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A generalisation of Amitsur’s A-polynomials

Adam Owen, Susanne Pumplün

Abstract. We find examples of polynomials f ∈ D[t;σ, δ] whose eigenring
E(f) is a central simple algebra over the field F = C ∩ Fix(σ) ∩ Const(δ).

Introduction
Let K be a field of characteristic 0 and R = K[t; δ] be the ring of differential
polynomials with coefficients in K. In order to derive results on the structure of
the left R-modules R/Rf , Amitsur studied spaces of linear differential operators
via differential transformations [2], [3], [4]. He observed that every central simple
algebra B over a field F of characteristic 0 that is split by an algebraically closed
field extension K of F , is isomorphic to the eigenspace of some polynomial f ∈
K[t; δ], for a suitable derivation δ of K. This identification of a central simple
algebra B with a suitable differential polynomial f ∈ K[t; δ] he called A-polynomial
also holds when K has prime characteristic p [2, Section 10], [18].

Let D be a central division algebra of degree d over C, σ an endomorphism of
D and δ a left σ-derivation of D. Our aim is to provide a partial answer to the
following generalisation of Amitsur’s investigation:

“For which polynomials f in a skew polynomial ring D[t;σ, δ] is the eigenring
E(f) a central simple algebra over its subfield F = C ∩ Fix(σ) ∩ Const(δ)?”

After the preliminaries in Section 1, we investigate two different setups, always
assuming that f has degree m ≥ 1 and that the minimal left divisor of f is square-
free. We look at generalised A-polynomials in D[t;σ] in Section 2, where σ is an
automorphism of D with σn = ιu for some u ∈ D×. Then f is a generalised A-
-polynomial in R if and only if f right divides u−1tn−a for some a ∈ F (Theorem 2).
If n is prime and not equal to d, then f is a generalised A-polynomial in R if
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and only if one of the following holds: (i) There exists some a ∈ F× such that

ua 6=
n∏
j=1

σn−j(b) for every b ∈ D, and f(t) = tn−ua. In this case f is an irreducible

polynomial in R. (ii) m ≤ n and there exist c1, c2, . . . , cm−1, b ∈ D×, such that

u−1
n−1∏
j=0

σn−j(b) ∈ F×, and f(t) =
m−1∏
i=1

(t − Ωci(b))(t − Ω1(b)). (Theorem 3). In

particular, f is a generalised A-polynomial in R = K[t;σ], K a field, if and only
if f right divides tn − a in R (Theorem 4). If moreover n is prime then f is
a generalised A-polynomial in R = K[t;σ], if and only if one of the following
holds: (i) There exists some a ∈ F× such that a 6= NK/F (b) for any b ∈ K, and
f(t) = tn−a. In this case f is irreducible. (ii) m ≤ n and there exist some constants

c1, c2, . . . , cm−1, b ∈ K×, such that f(t) =
m−1∏
i=1

(t−Ωci(b))(t−Ω1(b)) (Corollary 1).

In Section 3, we study generalised A-polynomials in D[t; δ], where C has prime
characteristic p and δ is an algebraic derivation of D with minimum polynomial
g(t) ∈ F [t] of degree pe such that g(δ) = δc for some nonzero c ∈ D. Then f is
a generalised A-polynomial in D[t; δ] if and only if f right divides g(t) − (b + c)
for some b ∈ F . In particular, deg(f) ≤ pe (Theorem 6). In the special case that
g(t) = tp−at, f is a generalised A-polynomial in R if and only if one of the following
holds: (i) f(t) = h(t) = tp−at− (b+ c), and Vp(α)−aα− (b+ c) 6= 0 for all α ∈ D.
In this case f is irreducible in R. (ii) h(t) = tp − at − (b + c) for some a, b ∈ F ,

m ≤ p and f(t) =
m−1∏
i=1

(t − Ωci(α))(t − Ω1(α)) for some c1, c2, . . . , cm−1α ∈ D×,

such that Vp(α)− aα− (b+ c) = 0 (Theorem 7).
The results are part of the first author’s PhD thesis written under the supervi-

sion of the second author.

1 Preliminaries
1.1 Skew Polynomial Rings ([12], [13], [15], [16])

Let D be a unital associative division algebra over its center C, σ an endomorphism
of D, and δ a left σ-derivation of D, i.e. δ is an additive map on D satisfying
δ(xy) = σ(x)δ(y) + δ(x)y for all x, y ∈ D. For u ∈ D×, ιu(a) = uau−1 is called
an inner automorphism of D. If there exists n ∈ Z+ such that σn = ιu for some
u ∈ D×, and σi is a not an inner derivation for 1 ≤ i < n, then σ is said to have
finite inner order n. For c ∈ D, the derivation δc(a) = [c, a] = ca− ac for all a ∈ D
is called an inner derivation. The skew polynomial ring R = D[t;σ, δ] is the set of
skew polynomials amtm + am−1t

m−1 + · · · + a1t + a0 with ai ∈ D, endowed with
term-wise addition and multiplication defined by ta = σ(a)t + δ(a) for all a ∈ D.
R is a unital associative ring. If δ = 0, we write R = D[t;σ]. If σ = idD, we write
R = D[t; δ].

For f(t) = amt
m + am−1t

m−1 + · · · + a1t + a0 with am 6= 0, the degree of f ,
denoted by deg(f), is m, and by convention deg(0) = −∞. If am = 1, we call f
monic. We have deg(fg) = deg(f) + deg(g) and deg(f + g) ≤ max(deg(f),deg(g))
for all f, g ∈ R. A polynomial f ∈ R is called reducible if f = gh for some g, h ∈ R
such that deg(g),deg(h) < deg(f), otherwise we call f irreducible. A polynomial
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f ∈ R is called right (resp. left) invariant if fR ⊆ Rf (resp. Rf ⊆ fR), i.e.
Rf (resp. fR) is a two-sided ideal of R. We call f invariant if it is both right
and left invariant. Two skew polynomials f, g ∈ R are similar, written f ∼ g, if
R/Rf ∼= R/Rg.

R is a left principal ideal domain. The left idealiser I(f) = {g ∈ R : fg ∈ Rf} of
f ∈ R is the largest subring of R within which Rf is a two-sided ideal. We define
the eigenring of f as E(f) = I(f)/Rf = {g ∈ R : deg(g) < m and fg ∈ Rf}.
A nonzero f ∈ R is said to be bounded if there exists another nonzero skew
polynomial f? ∈ R, called a bound of f , such that Rf? is the unique largest two-
sided ideal of R contained in the left ideal Rf . Equivalently, a nonzero polynomial
in f ∈ R is said to be bounded if there exists a right invariant polynomial f? ∈ R,
which is called a bound of f , such that Rf? = AnnR(R/Rf) 6= {0}. The annihilator
AnnR(R/Rf) of the left R-module R/Rf is a two-sided ideal of R. When f is
bounded and of positive degree, the nontrivial zero divisors in the eigenspace of
f are in one-to-one correspondence with proper right factors of f in R: If f is
bounded and σ ∈ Aut(D), then f is irreducible if and only if E(f) has no non-
trivial zero divisors. Each non-trivial zero divisor q of f in E(f) gives a proper
factor gcrd(q, f) of f [10, Lemma 3, Proposition 4].

If D has finite dimension as an algebra over its center C, then R = D[t;σ, δ]
is either a twisted polynomial ring or a differential polynomial ring [13, Theo-
rem 1.1.21].

1.2 Generalized A-polynomials
Unless stated otherwise, from now on let D be a unital associative division ring with
center C, σ ∈ End(D), δ a left σ-derivation of D, and let F = C∩Fix(σ)∩Const(δ).
We are interested in the question:

“For f ∈ R = D[t;σ, δ] when is E(f) a central simple algebra over the field F?”

We call f ∈ R a generalised A-polynomial if E(f) is a central simple algebra
over F . For each v ∈ D×, we define a map Ωv : D −→ D by Ωv(α) = σ(v)αv−1 +
δ(v)v−1.

Lemma 1. [2, Lemma 2 for σ = id] Let α, β ∈ D. Then (t − α) ∼ (t − β) in
D[t;σ, δ] if and only if Ωv(α) = β for some v ∈ D×.

Proof. (t − α) ∼ (t − β) is equivalent to the existence of v, w ∈ D× such that
w(t − α) = (t − β)v [14, pg. 33], i.e. there exists v, w ∈ D× such that w(t − α) =
σ(v)t + δ(v) − βv. This is the case if and only if w = σ(v) and wα = σ(v)α =
βv − δ(v). The result follows immediately. �

2 Generalised A-polynomials in D[t;σ]
Let D be a central division algebra over C of degree d and σ an automorphism of
D of finite inner order n, with σn = ιu for some u ∈ D×. Let R = D[t;σ]. Then
R has center F [u−1tn] ∼= F [x]. We define the minimal central left multiple of f in
R to be the unique polynomial of minimal degree h ∈ C(R) = F [u−1tn] such that
h = gf for some g ∈ R, and such that h(t) = ĥ(u−1tn) for some monic ĥ(x) ∈ F [x].
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If the greatest common right divisor (f, t)r of f and t is one, then f? ∈ C(R) [10,
Lemma 2.11]), and the minimal central left multiple of f equals f? up to a scalar
multiple in D×. For the remainder of this section we therefore assume that f ∈ R
is a monic polynomial of degree m ≥ 1 such that (f, t)r = 1. Then f? ∈ C(R).
Define Eĥ = F [x]/(ĥ(x)). Eĥ = F [x]/(ĥ(x)) is a field if and only if ĥ(x) ∈ F [x] is
irreducible.

Since F [x] is a unique factorisation domain, we have

ĥ(x) = π̂e11 (x)π̂2(x)e2 · · · π̂z(x)ez

for some irreducible polynomials π̂1, π̂2, . . . , π̂z ∈ F [x] such that π̂i 6= π̂j for i 6= j,
and some exponents e1, e2, . . . , ez ∈ N. Henceforth we assume that e1 = e2 =
· · · = ez = 1, i.e. that ĥ is square-free. By the Chinese Remainder Theorem for
commutative rings [9, §5] Eĥ

∼= Eπ̂1⊕Eπ̂2⊕· · ·⊕Eπ̂z , where Eπ̂i = F [x]/(π̂i(x)) for
each i. E(f) is a semisimple algebra over its center Eĥ [17]. Thus E(f) has center
F if and only if z = 1 and Eπ̂1

= F , i.e. if and only if ĥ is a degree 1 polynomial in
F [x]. Hence under the global assumption that ĥ is square-free, we see that for f
to be a generalised A-polynomial it is necessary that ĥ be irreducible. So assume
that ĥ is irreducible. Then the eigenspace of f is a central simple algebra over the
field Eĥ:

Theorem 1. [17] Suppose that ĥ(x) is irreducible in F [x]. Then f = f1f2 · · · fl
where f1, f2, . . . , fl are irreducible polynomials in R such that fi ∼ fj for all i, j.
Moreover,

E(f) ∼= M`(E(fi))

is a central simple algebra of degree s = `dn
k over the field Eĥ where k is the

number of irreducible factors of h(t) ∈ R. In particular, deg(ĥ) = deg(h)/n = dm
s

and [E(f) : F ] = mds.

Theorem 2. Suppose that ĥ(x) is irreducible in F [x]. Then f is a generalised A-
polynomial in R if and only if ĥ(x) = x − a for some a ∈ F if and only if f right
divides u−1tn−a for some a ∈ F . In particular, if f is a generalised A-polynomial,
then m ≤ n.

Proof. Suppose that f is a generalised A-polynomial in R. By the paragraph
preceding Theorem 1, for f to be a generalised A-polynomial it is necessary that
ĥ(x) = x − a for some a ∈ F . Conversely if ĥ(x) = x − a ∈ F [x], then Eĥ =
F [x]/(x−a) = F . Hence E(f) is a central simple algebra over F by Theorem 1, i.e.
f is a generalised A-polynomial. It is easy to see that ĥ(x) = x − a is equivalent
to f being a right divisor of u−1tn − a by definition of the minimal central left
multiple. Moreover, if f right divides u−1tn − a, then deg(f) ≤ n. �

For n prime we are able to provide a more concrete description of f :

Theorem 3. Suppose that ĥ(x) is irreducible in F [x]. Suppose that n is prime and
not equal to d. Then f is a generalised A-polynomial in R if and only if one of the
following holds:
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1. There exists some a ∈ F× such that ua 6=
n∏
j=1

σn−j(b) for every b ∈ D, and

f(t) = tn − ua. In this case f is an irreducible polynomial in R.

2. m ≤ n and there exist c1, c2, . . . , cm−1, b ∈ D×, such that

u−1
n−1∏
j=0

σn−j(b) ∈ F× , and f(t) =

m−1∏
i=1

(t− Ωci(b))(t− Ω1(b)) .

Proof. By Theorem 2, f is a generalised A-polynomial in R if and only if f right
divides u−1tn−a for some a ∈ F×. So suppose that f is a generalised A-polynomial
in R, then there exists some a ∈ F× and some nonzero g ∈ R such that

u−1tn − a = gf. (1)

In the notation of Theorem 1, `dn = ks and since f is a generalised A-polynomial
deg(ĥ) = dm

s = 1, i.e. dm = s. Combining these yields n
k = m

` ∈ N. That is k
must divide n, and so we must have that k = 1 or k = n as n is prime. We analyse
the cases k = 1 and k = n separately.

First suppose that k = 1, then h(t) is irreducible. Therefore Equation (1)
becomes u−1tn − a = gf(t) for some a ∈ F× and some g ∈ D×. This yields
g = u−1 and f(t) = tn− ua for some a ∈ F×. Suppose that f were reducible, then
f would be the product of n linear factors as n is prime, hence f is irreducible if

and only if ua 6=
n∏
j=1

σn−j(b) for any b ∈ D, by [7, Corollary 3.4].

On the other hand, if k = n, then h(t) is equal to a product of n linear factors
in R, all of which are similar. Also, since n

k = m
` and n = k, we have m = ` ≤ n.

Hence f is the product of m ≤ n linear factors in R, all of which are similar to
each other.

So there exist constants b1, b2, . . . , bm ∈ D× such that (t− bi) ∼ (t− bj) for all

i, j ∈ {1, 2, . . . ,m}, and f(t) =
m∏
i=1

(t − bi). In particular (t − bi) ∼ (t − bm) for all

i 6= m, which is true if and only if there exist constants c1, c2, . . . , cm−1, cm ∈ D×
such that bi = Ωci(bm) for all i by Lemma 1. Hence setting b = bm and cm = 1

yields f(t) =
m∏
i=1

(t−Ωci(b)). Finally, we note that (t−b)|r(tn−ua) for some a ∈ F×

if and only if u−1
n−1∏
j=0

σn−j(b) = a ∈ F×, by [7, Corollary 3.4]. �

If ei > 1 for at least one i, then it is not clear to the authors when E(f) is a
central simple algebra over the field F .

2.1 Generalised A-polynomials in K[t;σ]

Throughout this section we suppose that R = K[t;σ] with K a field, and that σ is
an automorphism of K of finite order n with fixed field F . Now the center of R is
F [tn] ∼= F [x]. Let f ∈ R be of degree m ≥ 1 and satisfy (f, t)r = 1, and suppose
that f has minimal central left multiple h(t) = ĥ(tn), ĥ ∈ F [x] an irreducible monic
polynomial. Again, we consider only those f ∈ R where ĥ ∈ F [x] is square-free.
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Theorem 4. f is a generalised A-polynomial in R if and only if ĥ(x) = x − a for
some a ∈ F [x] if and only if f right divides tn − a in R.

This follows from Theorem 2. If n is prime, then the following is an immediate
corollary to both Theorem 2 and Theorem 3:

Corollary 1. Let n be prime. Then f is a generalised A-polynomial in R if and
only if one of the following holds:

1. There exists some a ∈ F× such that a 6= NK/F (b) for any b ∈ K, and
f(t) = tn − a. In this case f is an irreducible polynomial in R.

2. m ≤ n and there exist some constants c1, c2, . . . , cm−1, b ∈ K×, such that

f(t) =
m−1∏
i=1

(t− Ωci(b))(t− Ω1(b)).

Proof. The proof is identical to the proof of Theorem 3 with d = u = 1. The

condition that
n−1∏
j=0

σj(b) lies in F× is always satisfied, since
n−1∏
j=0

σj(b) = NK/F (b) ∈

F× for all b 6= 0. �

In particular, let K = Fqn , where q = pe for some prime p and exponent e ≥ 1,
and where σ : K −→ K, a 7→ aq is the Frobenius automorphism of order n, with
fixed field F = Fq. Here the only central division algebra over Fq is Fq itself. The
following result is therefore an easy consequence of Theorems 1 and 2:

Corollary 2. Suppose that f ∈ Fqn [t, σ] satisfies (f, t)r = 1, and has minimal
central left multiple h(t) = ĥ(tn) for some irreducible polynomial ĥ ∈ Fq[x].
Then f is an A-polynomial if and only if m ≤ n and there exist some constants

c1, c2, . . . , cm−1, b ∈ F×qn , such that f(t) =
m−1∏
i=1

(t−Ωci(b))(t−Ω1(b)). In particular,

f is a reducible polynomial in Fqn [t, σ], unless m = 1.

The result follows identically to the n = k case in the proof of Theorem 3.

3 Generalised A-polynomials in D[t; δ]
From now on let R = D[t; δ] where D is a central division algebra of degree d over
C. Assume that C has prime characteristic p, and that δ is an algebraic derivation
of D with minimum polynomial g(t) = tp

e

+ γ1t
pe−1

+ · · · + γet ∈ F [t], such that
g(δ)(a) = [c, a] = ca − ac for some nonzero c ∈ D and for all a ∈ D. Here,
F = C ∩ Const(δ) (D = K is a field is included here as special case). Then R has
center F [g(t)−c] ∼= F [x]. For every f ∈ R, the minimal central left multiple of f in
R is the unique polynomial of minimal degree h ∈ C(R) = F [x] such that h = gf

for some g ∈ R, and such that h(t) = ĥ(g(t)− c) for some monic ĥ(x) ∈ F [x]. All
f ∈ R = D[t; δ] have a unique minimal central left multiple, which is a bound of f .

Again we can restrict our investigation to the case ĥ is square-free in F [x], and
note that it is necessary that ĥ be irreducible in F [x] for f to be a generalised
A-polynomial in R.
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Theorem 5. [17] Suppose that ĥ(x) is irreducible in F [x]. Then f = f1f2 · · · fl
where f1, f2, . . . , fl are irreducible polynomials in R such that fi ∼ fj for all i, j.
Moreover,

E(f) ∼= M`(E(fi))

is a central simple algebra of degree s = `dpe

k over the field Eĥ where k is the

number of irreducible factors of h ∈ R. In particular deg(ĥ) = deg(h)/pe = dm
s

and [E(f) : F ] = mds.

We obtain the following:

Theorem 6. Suppose that ĥ(x) is irreducible in F [x]. Then f is a generalised
A-polynomial in R if and only if f right divides g(t) − (b + c) for some b ∈ F .
In particular, deg(f) ≤ pe.

Proof. Suppose that f is a generalised A-polynomial in R. For f to be a generalised
A-polynomial it is necessary that ĥ(x) = x − b for some b ∈ F . Conversely if
ĥ(x) = x− b ∈ F [x], then Eĥ = F [x]/(x− b) = F . Hence E(f) is a central simple
algebra over F by Theorem 5, i.e. f is a generalised A-polynomial. It is easy to see
that ĥ(x) = x−b is equivalent to f being a right divisor of g(t)−(b+c) by definition
of the minimal central left multiple. Moreover, if f right divides g(t)− (b+ c), then
deg(f) ≤ deg(g(t)− (b+ c)) = pe. �

In D[t; δ], we have (t − b)p = tp − Vp(b), Vp(b) = bp + δp−1(b) + ∇b for all
b ∈ D, where ∇b is a sum of commutators of b, δ(b), δ2(b), . . . , δp−2(b) [13, pg. 17–
18]. In particular, if D is commutative, then ∇b = 0 and Vp(b) = bp + δp−1(b) for
all b ∈ D. Using the identities tp = (t− b)p+Vp(b) and t = (t− b) + b for all b ∈ D,
we arrive at:

Lemma 2. [13, Proposition 1.3.25 (for e = 1)] Let f(t) = tp − a1t − a0 ∈ D[t; δ]
and b ∈ D. Then (t− b)|rf(t) if and only if Vp(b)− a1b− a0 = 0.

If e = 1 (i.e. δ is an algebraic derivation of D of degree p), we can determine
necessary and sufficient conditions for f to be an A-polynomial in R:

Theorem 7. Let δ be an algebraic derivation of D of degree p with minimum
polynomial g(t) = tp − at such that g(δ) = δc for some c ∈ D. Suppose that ĥ(x)
is irreducible in F [x]. Then f is a generalised A-polynomial in R if and only if one
of the following holds:

1. f(t) = h(t) = tp − at − (b + c), and Vp(α) − aα − (b + c) 6= 0 for all α ∈ D.
In this case f is irreducible in R.

2. h(t) = tp − at− (b+ c) for some a, b ∈ F , m ≤ p and

f(t) =

m−1∏
i=1

(t− Ωci(α))(t− Ω1(α))

for some c1, c2, . . . , cm−1α ∈ D×, such that Vp(α)− aα− (b+ c) = 0.
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Proof. By Theorem 6, f is a generalised A-polynomial in R if and only if f right
divides tp − at − (b + c) for some b ∈ F . So suppose that f is a generalised A-
-polynomial in R, then there exists some b ∈ F and some nonzero f ′ ∈ R such
that

tp − at− (b+ c) = f ′f (2)

In the notation of Theorem 5, `dp = ks and since f is a generalised A-polynomial,
deg(ĥ) = dm

s = 1, i.e. dm = s. Combining these yields p
k = m

` ∈ N. That is k
must divide p, and so we must have that k = 1 or k = p as p is prime.

First suppose that k = 1, then h(t) is irreducible in R. Therefore Equation (2)
becomes tp − at − (b + c) = f ′f for some b ∈ F× and some f ′ ∈ D×. This yields
f ′ = 1 and f(t) = tp − at− (b + c). Suppose that f were reducible, then f would
be the product of p linear factors as p is prime, hence f is irreducible if and only
if Vp(α)− aα− (b+ c) 6= 0 for any α ∈ D, by Lemma 2.

On the other hand, if k = p, then h(t) is equal to a product of p linear factors
in R, all of which are similar to one another. Also, since p

k = m
` and p = k, we

have m = ` ≤ p. Hence f is the product of m ≤ p linear factors in R, all of which
are mutually similar to each other.

So there exist constants α1, α2, . . . , αm ∈ D× such that f(t) =
m∏
i=1

(t− αi), and

(t−αi) ∼ (t−αj) for all i, j ∈ {1, 2, . . . ,m}. In particular (t−αi) ∼ (t−αm) for all
i 6= m, which is true if and only if there exist constants c1, c2, . . . , cm−1, cm ∈ D×
such that αi = Ωci(αm) for all i by Lemma 1. Hence setting α = αm and cm = 1

yields f(t) =
m∏
i=1

(t−Ωci(α)). Finally, we note that (t−α) right divides tp−at−(b+c)

if and only if Vp(α)− aα− (b+ c) = 0 by Lemma 2. �

Remark 1. Suppose on the other hand that C has characteristic 0 and δ is the
inner derivation δc. Then R has center C[t − c] ∼= C[x]. i.e. F = C. In this case
the A-polynomials are trivial: if ĥ(x) is irreducible in C[x] then f is a generalised
A-polynomial in R if and only if f(t) = (t − c) + a for some a ∈ C. In this case,
E(f) = D.
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[11] J. Gòmez-Torrecillas: Basic module theory over non-commutative rings with
computational aspects of operator algebras. With an appendix by V. Levandovskyy. . In:
M. Barkatou, T. Cluzeau, G. Regensburger, M. Rosenkranz: Algebraic and Algorithmic
Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in
Computer Science. Springer (2014) 23–82.

[12] K. R. Goodearl, J. W. Bruce, R. B. Warfield: An introduction to noncommutative
Noetherian rings. Cambridge University Press (2004).

[13] N. Jacobson: Finite-dimensional division algebras over fields. Springer (1996).

[14] N. Jacobson: The theory of rings. American Mathematical Society (1943).

[15] J.C. McConnell, C.J. Robson, L.W. Small: Noncommutative noetherian rings. American
Mathematical Soc. (2001).

[16] O. Ore: Theory of non-commutative polynomials. Annals of Mathematics (1933)
480–508.

[17] A. Owen: On the right nucleus of Petit algebras. PhD Thesis, University of Nottingham,
in preparation.

[18] S. Pumplün: Algebras whose right nucleus is a central simple algebra. Journal of Pure
and Applied Algebra 222 (9) (2018) 2773–2783.

Received: 4 June 2021
Accepted for publication: 15 June 2021
Communicated by: Ivan Kaygorodov


