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G-tridiagonal majorization on M,, ,,

Ahmad Mohammadhasani, Yamin Sayyari, Mahdi Sabzvari

Abstract. For X,Y € M, ,,, it is said that X is g-tridiagonal majorized
by Y (and it is denoted by X <4 Y) if there exists a tridiagonal g-doubly
stochastic matrix A such that X = AY. In this paper, the linear preservers
and strong linear preservers of <4 are characterized on My, .

1 Introduction

One of the most interesting problems in linear algebra is called a preserver problem.
With the development of majorization problem, preserving majorization have at-
tracted much attention of mathematicians as an active subject of research in linear
algebra. For more information we refer the reader to [3], and [5]. For complete ref-
erences on majorization, we refer the reader to books by Bahatia [4] and Marshall,
Olkin, and Arnold [9].

In this work, we study some kind of majorization and we try to find its (strong)
linear preservers on matrices. A tridiagonal matrix is a band matrix that has
nonzero elements only on the main diagonal, the first diagonal below this, and the
first diagonal above the main diagonal.

An n-by-n real matrix (not necessarily nonnegative) A is g-doubly stochastic
(generalized doubly stochastic) if all its row and column sums are one. Let X,Y €
M,, . The matrix X is said to be gt-majorized by Y and it is denoted by X <
Y, if there exists an n-by-n tridiagonal g-doubly stochastic matrix A such that
X =AY.
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Some of our notations and symbols are explained as the following.
M,, n,: the set of all n-by-m real matrices.

M,,: the abbreviation of M,, ,,.

R™: the set of all n-by-1 real column vectors.

{e1,...,en}: the standard basis of R™.

E;j: the n-by-n matrix whose (7,j) entry is one and all other entries are zero.
[X1]...] Xm]: the n-by-m matrix with columns Xi,...,X,, € R".
tr(z): the summation of all components of a vector x in R™.

Np: the set {1,...,k} C N.

A?: the transpose of a given matrix A.

[T]: the matrix representation of a linear operator

T : M, m = M, ,, with respect to the standard basis.

J: the matrix with all entries equal to one.

e: the vector with all entries equal to one.

P: the backward identity matrix.

(A);: the i*" column of the matrix A.

Q6 : the set of all n-by-n tridiagonal g-doubly stochastic matrices.

1-— M1 M1 0
N e SR
A,LL = 9
Hn—1
0 Hn—1 1- Hn—1

where = (p1,..., pn—1)" € R*71. It is easy to show that Qf = {4,|u € R"~'}.
A linear operator 1" : M, ,, = M,, 1, preserves a relation < in M, ,, if TX < TY
whenever X < Y. Also, T is said to strongly preserve < if for all X, Y € M,, ,,,

X<<Y&&TX <TY.

For z,y € R™, it is said that « is g-tridiagonal majorized by y (denoted by x <4 y)
if there exists some A € Q! such that z = Ay.

In [1] and [2], the authors found the strong linear preservers of <, on R™ and
linear preservers of <4, on R"™, respectively, as follows.

Lemma 1. Let T: R® — R" be a linear operator. Then T strongly preserves <y
if and only if there exist a,b € R such that (a —b)(a+ (n —1)b) # 0 and [T] is one
of the following matrices

a b b b b b b a
b a b b b b a b
or
b b b - a a b - b b

In other words 1" strongly preserves <g: if and only if there exist o, 3 € R such
that a(a+npB) #0 and [T] = ol + 8J or [T] = aP + 8J.



G-tridiagonal majorization on My, m, 397

Theorem 1. Let T': R" — R" be a linear operator. Then T preserves < if and
only if there exist a, 5 € R and a € R™ such that one of the following holds.

(i) Tx = tr(x)a, Vo € R™.
(ii) Tx = ax + fJz, Vr € R™.
(iii) Tx = aPz + fJx, Vo € R™.

In this paper, we characterize all of (strong) linear preservers of <, on M,, ,,,
as follows.

Theorem 2. A linear operator T': M, ,, = M,, ,, preserves < if and only if T
satisfies one of the following conditions.

(I) There exist Ay, As, ..., An € My, such that

TX = i(i :L'ij)Aj, VX = [93”] S Mn,m-

j=1 i=1

(II) There exist R, S € M, such that

TX =XR+JXS, VX eM,n.

(III) There exist R, S € M,, such that

TX = PXR+ JXS, VX € M, .

Theorem 3. Let T': M, ,, = M, ,,, be a linear operator. The following assertions
are equivalent.

(a) T is invertible and preserves <.

(b) There exist R,S € M, such that R(R + nS) is invertible and T has one of
the forms

TX = XR+ JXS, or TX =PXR+JXS, VX € My .

(c) T strongly preserves <g;.

The next section of this paper studies some facts of this concept that are neces-
sary for studying the (strong) linear preservers of <, on M,, ,,,. Also, the (strong)
linear preservers of <4 on M,, ,, are obtained.
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2 Gt-majorization on M,, ,,, and its (strong) linear preservers
First, we review some sticking point of <, on R", and then, we bring some
properties to prove the main theorems. Also, we characterize all linear operators
T: M, m — M, , preserving (resp. strongly preserving) <.

Lemma 2. [[1], Theorem 2.3] Let x, y be two distinct vectors in R"™. Assume that
i1 <y < o0 <idp and {ir,iz,.. i} ={j 1 j € Np—1,y; = yj1}. Thenx <4 y
ifand only if 330, @y =370, ., y;, forevery l (I € Nyy1), where iy =n
and ig = 0.

The principle significance of the following lemma is in the assertion of the next
theorems.

Lemma 3. Suppose that T': R — R™ is a linear preserver of <4. If T satisfies
two forms of Theorem 1, then T has the third form of this theorem.

Proof. We consider three cases. Case 1. If T satisfies forms of (i) and (ii) of
Theorem 1, then there exist some «,8 € R and a € R™ such that Tz = tr(z)a
and Tx = ax + fJz, Vo € R*. So a = 0 and a = Pe. It implies that Tx =
Btr(z)e = fJr = aPx + BJx, Yo € R™, and hence T has the form (iii). Case 2. If
T satisfies forms of (i) and (iii) of Theorem 1, then there exist some «, 3 € R and
a € R™ such that Tz = tr(x)a and Tx = aPx + fJz, Vo € R". Hence o = 0 and
a = fBe, and then T has the form (ii). Case 3. If T satisfies forms of (ii) and (iii)
of Theorem 1, then there exist some a, 3,a’, 3" € R such that Tz = ax + $Jx and
Tz =o' Px+ ' Jz, Vo € R". We conclude that « = o’ =0 and 8 = .

Then there exist some «, 5 € R such that Tx = ax+8Jz and Tx = aPx+SJx,
Vo € R™. We conclude that a« = 0. So Tx = Jx = Str(z)e = tr(x)(Be). We see
that T has the form (i). O

Remark 1. If T satisfies only in (i), then a ¢ Span{e}. Also, if T satisfies just in
(ii) or only in (iii), then « # 0.

Remark 2. In the case n = 2, T satisfies the form of (ii) if and only if T satisfies
the form of (iii). Because Tz = ax + fJz = (—a)Px + (a + B)Jz, Vo, f € R, and
Vz € R2.

The following idea is useful for finding the structure of linear preservers of gt-
majorization.

Suppose that {e1,... e} is the standard basis of R™. For each i,j € N,
consider the embedding F;: R” — M,, ,, and the projection E: M, ., — R,
where Ej(z) = ze} and E*(X) = Xe;.

It is easy to show that for every linear operator T': M,, ,,, = M, p,,

TX =T[Xy [ Xo || Xo] = D T0X5 1D 1o X5 | 1Y T X,
j=1 j=1 j=1

where Tj; = E'TE;: R® — R".
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Lemma 4. If T: M,, ,,, = M, ,, is a linear preserver of <4, then T;; preserves
<gt on R", for all i,j € N,.

Proof. We show that for each 4,5 (1 < i,j < n) E* and E; preserve <. Let
reR", X eM,,, and pn € R™ 1. We see

EjA,x = Aﬂxez = A Ejx
and
E'AX =A,Xe; = A, E'x.

There E* and E; preserve <g;.
Now, suppose that 7" preserves <. Since A, F;x < Ejx, TA,Ejx <4 TE;x.
So TA,E;x = A, TE;x, for some y/ € R"'. There
T;jA,x = E'TE;Ax = BE'TA,E;x
= EiAM/TEJ‘{E = AHIEiTEjiL' = AM/TZ‘]‘,Z.

Hence, T;; preserves <g;. (]
Now, we are ready to prove Theorem 2.

Proof of Theorem 2. Let us first prove the sufficiency of the conditions. At first, let
X,Y € M, ,, such that X <, Y. So there exists u = (p1,p2, ..., fin—1) € R* !
such that X = A,Y. If T has the form (I); Then

n

TX =) (D wi)A;= Z(Z yij)A; = TY,

j=1 i=1 i=1

because of X; < Y;, Vj € N, and hence TX <, TY.
Let T have the form (IT). Then

TX =T(A,Y)=A,YR+JA,YS = A, YR+ A,JYS = A,TY.
It follows that TX <, TY. If T has the form (III); Then
TX =T(A,Y)=PA,YR+ JA,YS = (PA,P)PYR + (PA,P)JYS = A, TY,

where p' = (fn—1, fin—2,-.., 1) € R"71. Thus, TX <, TY.

It remains to prove the converse implication of the theorem. Assume that T
preserves <. Here, {e1,..., €.} is the standard basis of R™. We show that all of
T;; have the same form in Theorem 1, for all ¢,5 € N,,,. That is, all of Tj; satisfy
(i), all of T;; satisfy (ii), or all of T;; satisfy (iii), for all 4, j € N,,. Otherwise, if
there exist (r,s) # (k,l) such that T,.s and Ty; do not satisfy the same form; The
case n = 1 is trivial. Consider three following cases.

(a) n > 2, T, has the form (i) and T}, has the form (ii).
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(b) n > 3, T;s has the form (i) and Tj; has the form (iii).
(¢) n >3, T, has the form (ii) and T}; has the form (iii).

We proceed by considering three steps.
Step 1. [ = s. In this case k # r, also, T, and Tys do not satisfy the same
form. Let

be two matrices in M,,, such that X; = Y; =0 foralli #s, 1 <i<m. If
X <4 Y, then TX <, TY, and so there is some 1 € R"~! such that TX = A, TY.
Therefore

TX = [T1. X, ... [T Xs] = Au[T1.Ya] ... [TsYi]
= [A 1Y | AT Y]

It shows that
TrsXs = A;LTrs}fsa (1)

and
Ths Xs = A;LTksYs- (2)

(a) If n > 2, T, has the form (i) and Ty has the form (ii), then T,z = tr(z)a,
a ¢ Span{e}, and Tysx = ax + fJz, a # 0, Vo € R™. For each i € N,,_; let
X =FEisand Y = E(;41),- From X <, Y and 2 conclude that for each i € N, 4
there is some p € R"™! such that ae; + Be = A, (ae;11 + Be). Let o = 0. So

a+B=pi—1f+ 1= pi—1 — pi)B+ pila+ 5),
and
B =pif+ (1 — pi — piv1)(a+ B) + pir1.

Hence p; = 1 and jt;41 = 0. The relation 1 ensures that @ = A, a. This means that
Qi1 = pi@; + (1 = py — phig1)@ir1 + pit1iy2,

and so a; 1 = a;. We see that a € Span{e}, which is a contradiction.

(b) If n > 3, T, has the form (i) and T} has the form (iii), then T,sz = tr(x)a,
a ¢ Span{e}, and Tysx = aPx + fJz, a # 0, Vo € R". For each i € N,,_;
Eis <gt E(iy1)s- So for every i € N,,_; there exists some p € R™ ! such that

Trse; = AuTrsei—i-lv (3)

and
Thse; = AuTk:sei-i-l- (4)

The relation (4) ensures that p, ;1 = 0 and p,—; = 1. By applying (3), observe
that ap—; = an—it+1. It deduces that a € Span{e}, a contradiction. (c) If n > 3,
T, has the form (ii) and Ty, has the form (iii), then T, = ayx + S1Jz, ay # 0,
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and Tpsx = aoPx + BoJz, an # 0, Vo € R". Put X = Y ! iE; and YV =
2E15 + Eos + Y 5 iE;s, of the Relations (1) and (2) we have

T,s( Z ie;) = A Trs(2e1 +ea + Zlez (5)

=3

n

Tkg(z iei) = A#Tks(Qel -+ () + Z iei), (6)

=1 =3

for some p € R"~!. From (5) and (6),

Z ie; = Ayu(2e1 +e2 + Z ie;), (7)

=3

n n—2

Z(n—!—l—i)ei zAu(Z(n—i-l—i)ei—t—en_l + 2e,). (8)

i=1 =1

The Relation (7) yields that 44 = 1 and The Relation (8) yields that p; = 0. This
is a contradiction.

Step 2. kK =r. We observe that [ # s. Also, T,s and T,; do not satisfy the same
form.

(a) If n > 2, T} has the form (i) and T,; has the form (ii), then T,z = tr(z)a,
a ¢ Span{e}, and Tx = ax + BJz, a # 0, Vo € R™. Since a ¢ Span{e}, there
is some i (i € Nj,_1) such that a; # a;41. Let ¢ = “—1 X = B, 4 cE;, and
Y = E(i41)s + cE(it1)- In this case, we have X <, Y. So TX <, TY, and then
(TX)r =gt (TY),. So, there exists some p € R™ such that (T'X), = A,(TY),. On
the other hand, since

(TX)r =Tps Xs + T X; = a+ cae; + cfe,

and
(TY)T =T,sYs + 1Y, =a+ caeipq + 6567

we conclude that a + cae; + c¢fe = A, (a + caeipq + cfe). Therefore, a + cae; =
Au(a + coeiyq). It follows that pj(ajir —aj) =0, forall 1 < j < i —1, and
ac = pi—1(ai—1 — a;) + pi(a;+1 — a; + ac). Hence, a; — a;4+1 = ac = 0. Therefore
(TX); Agt (TY),, which is a Contradiction.

(b) If n > 3, T, has the form (i) and 7}, has the form (iii), then T}z = tr(z)a,
a ¢ Span{e}, and Tz = aPx + BJx, a # 0, Vo € R™. As a & Span{e}, we
conclude that there is some 4 (i € N,,_1) such that a; # a;41. Let ¢ = =1L
X = FEp_it1)s T cEy, and Y = B, + cE(,,_;);. We obtain a contradiction.

(c) If n > 3, T,s has the form (ii) and 7;; has the form (iii), then T,;z =
a1z + frJx, ag # 0, and Tz = agPx + [BoJx, as # 0, Vo € R™. Consider

7

X =2(a2E1s + a1 Eyy) + aoEos + a1 By + Zi(ains + a1 Ey),
i=3
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and
Y =

The relation X <, Y shows that TX <, TY, and than (TX), <4 (TY),. But

(e Eys + a1 Ey).
1

n

(TX), = araz(2e1+ex+ Y i qie;) + asf 7"(7;“)@
+ (X (1 —i)e +en 1 + 2en) + 1 fa @&
and

(TY)r = oqaz)d ;. jie;+az Ln;l) e
+ aap ) (n+1—i)e; + 04152%@,
We see that (TY), € span{e} but (T'X), & span{e}, we conclude that (T'X), A4
(TY),, which would be a contradiction.

Step 3. | # s and k # r. By Step 1, T,s and T}, have the same form. Also,
about T,; and T}j;. From Step 2, T,; and 7T,; have the same form, and T} and
T}, satisfy the same form, too. So, T;;,T)s satisfies Lemma 3 in all cases (a),
(b) and (c). Thus, there are some 71,72 € R such that T,;(x) = v1tr(z)e and
Tis(z) = yatr(x)e, Vo € R™.

(a) If n > 2, T;5 has the form (i) and Ty; has the form (ii), then T,sz = tr(x)a,
a & Span{e}, and Tyx = ax + fJz, a # 0, Vo € R™. Fix i (i € N,,_1). Select
X=F;+FE;and Y = E(i+1)s + E(i—i—l)l' As X =gt Y, wesee T'X <, TY. So
there exists u € R"~! such that TX = A,TY, and then (TX), = A,(TY), and
(TX)r =Au(TY ). It shows that

TrsXs + Trle = A/_L(Trs}/s + T’I“l}/l)v

and
TpsXs + T X = Ap(TisYs + Tt V7).
Thus,
Trsei + Trlei == A[}. (Trsei—i-l + Trlei+l)a
and

Tisei + Trie; = Ay(Thseiv1 + Thieivr)-

It means that
a+yie=A,(a+me),

and
Yoe + ae; + fe = Au(“me + aejp1 + fBe).

Observe that

and



G-tridiagonal majorization on My, m 403

From the relation 10, conclude that p; = 1 and p;41 = 0. The relation 9 ensures
that a; = a;41. Since i(i € N,,_1) is arbitrary, a € Span{e}. This is a contradiction.
(b) If n > 3, T;s has the form (i) and T}; has the form (iii), then T,sz = tr(x)a,
a & Span{e}, and Tyx = aPx+ fJzx, a # 0, Vo € R™. By choosing X = E;s+ E;;
and Y = E(;11)s + E(;11), obtain a contradiction.
(¢) If n > 3, T;s has the form (ii) and T}; has the form (iii), then T,.x =
a1z + frJx, ag # 0, and Tyx = agPx + BaJx, as # 0, Vo € R™. Choose

X = Zi(Eis + Eil)a
=1

and
Y =2(Bys + En) + Bas + Ex + Y i(Eis + E).
=3

As X <4 Y, observe that TX <, TY. So there exists some u € R"! such that
TX = A,TY, and thus, (TX), = A,(TY), and (TX), = A,(TY ). It deduces
that

“ nn+1 nn+1
al(Z; 7,67;) + %ﬂle + fh%el
=, nin+1) (n+1)
A, o (2e +€2+;Z€i)+7616+71 5 ¢
and
n(n+1 i . nn+1
72%6 +as ;(n +1—d)e;+ 52¥6
n(n+1) = n(n+1)
=A, 7276 + oy (;(n +1—d)e;+ep_1+ 26n> + BgTe
It implies that
Z A, 261+€2+Z’L€1
i=1 =3
and
n n—2
Z(n +1—i)e; = AH(Z(n +1—i)e; +en_1 + 2ey).
i=1 i=1

We conclude that 1 =1 and g = 0, which is a contradiction.

Now we finish the proof in three cases.

Case 1. For each i,j € N,,, T;; satisfies (i). That is, for every i,j € N, there
exists some A;; € R™ such that T2 = tr(z)A;;, Vo € R™. Set

Aj =[Ay [ Agj | ... | Amjl, Vi €eEN,
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Then
TX = T[X|Xs|...|Xm]
= Do Ty X | 305 Tog Xy |- 1 200 Tong X
= [ tr(Xp) Ay | 300 (X)) Agy |- | 225 (X ) Ay
= i tr(X)[Ay [ Azj |- | Ayl

= Z;n:1 tr<Xj)Aj
= (i mi) Ay

Case 2. For each i,j € N,,,, T;; satisfies (ii). It means that for each i,j € Ny,
ﬂjl’ = 1T + Sile‘, for some T'ij,8ij € R and Vz € R". Put R = [’I"ij] € Mm,
S = [si;] € M,,. Then

TX = T[X1|Xa]...| Xm]
Z] 1115 X |Zj 112, X; |- |Z;n—1ijX‘}

ZJ 1(r1; X +313JX)|ZJ 1(r2; X + 521 X5)
|Z] 1(rmi X + smj J X))

[
[
R
= |[Zm 17X |- |Zj:1TMj j}+[zg‘n:151jJXj
[

| D051 5myJ X ]
= [Xo [ Xo|. | Xa]lrig] + J[X0 | Xo | ..o | Xon][sis]
= XR+JXS.

Case 3. For each i,j € N, T;; satisfies (iii). In a similar fashion one can prove it.
O

We need the following lemma to prove the next theorem.

Lemma 5. Let T: M,, ,,, - M,, ,, be a linear operator. If T' strongly preserves
=<gt, then T is invertible.

Proof. Let X € M, ,,,, and let TX = 0. Since TX = T0 and T strongly preserves
=gt, this implies that X <4 0. So X =0, and thus T is invertible. O

Now we bring proof of Theorem 3.

Proof of Theorem 3. (a) = (b): By the hypothesis, 7' has one of the forms of
Theorem 2. Consider two following case:

Case n = 1: We claim that if T satisfies (I), then T satisfies (II), too. If T has
the form (I), then there exist some A; = [aj1aj2 - @jm), J € Ny, such that

TX = Zl‘lej, VX = [Illl'lg B 'Cclm] S Ml,m-
=1
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So TX = XA, where A = [a;;] € M,,,. We see that T satisfies (II) with R = A
and S = 0. So if (a) holds, then T has one of the forms of (II) or (III). If T" has the
form (II) or (III), then TX = XR + X S. Therefore TX = X(R + S). Since T is
invertible, R + S is invertible, too. We have TX = X(R+ S) + X0=XR + X5’
where R = R+ S, S’ = 0 and the matrix R'(R’ + 0) = R'* is invertible.

Case n > 2: The case (I) can not occur, because of T(Ey; — E21) = 0. It is
enough to show that for n > 2 the matrices R and R + nS are invertible. If R is
not invertible, then there exists some X; € R,, \ {0} such that X;R = 0. Define
X € M,, ,, such that all its row are X; and Y € M,, ,,, such that the first row is
nX and the other rows are zero. See YR =0= XR and JY = JX. Then

TX =QXR+JXS=JXS=JYS=QYR+JYS =TY,

where Q = I or P. We observe that X # Y, but TX = TY, a contradiction. So
R is invertible. If R+ nS is not invertible, then there is some Z; € R, \ {0} such
that Z1(R+nS) = 0. Let Z € M,, ,,, such that all its row are Z;. We deduce that
TZ =0,but Z # 0. It is a contradiction. Hence R 4 n.S is invertible.

(b) = (c): Suppose that TX = QXR+JXS, where Q = I or P, and R(R+nS)
is invertible. Define 7”: M, ,, = M,, ,, by T'X = QXR'+JXS’, where R’ = R™!
and S’ = —(R+ nS)"1SR™!. It is easy to see (I"T)X = X, VX € M,,,. So
T = T7'. As T! preserves <gt, we conclude that 7' strongly preserves <.
Therefore, (c) holds.

(¢) = (a): This follows immediately from Lemma 4. O
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