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A generalisation of Amitsur’s A-polynomials

Adam Owen, Susanne Pumpliin

Abstract. We find examples of polynomials f € DIt; o, §] whose eigenring
E(f) is a central simple algebra over the field F = C' N Fix(o) N Const(d).

Introduction

Let K be a field of characteristic 0 and R = K|[t;d] be the ring of differential
polynomials with coefficients in K. In order to derive results on the structure of
the left R-modules R/Rf, Amitsur studied spaces of linear differential operators
via differential transformations [2], [3], [4]. He observed that every central simple
algebra B over a field F' of characteristic 0 that is split by an algebraically closed
field extension K of F, is isomorphic to the eigenspace of some polynomial f &
K|t; ], for a suitable derivation 6 of K. This identification of a central simple
algebra B with a suitable differential polynomial f € K|[t; 6] he called A-polynomial
also holds when K has prime characteristic p [2, Section 10], [18].

Let D be a central division algebra of degree d over C, ¢ an endomorphism of
D and § a left o-derivation of D. Our aim is to provide a partial answer to the
following generalisation of Amitsur’s investigation:

“For which polynomials f in a skew polynomial ring D[t; 0, 6] is the eigenring
E(f) a central simple algebra over its subfield F' = C N Fix(c) N Const(d)?”

After the preliminaries in Section 1, we investigate two different setups, always
assuming that f has degree m > 1 and that the minimal left divisor of f is square-
free. We look at generalised A-polynomials in D[¢t; o] in Section 2, where o is an
automorphism of D with ¢ = ¢, for some u € D*. Then f is a generalised A-
-polynomial in R if and only if f right divides u~'t" —a for some a € F (Theorem 2).
If n is prime and not equal to d, then f is a generalised A-polynomial in R if
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and only if one of the following holds: (i) There exists some a € F* such that

ua # [] ™77 (b) for every b € D, and f(t) = t" —ua. In this case f is an irreducible
j=1

polynbmial in R. (ii) m < n and there exist ¢1,¢a,...,¢m—1,0 € D™, such that
m—1

u? n]:[: o™= I(b) € F*, and f(t) = ] (t — Q¢ (b))(t — 21(b)). (Theorem 3). In

=1

particular, f is a generalised A-polynomial in R = K[t; 0], K a field, if and only
if f right divides " — a in R (Theorem 4). If moreover n is prime then f is
a generalised A-polynomial in R = K|t;o], if and only if one of the following
holds: (i) There exists some a € F'* such that a # Nk, p(b) for any b € K, and
f(t) = t"—a. In this case f is irreducible. (ii) m < n and there exist some constants

€1,€2, .. Cm—1,b € KX such that f(t) = [] (t—Q(b))(t— (b)) (Corollary 1).

i=1

In Section 3, we study generalised A-polynomials in D[¢; §], where C' has prime
characteristic p and ¢ is an algebraic derivation of D with minimum polynomial
g(t) € Ft] of degree p® such that g(d) = d. for some nonzero ¢ € D. Then f is
a generalised A-polynomial in DJt; 4] if and only if f right divides g(¢) — (b + ¢)
for some b € F. In particular, deg(f) < p® (Theorem 6). In the special case that
g(t) = tP—at, f is a generalised A-polynomial in R if and only if one of the following
holds: (i) f(t) = h(t) =t? —at— (b+c), and V,(a) —aa— (b+c¢) # 0 for all & € D.
In this case f is irreducible in R. (ii) h(t) = t* — at — (b + ¢) for some a,b € F,

m < pand f(t) = [] (t — Qe (@)t — Q(a)) for some c1,¢2,...,¢m_1¢ € D>,
i=1
such that V,(a) — ace — (b+ ¢) = 0 (Theorem 7).
The results are part of the first author’s PhD thesis written under the supervi-
sion of the second author.

1 Preliminaries
1.1 Skew Polynomial Rings ([12], [13], [15], [16])

Let D be a unital associative division algebra over its center C, ¢ an endomorphism
of D, and ¢ a left o-derivation of D, i.e. § is an additive map on D satisfying
d(zy) = o(x)d(y) + 6(z)y for all z,y € D. For u € D*, 1,(a) = uau~?! is called
an inner automorphism of D. If there exists n € ZT such that o™ = 1, for some
u € D*, and ¢’ is a not an inner derivation for 1 < i < n, then o is said to have
finite inner order n. For ¢ € D, the derivation .(a) = [¢,a] = ca —ac for all a € D
is called an inner derivation. The skew polynomial ring R = D[t; 0, 4] is the set of
skew polynomials a,,t™ + ayp_1t™ "' 4+ -+ + a1t + ag with a; € D, endowed with
term-wise addition and multiplication defined by ta = o(a)t + d(a) for all a € D.
R is a unital associative ring. If § = 0, we write R = D[t;0]. If 0 = idp, we write
R = DIt;d].

For f(t) = amt™ + apm_1t™ 1 + - + ayt + ap with a,, # 0, the degree of f,
denoted by deg(f), is m, and by convention deg(0) = —oo. If a,,, = 1, we call f
monic. We have deg(fg) = deg(f) + deg(g) and deg(f + g) < max(deg(f), deg(g))
for all f,g € R. A polynomial f € R is called reducible if f = gh for some g,h € R
such that deg(g),deg(h) < deg(f), otherwise we call f irreducible. A polynomial
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f € R is called right (resp. left) invariant if fR C Rf (resp. Rf C fR), i.e.
Rf (resp. fR) is a two-sided ideal of R. We call f invariant if it is both right
and left invariant. Two skew polynomials f,g € R are similar, written f ~ g, if
R/Rf = R/Ryg.

R is aleft principal ideal domain. The left idealiser Z(f) = {g € R: fg € Rf} of
f € R is the largest subring of R within which Rf is a two-sided ideal. We define
the eigenring of f as £(f) = Z(f)/Rf = {g € R : deg(g) < m and fg € Rf}.
A nonzero f € R is said to be bounded if there exists another nonzero skew
polynomial f* € R, called a bound of f, such that Rf* is the unique largest two-
sided ideal of R contained in the left ideal Rf. Equivalently, a nonzero polynomial
in f € R is said to be bounded if there exists a right invariant polynomial f* € R,
which is called a bound of f, such that Rf* = Anng(R/Rf) # {0}. The annihilator
Anng(R/Rf) of the left R-module R/Rf is a two-sided ideal of R. When f is
bounded and of positive degree, the nontrivial zero divisors in the eigenspace of
f are in one-to-one correspondence with proper right factors of f in R: If f is
bounded and o € Aut(D), then f is irreducible if and only if £(f) has no non-
trivial zero divisors. Each non-trivial zero divisor ¢ of f in £(f) gives a proper
factor gerd(q, f) of f [10, Lemma 3, Proposition 4].

If D has finite dimension as an algebra over its center C, then R = DIt; g, ]
is either a twisted polynomial ring or a differential polynomial ring [13, Theo-
rem 1.1.21].

1.2 Generalized A-polynomials
Unless stated otherwise, from now on let D be a unital associative division ring with
center C, o € End(D), § a left o-derivation of D, and let F = CNFix(c)NConst(d).
We are interested in the question:

“For f € R = D[t;0,0] when is £(f) a central simple algebra over the field F'?”

We call f € R a generalised A-polynomial if £(f) is a central simple algebra
over F. For each v € D*, we define a map Q, : D — D by Q,(a) = o(v)av™! +
S(v)v~L.

Lemma 1. [2, Lemma 2 for 0 = id] Let a,8 € D. Then (t — ) ~ (t — ) in
Dit; 0,0] if and only if Q,(a) = § for some v € D*.

Proof. (t —a) ~ (t — B) is equivalent to the existence of v,w € D* such that
w(t —a) = (t — B)v [14, pg. 33], i.e. there exists v,w € D* such that w(t —a) =
o(v)t + §(v) — Bv. This is the case if and only if w = o(v) and wa = o(v)a =
Bv — 6(v). The result follows immediately. O

2 Generalised A-polynomials in D|t; o]

Let D be a central division algebra over C' of degree d and ¢ an automorphism of
D of finite inner order n, with ¢™ = ¢,, for some v € D*. Let R = D[t;o]. Then
R has center F|u=1t"] 2 F[x]. We define the minimal central left multiple of f in
R to be the unique polynomial of minimal degree h € C(R) = F[u~'t"] such that
h = gf for some g € R, and such that h(t) = h(u"'t") for some monic h(z) € Flz].
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If the greatest common right divisor (f,t), of f and ¢ is one, then f* € C(R) [10,
Lemma 2.11]), and the minimal central left multiple of f equals f* up to a scalar
multiple in D*. For the remainder of this section we therefore assume that f € R
is a monic polynomial of degree m > 1 such that (f,¢), = 1. Then f* € C(R).
Define E; = Flz]/(h(x)). E; = Flz]/(h(x)) is a field if and only if h(z) € F[z] is
irreducible.

Since F'[z] is a unique factorisation domain, we have

hx) = 77 (@) 72 (2)% - - oo ()

for some irreducible polynomials 71,72, ..., 7, € F[z] such that 7; # 7; for i # j,
and some exponents ej,es,...,e, € N. Henceforth we assume that ¢; = ey =

- =e, = 1, i.e. that h is square-free. By the Chinese Remainder Theorem for
commutative rings [9, §5] £ = Ex ® Ez, ®---® E;_, where B, = Flx]/(7;(x)) for
each i. £(f) is a semisimple algebra over its center E; [17]. Thus £(f) has center
Fif and only if z =1 and F;, = F, i.e. if and only if his a degree 1 polynomial in
F[z]. Hence under the global assumption that h is square-free, we see that for f
to be a generalised A-polynomial it is necessary that h be irreducible. So assume

that h is irreducible. Then the eigenspace of f is a central simple algebra over the
field E}:

Theorem 1. [17] Suppose that h(z) is irreducible in Flz]. Then f = fifs--- fi

where f1, f2,..., fi are irreducible polynomials in R such that f; ~ f; for all i, j.
Moreover,

E(f) = Me(E(f:))
is a central simple algebra of degree s = MT" over the field E; where k is the

number of irreducible factors of h(t) € R. In particular, deg(h) = deg(h)/n = 4=
and [E(f) : F] = mds.

Theorem 2. Suppose that h(z) is irreducible in F[x]. Then f is a generalised A-
polynomial in R if and only if fz(z) =z — a for some a € F if and only if f right
divides u='t" — a for some a € F. In particular, if f is a generalised A-polynomial,
then m <n.

Proof. Suppose that f is a generalised A-polynomial in R. By the paragraph
preceding Theorem 1, for f to be a generalised A-polynomial it is necessary that
h(z) = z — a for some a € F. Conversely if h(z) = # — a € Flz], then E;, =
F[z]/(x —a) = F. Hence £(f) is a central simple algebra over F' by Theorem 1, i.e.
f is a generalised A-polynomial. It is easy to see that ﬁ(x) = x — a is equivalent
to f being a right divisor of u~'t"™ — a by definition of the minimal central left
multiple. Moreover, if f right divides u=!t" — a, then deg(f) < n. O

For n prime we are able to provide a more concrete description of f:

Theorem 3. Suppose that h(z) is irreducible in F[z]. Suppose that n is prime and
not equal to d. Then f is a generalised A-polynomial in R if and only if one of the
following holds:
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1. There exists some a € F* such that ua # [[ " 77(b) for every b € D, and
j=1
f(t) =t" — wa. In this case f is an irreducible polynomial in R.

2. m < n and there exist ¢1,co,...,¢m_1,b € D*, such that
n—1 ‘ m—1
W Lo @) e FXand f0) = [ (- 00 () - 21(0)).
3=0 i=1

Proof. By Theorem 2, f is a generalised A-polynomial in R if and only if f right
divides u=1t" —a for some a € F*. So suppose that f is a generalised A-polynomial
in R, then there exists some a € F* and some nonzero g € R such that

u " —a=gf. (1)

In the notation of Theorem 1, dn = ks and since [ is a generalised A-polynomial
deg(h) = dTm =1, i.e. dm = s. Combining these yields & = 7 € N. That is k&
must divide n, and so we must have that k = 1 or kK = n as n is prime. We analyse
the cases kK = 1 and k = n separately.

First suppose that kK = 1, then Ah(t) is irreducible. Therefore Equation (1)
becomes u~1t" — a = gf(t) for some a € F* and some g € D*. This yields
g=u"tand f(t) = t" —ua for some a € F*. Suppose that f were reducible, then
f would be the product of n linear factors as n is prime, hence f is irreducible if
and only if ua # [[ 6"~ 9(b) for any b € D, by [7, Corollary 3.4].

j=1

On the other hand, if k¥ = n, then h(t) is equal to a product of n linear factors
in R, all of which are similar. Also, since 7 = 7 and n = k, we have m = { < n.
Hence f is the product of m < n linear factors in R, all of which are similar to
each other.

So there exist constants by, ba, ..., b, € D* such that (t —b;) ~ (t — b;) for all

m

i,j € {1,2,...,m}, and f(¢t) = [[ (¢t — b;). In particular (¢t — b;) ~ (t — b,) for all

i=1
i £ m, which is true if and only if there exist constants ¢y, ¢s2,...,¢n_1,Cm € D*
such that b; = ., (b,,) for all ¢ by Lemma 1. Hence setting b = b,,, and ¢,, = 1

m

yields f(t) = [] (¢t—Q.,(b)). Finally, we note that (¢ —0b)|, (t" —ua) for some a € F*

i=1
n—1

if and only if u=! [] 0™ 77(b) = a € FX, by [7, Corollary 3.4]. O
5=0

If e; > 1 for at least one i, then it is not clear to the authors when £(f) is a
central simple algebra over the field F'.

2.1 Generalised A-polynomials in K[t; o]

Throughout this section we suppose that R = K|[t; o] with K a field, and that o is
an automorphism of K of finite order n with fixed field F'. Now the center of R is
F[t"] = Flz]. Let f € R be of degree m > 1 and satisfy (f,t), = 1, and suppose
that f has minimal central left multiple h(t) = h(t"), h € F[x] an irreducible monic
polynomial. Again, we consider only those f € R where heF [x] is square-free.
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Theorem 4. f is a generalised A-polynomial in R if and only if fL(at) =z —a for
some a € Fx] if and only if f right divides t" — a in R.

This follows from Theorem 2. If n is prime, then the following is an immediate
corollary to both Theorem 2 and Theorem 3:

Corollary 1. Let n be prime. Then f is a generalised A-polynomial in R if and
only if one of the following holds:

1. There exists some a € F* such that a # Ng,p(b) for any b € K, and
f(t) =t™ — a. In this case [ is an irreducible polynomial in R.

2. m < n and there exist some constants ci,ca,...,cm—1,0 € K>, such that

f@) =TT (¢ = Qe (0))(t = (D).

i=1
Proof. The proof is identical to the proof of Theorem 3 with d = v = 1. The
n—1 n—1
condition that [] o7(b) lies in F* is always satisfied, since [] o7 (b) = Nk p(b) €

j=0 j=0
F* for all b # 0. O

In particular, let K = Fgn, where ¢ = p® for some prime p and exponent e > 1,
and where 0 : K — K, a — a? is the Frobenius automorphism of order n, with
fixed field F' = F,. Here the only central division algebra over I, is I, itself. The
following result is therefore an easy consequence of Theorems 1 and 2:

Corollary 2. Suppose that f € Fyn[t,o] satisfies (f,t), = 1, and has minimal

central left multiple h(t) = h(t") for some irreducible polynomial h € F,z].

Then f is an A-polynomial if and only if m < n and there exist some constants
m—1

€1,€25 -+ s Cm1,b € B, such that f(t) = [ (t—Q,(b))(t—Q1(b)). In particular,
i=1

f is a reducible polynomial in Fn[t, o], unless m = 1.

The result follows identically to the n = k case in the proof of Theorem 3.

3 Generalised A-polynomials in D(t; 6]
From now on let R = D[t;§] where D is a central division algebra of degree d over
C. Assume that C has prime characteristic p, and that J is an algebraic derivation
of D with minimum polynomial g(t) = t*° + NPT et € F[t], such that
9(6)(a) = [c,a] = ca — ac for some nonzero ¢ € D and for all a € D. Here,
F = CnConst(d) (D= K is a field is included here as special case). Then R has
center Fg(t) —c] = F|z]. For every f € R, the minimal central left multiple of f in
R is the unique polynomial of minimal degree h € C(R) = Flz] such that h = gf
for some g € R, and such that h(t) = h(g(t) — ¢) for some monic h(z) € Flz]. All
f € R = DIJt; 6] have a unique minimal central left multiple, which is a bound of f.
Again we can restrict our investigation to the case h is square-free in F[z], and
note that it is necessary that h be irreducible in F[z] for f to be a generalised
A-polynomial in R.
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Theorem 5. [17] Suppose that h(z) is irreducible in Flz]. Then f = fifs--- fi
where f1, fa,..., fi are irreducible polynomials in R such that f; ~ f; for all i, .
Moreover,

E(f) = My(E(f3))

is a central simple algebra of degree s = % over the field Ej; where k is the

number of irreducible factors of h € R. In particular deg(h) = deg(h)/p® = dT’,”
and [E(f) : F] = mds.

We obtain the following:

Theorem 6. Suppose that h(z) is irreducible in Flx]. Then f is a generalised
A-polynomial in R if and only if f right divides g(t) — (b + c) for some b € F.
In particular, deg(f) < p°.

Proof. Suppose that f is a generalised A-polynomial in R. For f to be a generalised
A-polynomial it is necessary that il(f[) = x — b for some b € F. Conversely if
h(z) =z — b € Flz], then E; = Flz]/(x — b) = F. Hence £(f) is a central simple
algebra over F' by Theorem 5, i.e. f is a generalised A-polynomial. It is easy to see
that i(z) = 2—b is equivalent to f being a right divisor of g(t)— (b+c) by definition
of the minimal central left multiple. Moreover, if f right divides g(¢) — (b+ c¢), then
deg(f) < deg(g(t) — (b+¢)) = p*. g

In D[t; 8], we have (t — b)P = t? — V,,(b), V,(b) = b + 6P~1(b) + V,, for all
b € D, where V, is a sum of commutators of b, (), 5%(b),...,67~2(b) [13, pg. 17—
18]. In particular, if D is commutative, then V;, = 0 and V,(b) = b° + 6?~1(b) for
all b € D. Using the identities t? = (t —b)? +V,,(b) and t = (¢t —b) + b for all b € D,
we arrive at:

Lemma 2. [13, Proposition 1.3.25 (for e = 1)] Let f(t) = t* — a1t — ag € D[t; 9]
and b € D. Then (t — b)|, f(t) if and only if V,,(b) — a1b —ag = 0.

If e =1 (i.e. 0 is an algebraic derivation of D of degree p), we can determine
necessary and sufficient conditions for f to be an A-polynomial in R:

Theorem 7. Let § be an algebraic derivation of D of degree p with minimum
polynomial g(t) = t? — at such that g(d) = 0. for some ¢ € D. Suppose that h(x)
is irreducible in F[z]. Then f is a generalised A-polynomial in R if and only if one
of the following holds:

1. f(t) =h(t) =tP —at — (b+¢), and V(o) —aa — (b+¢) # 0 for all a« € D.
In this case f is irreducible in R.

2. h(t) =tP —at — (b + c) for some a,b € F, m < p and

m—1

F@&) =TT ¢ = Qe (@)t = Qu(a))

i=1

for some c¢1,c¢a,...,cm_1a € D*, such that V,(a) —aa — (b+c¢) = 0.
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Proof. By Theorem 6, f is a generalised A-polynomial in R if and only if f right
divides t? — at — (b + ¢) for some b € F. So suppose that f is a generalised A-
-polynomial in R, then there exists some b € F and some nonzero f' € R such
that

" —at—(b+c)=f'f (2)

In the notation of Theorem 5, dp = ks and since f is a generalised A-polynomial,
deg(ﬁ) = % =1, i.e. dm = s. Combining these yields £ = 7 € N. That is k
must divide p, and so we must have that £k = 1 or kK = p as p is prime.

First suppose that k = 1, then h(t) is irreducible in R. Therefore Equation (2)
becomes t? — at — (b+ ¢) = f'f for some b € F* and some f’ € D*. This yields
f'=1and f(t) =t? —at — (b+ ¢). Suppose that f were reducible, then f would
be the product of p linear factors as p is prime, hence f is irreducible if and only
if Vp(a) —aa— (b+¢) # 0 for any o € D, by Lemma 2.

On the other hand, if £ = p, then h(t) is equal to a product of p linear factors
in R, all of which are similar to one another. Also, since £ = 7 and p = k, we
have m = ¢ < p. Hence f is the product of m < p linear factors in R, all of which

are mutually similar to each other.

So there exist constants oy, as,...,an € D* such that f(t) = [[(t — «;), and
i=1

(t—a;) ~ (t—ay) foralli,j € {1,2,...,m}. In particular (t—a;) ~ (t—a,,) for all

i % m, which is true if and only if there exist constants ¢y, ¢, ..., ¢n_1,¢m € D*

such that a; = Q¢, () for all ¢ by Lemma 1. Hence setting oo = ., and ¢, = 1
m

yields f(t) = [] (t—Q, («)). Finally, we note that (t—«) right divides t* —at—(b+c)
i=1

if and only if V,(a) — aax — (b+ ¢) = 0 by Lemma 2. O

Remark 1. Suppose on the other hand that C' has characteristic 0 and ¢ is the
inner derivation d.. Then R has center C[t — ] = C[z]. i.e. F = C. In this case
the A-polynomials are trivial: if h(z) is irreducible in C[z] then f is a generalised
A-polynomial in R if and only if f(¢) = (¢t — ¢) + a for some a € C. In this case,
E(f)=D.
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