 & 0 & 0 & 0 \\
2 a_{e_{2}} b_{e_{2}} & a_{e_{2}}^{2} b_{e_{2}} & b_{e_{2}} & 0 & 0 & 0 & 0 & 0 \\
3 a_{e_{2}}^{2} 2_{e_{2}}^{2} & a_{e_{2}}^{2} b_{e_{2}}^{2} & 3 a_{e_{2}} b_{e_{2}}^{2} & b_{e_{2}}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a_{e_{2}} b_{e_{2}} & b_{e_{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & b_{e_{2}} & a_{e_{2}} b_{e_{2}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Hence, by lemma 2, the local automorphism ∇ is an automorphism.
The cases of the algebras S_{2} and W_{2} are also similarly proved. This ends the proof.

The authors thank professor Ivan Kaygorodov for detailed reading of this work and for suggestions which improved the paper.

References

[1] Sh. Ayupov, F. Arzikulov: 2-local derivations on semi-finite von Neumann algebras. Glasgow Mathematical Journal 56 (1) (2014) 9-12.
[2] Sh. Ayupov, F. Arzikulov: 2-Local derivations on associative and Jordan matrix rings over commutative rings. Linear Algebra and its Applications 522 (2017) 28-50.
[3] Sh. Ayupov, K. Kudaybergenov: 2-local derivations and automorphisms on $B(H)$. Journal of Mathematical Analysis and Applications 395 (1) (2012) 15-18.
[4] Sh. Ayupov, K. Kudaybergenov: 2-local derivations on von Neumann algebras. Positivity 19 (3) (2015) 445-455.
[5] Sh. Ayupov, K. Kudaybergenov: 2-Local automorphisms on finite-dimensional Lie algebras. Linear Algebra and its Applications 507 (2016) 121-131.
[6] Sh. Ayupov, K. Kudaybergenov: Local derivations on finite-dimensional Lie algebras. Linear Algebra and its Applications 493 (2016) 381-398.
[7] Sh. Ayupov, K. Kudaybergenov, B. Omirov: Local and 2-local derivations and automorphisms on simple Leibniz algebras. Bulletin of the Malaysian Mathematical Sciences Society 43 (3) (2020) 2199-2234.
[8] Sh. Ayupov, K. Kudaybergenov, I. Rakhimov: 2-Local derivations on finite-dimensional Lie algebras. Linear Algebra and its Applications 474 (2015) 1-11.
[9] Z. Chen, D. Wang: 2-Local automorphisms of finite-dimensional simple Lie algebras. Linear Algebra and its Applications 486 (2015) 335-344.
[10] M. Costantini: Local automorphisms of finite dimensional simple Lie algebras. Linear Algebra and its Applications 562 (2019) 123-134.
[11] R.V. Kadison: Local derivations. Journal of Algebra 130 (2) (1990) 494-509.
[12] I.L. Kantor: Certain generalizations of Jordan algebras (Russian). Trudy Sem. Vektor. Tenzor. Anal. 16 (1972) 407-499.
[13] I.L. Kantor: Extension of the class of Jordan algebras. Algebra and Logic 28 (2) (1989) 117-121.
[14] I.L. Kantor: The universal conservative algebra. Siberian Mathematical Journal 31 (3) (1990) 388-395.
[15] I. Kaygorodov, A. Lopatin, Yu. Popov: Conservative algebras of 2-dimensional algebras. Linear Algebra and its Applications 486 (2015) 255-274.
[16] I. Kaygorodov, Yu. Volkov: Conservative algebras of 2-dimensional algebras, II. Communications in Algebra 45 (8) (2017) 3413-3421.
[17] I. Kaygorodov, Yu. Popov, A. Pozhidaev: The universal conservative superalgebra. Communications in Algebra 47 (10) (2019) 4066-4076.
[18] I. Kaygorodov, A. Khudoyberdiyev, A. Sattarov: One-generated nilpotent terminal algebras. Communications in Algebra 48 (10) (2020) 4355-4390.
[19] I. Kaygorodov, M. Khrypchenko, Yu. Popov: The algebraic and geometric classification of nilpotent terminal algebras. Journal of Pure and Applied Algebra 225 (6) (2021) 106625.
[20] M. Khrypchenko: Local derivations of finitary incidence algebras. Acta Mathematica Hungarica 154 (1) (2018) 48-55.
[21] S. Kim, J. Kim: Local automorphisms and derivations on \mathbb{M}_{n}. Proceedings of the American Mathematical Society 132 (5) (2004) 1389-1392.
[22] D.R. Larson, A.R. Sourour: Local derivations and local automorphisms of $\mathcal{B}(X)$. Proceedings of Symposia in Pure Mathematics 51 (2) (1990) 187-194.
[23] Y. Lin, T. Wong: A note on 2-local maps. Proceedings of the Edinburgh Mathematical Society 49 (3) (2006) 701-708.
[24] H.P. Petersson: The classification of two-dimensional nonassociative algebras. Resultate der Mathematik 37 (1-2) (2000) 120-154.
[25] Yu. Popov: Conservative algebras and superalgebras: a survey. Communications in Mathematics 28 (2) (2020) 231-251.
[26] P. Šemrl: Local automorphisms and derivations on $\mathcal{B}(H)$. Proceedings of the American Mathematical Society 125 (9) (1997) 2677-2680.

Received: 2 August 2020
Accepted for publication: 27 September 2020
Communicated by: Ivan Kaygorodov

[^0]: 2020 MSC: 7A36, 17A30, 17A15
 Key words: Conservative algebra, derivation, local derivation, 2-local derivation, automorphism, local automorphism, 2-local automorphism

 Affiliation:
 Farhodjon Arzikulov - V.I. Romanovskiy Institute of Mathematics Uzbekistan Academy of Sciences, Universitet street 9, Tashkent 100174, Uzbekistan. Andizhan State University, Universitet street 129, Andizhan, 170100, Uzbekistan. E-mail: arzikulovfn@rambler.ru
 Nodirbek Umrzaqov - Andizhan State University, Universitet street 129, Andizhan, 170100, Uzbekistan. E-mail: umrzaqov2010@mail.ru

