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Some type of semisymmetry on two classes of almost
Kenmotsu manifolds

Dibakar Dey, Pradip Majhi

Abstract. The object of the present paper is to study some types of
semisymmetry conditions on two classes of almost Kenmotsu manifolds. It
is shown that a (k, µ)-almost Kenmotsu manifold satisfying the curvature
condition Q ·R = 0 is locally isometric to the hyperbolic space H2n+1(−1).
Also in (k, µ)-almost Kenmotsu manifolds the following conditions: (1) lo-
cal symmetry (∇R = 0), (2) semisymmetry (R·R = 0), (3) Q(S,R) = 0, (4)
R·R = Q(S,R), (5) locally isometric to the hyperbolic space H2n+1(−1) are
equivalent. Further, it is proved that a (k, µ)′-almost Kenmotsu manifold
satisfying Q · R = 0 is locally isometric to Hn+1(−4) × Rn and a (k, µ)′-
-almost Kenmotsu manifold satisfying any one of the curvature conditions
Q(S,R) = 0 or R · R = Q(S,R) is either an Einstein manifold or locally
isometric to Hn+1(−4)× Rn. Finally, an illustrative example is presented.

1 Introduction
In the present time, the study of almost Kenmotsu manifolds with nullity distribu-
tions is a very interesting topic in contact geometry. The notion of the (k, µ)-nullity
distribution on a contact metric manifold (M2n+1, φ, ξ, η, g) was introduced by
Blair, Koufogiorgos and Papantoniou [3], which is defined for any p ∈ M and
k, µ ∈ R as follows:

Np(k, µ) = {Z ∈ Tp(M) : R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]

+ µ[g(Y, Z)hX − g(X,Z)hY ]}, (1)
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for any X,Y ∈ Tp(M), where Tp(M) denotes the tangent space of M at any point
p ∈ M , R denotes the Riemannian curvature tensor of type (1, 3), h = 1

2£ξφ and
£ denotes the Lie differentiation.

In [6], Dileo and Pastore introduced the notion of (k, µ)′-nullity distribution, on
an almost Kenmotsu manifold (M2n+1, φ, ξ, η, g), which is defined for any p ∈ M
and k, µ ∈ R as follows:

Np(k, µ)′ = {Z ∈ Tp(M) : R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]

+ µ[g(Y, Z)h′X − g(X,Z)h′Y ]}, (2)

where h′ = h ◦ φ.
We define an endomorphism X ∧A Y of T (M) by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y, (3)

where A is a symmetric (0, 2)-tensor and X,Y, Z ∈ T (M).
For a (0, k)-tensor field T , k ≥ 1 and a (0, 2)-tensor field A on M we define the

tensors R · T and Q(A, T ) respectively [12] by

(R · T )(X1, X2, . . . , Xk;X,Y ) = −T (R(X,Y )X1, X2, . . . , Xk)

− · · · − T (X1, X2, . . . , R(X,Y )Xk) (4)

and

Q(A, T )(X1, X2, . . . , Xk;X,Y ) = −T ((X ∧A Y )X1, X2, . . . , Xk)

− · · · − T (X1, X2, . . . , (X ∧A Y )Xk). (5)

A Riemannian manifold M is said to be semisymmetric if R · R = 0 holds on M ,
where R is the Riemannian curvature tensor defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (6)

An example of a curvature condition of semisymmetry type is Q·R = 0, where Q
is the Ricci operator of type (1,1) and is defined by S(X,Y ) = g(QX,Y ). A natural
extension of such curvature conditions form curvature conditions of pseudosymme-
try type. The curvature condition Q · R = 0 have been studied by Verstraelen et
al. in [11].

If the tensors R ·R and Q(S,R) are linearly dependent on M , then M is called
Ricci generalized pseudosymmetric [12], where S is the Ricci tensor of type (0, 2).
This is equivalent to

R ·R = fQ(S,R), (7)

holding on the set UR = {x ∈ M : R 6= 0 at x}, where f is some function on UR.
A very important subclass of this class of manifolds realizing the condition is

R ·R = Q(S,R). (8)
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Every three dimensional manifold satisfies the above curvature condition identi-
cally. Other examples are semi-Riemannian manifolds (M, g) admitting a non-zero
1-form ω such that the equality

ω(X)R(Y,Z) + ω(Y )R(Z,X) + ω(Z)R(X,Y ) ≡ 0

holds on M . The condition R · R = Q(S,R) also appears in the theory of plane
gravitational waves. Recently, Kowalczyk [9] studied semi-Riemannian manifolds
satisfying Q(S,R) = 0, where S and R are the Ricci tensor and the Riemannian
curvature tensor respectively.

Almost Kenmotsu manifolds have been studied by several authors. In [5],
Dileo and Pastore studied locally symmetric almost Kenmotsu manifolds. Also
almost Kenmotsu manifolds with nullity distributions were investigated by Dileo
and Pastore [6]. Wang and Wang [15] studied pseudosymmetric and quasi weakly
symmetric almost Kenmotsu manifolds with generalized nullity distributions. Fur-
ther in [13], Wang and Liu studied ξ-Riemannian semisymmetric almost Kenmotsu
manifolds with nullity distributions. Ghosh et. al [7] classified almost Kenmotsu
manifolds with generalized (k, µ)′-nullity distribution satisfying certain curvature
condition. In [4], Dey and Majhi studied Quasi-conformal curvature tensor on
almost Kenmotsu manifolds.

Motivated by the above studies, in the present paper we characterize two classes
of almost Kenmotsu manifolds satisfying certain semisymmetry type curvature
conditions.

The paper is organized as follows:
In section 2, some preliminaries on almost Kenmotsu manifolds are discussed.

Section 3 is devoted to study (k, µ)-almost Kenmotsu manifolds with the properties
Q·R = 0, Q(S,R) = 0, R·R = Q(S,R). In Section 4, we characterize (k, µ)′-almost
Kenmotsu manifolds satisfying the curvature properties Q · R = 0, Q(S,R) = 0,
R ·R = Q(S,R). Finally, in Section 5, an illustrative example is presented.

2 Almost Kenmotsu manifolds
A (2n+1)-dimensional differentiable manifold M is said to have a (φ, ξ, η)-structure
or an almost contact structure, if it admits a (1, 1) tensor field φ, a characteristic
vector field ξ and a 1-form η satisfying ([1], [2]),

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (9)

where I denote the identity endomorphism. Here also φξ = 0 and η ◦ φ = 0; both
can be derived from (9) easily.

If a manifold M with a (φ, ξ, η)-structure admits a Riemannian metric g such
that

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X, Y of T (M), then M is said to be an almost contact metric
manifold. The fundamental 2-form Φ on an almost contact metric manifold is de-
fined by Φ(X,Y ) = g(X,φY ) for any X, Y of T (M). The condition for an almost
contact metric manifold being normal is equivalent to vanishing of the (1, 2)-type
torsion tensor Nφ, defined by Nφ = [φ, φ] + 2dη ⊗ ξ, where [φ, φ] is the Nijenhuis
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tensor of φ [1]. Recently in ([6],[5],[10]), almost contact metric manifold such that
η is closed and dΦ = 2η∧Φ are studied and they are called almost Kenmotsu man-
ifolds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold.
Also Kenmotsu manifolds can be characterized by (∇Xφ)Y = g(φX, Y )ξ−η(Y )φX,
for any vector fields X,Y . It is well known [8] that a Kenmotsu manifold M2n+1

is locally a warped product I ×f N2n where N2n is a Kähler manifold, I is an
open interval with coordinate t and the warping function f , defined by f = cet

for some positive constant c. Let us denote the distribution orthogonal to ξ by D
and defined by D = Ker(η) = Im(φ). In an almost Kenmotsu manifold, since η is
closed, D is an integrable distribution.

Let M2n+1 be an almost Kenmotsu manifold. We denote by h = 1
2£ξφ and

l = R(·, ξ)ξ on M2n+1. The tensor fields l and h are symmetric operators and
satisfy the following relations [10]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0, (10)

∇Xξ = X − η(X)ξ − φhX(⇒ ∇ξξ = 0), (11)

for any vector field X. The (1, 1)-type symmetric tensor field h′ = h ◦ φ is anti-
commuting with φ and h′ξ = 0. Also it is clear that ([6], [13])

h = 0⇔ h′ = 0, h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2). (12)

3 (k, µ)-almost Kenmotsu manifolds
In this section we study almost Kenmotsu manifolds with ξ belonging to the (k, µ)-
-nullity distribution.

From (1) we obtain

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (13)

where k, µ ∈ R. Before proving our main results in this section we first state the
following:

Lemma 1. [15] Let (M2n+1, φ, ξ, η, g) be a (k, µ)-almost Kenmotsu manifold.
Then M2n+1 is semisymmetric if and only if it is locally isometric to the hyperbolic
space H2n+1(−1).

Lemma 2. [6] Let M2n+1 be an almost Kenmotsu manifold of dimension (2n +
1). Suppose that the characteristic vector field ξ belonging to the (k, µ)-nullity
distribution. Then k = −1, h = 0 and M2n+1 is locally a wrapped product of an
open interval and an almost Kähler manifold.

In view of Lemma 2 it follows from (13),

R(X,Y )ξ = η(X)Y − η(Y )X, (14)

R(ξ,X)Y = −g(X,Y )ξ + η(Y )X, (15)
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S(X, ξ) = −2nη(X), (16)

Qξ = −2nξ, (17)

for any vector fields X,Y on M2n+1. Also for an (k, µ)-almost Kenmotsu manifold

∇Xξ = X − η(X)ξ (18)

and
(∇Xη)Y = g(X,Y )− η(X)η(Y ). (19)

We now prove our main results.

Theorem 1. If a (k, µ)-almost Kenmotsu manifold satisfies the semisymmetry type
curvature condition Q ·R = 0, then the manifold is locally isometric to the hyper-
bolic space H2n+1(−1).

Proof. Let us suppose that the (k, µ)-almost Kenmotsu manifold satisfies the semisym-
metry type curvature condition Q ·R = 0. Then we have

Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z −R(X,Y )QZ = 0, (20)

for all vector fields X, Y, Z in M2n+1.
Setting Z = ξ in the above equation and using (14) we obtain

η(X)Y − η(Y )X = 0,

which implies
R(X,Y )ξ = 0. (21)

Taking Covariant derivative of (21) in the direction of any vector field Z and using
(14) and (18) we get

((∇Zη)X)Y − ((∇Zη)Y )X −R(X,Y )Z + η(Z)(η(X)Y − η(Y )X) = 0. (22)

Using (19) in (22) we have

R(X,Y )Z = −[g(Y, Z)X − g(X,Z)Y ].

This shows that the manifold is locally isometric to the hyperbolic space H2n+1(−1).
Hence, the theorem is proved. �

Proposition 1. In a (k, µ)-almost Kenmotsu manifold, the curvature condition
Q(S,R) = 0 holds if and only if the manifold is locally isometric to the hyper-
bolic space H2n+1(−1).

Proof. Let us first suppose that the curvature condition Q(S,R) = 0 holds on
M2n+1. Then we have

((X ∧S Y ) ·R)(U, V )W = 0, (23)
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which implies

(X ∧S Y )R(U, V )W −R((X ∧S Y )U, V )W

−R(U, (X ∧S Y )V )W −R(U, V )(X ∧S Y )W = 0. (24)

Using (3) in (24) we get

S(Y,R(U, V )W )X − S(X,R(U, V )W )Y −R(S(Y,U)X

− S(X,U)Y, V )W −R(U, S(Y, V )X − S(X,V )Y )W

−R(U, V )(S(Y,W )X − S(X,W )Y ) = 0. (25)

Setting W = ξ in the above equation and using (14) and (16) we obtain

S(X,U)η(Y )V − S(Y,U)η(X)V + S(Y, V )η(X)U − S(X,V )η(Y )U

+ 2nη(Y )R(U, V )X − 2nη(X)R(U, V )Y = 0. (26)

Putting Y = ξ in the previous equation and using (14) and (16) yields

S(X,U)V − S(X,V )U + 2nR(U, V )X = 0. (27)

Replacing U by ξ in the foregoing equation and using (15) and (16)we have

S(X,V )ξ + 2ng(X,V )ξ = 0. (28)

Taking inner product with ξ we get

S(X,V ) = −2ng(X,V ). (29)

Using (29) in (27) we obtain

R(U, V )X = −[g(V,X)U − g(U,X)V ], (30)

which implies that the manifold is locally isometric to the hyperbolic space H2n+1(−1).
Conversely, if the manifold is locally isometric to the hyperbolic space H2n+1(−1),

then

R(X,Y )Z = −[g(Y, Z)X − g(X,Z)Y ], (31)

which implies

S(Y, Z) = −2ng(Y, Z). (32)

Now,

Q(S,R)(U, V,W ;X,Y ) = (X ∧S Y )R(U, V )W −R((X ∧S Y )U, V )W

−R(U, (X ∧S Y )V )W −R(U, V )(X ∧S Y )W,

= S(Y,R(U, V )W )X − S(X,R(U, V )W )Y

−R(S(Y, U)X − S(X,U)Y, V )W

−R(U, S(Y, V )X − S(X,V )Y )W

−R(U, V )(S(Y,W )X − S(X,W )Y ). (33)
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Using (31) and (32) in (33) yields

Q(S,R)(U, V,W ;X,Y ) = 0. (34)

This completes the proof. �

Proposition 2. In a (k, µ)-almost Kenmotsu manifold the curvature condition

R ·R = Q(S,R)

holds if and only if the manifold is locally isometric to the hyperbolic space H2n+1(−1).

Proof. Let the curvature condition R ·R = Q(S,R) holds on M2n+1. Now,

(R(X,Y ) ·R)(U, V )W = R(X,Y )R(U, V )W −R(R(X,Y )U, V )W

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W. (35)

Setting Y = U = ξ in the above equation we get

(R(X, ξ) ·R)(ξ, V )W = R(X, ξ)R(ξ, V )W −R(R(X, ξ)ξ, V )W

−R(ξ,R(X, ξ)V )W −R(ξ, V )R(X, ξ)W. (36)

With the help of (14)–(16) we compute the terms of the above expression as below

R(X, ξ)R(ξ, V )W = g(V,W )[X − η(X)ξ] + η(W )[g(X,V )ξ − η(V )X], (37)

R(R(X, ξ)ξ, V )W = −g(V,W )η(X)ξ + η(X)η(W )V −R(X,V )W, (38)

R(ξ,R(X, ξ)V )W = g(X,W )η(V )ξ − η(V )η(W )X (39)

and

R(ξ, V )R(X, ξ)W = g(X,W )V − g(X,W )η(V )ξ

+ g(V,X)η(W )ξ − η(X)η(W )V. (40)

Substituting (37)–(40) in (36) we obtain

(R(X, ξ) ·R)(ξ, V )W = R(X,V )W + g(V,W )X − g(X,W )V. (41)

Again

Q(S,R)(U, V,W ;X,Y ) = S(Y,R(U, V )W )X − S(X,R(U, V )W )Y

−R(S(Y, U)X − S(X,U)Y, V )W

−R(U, S(Y, V )X − S(X,V )Y )W

−R(U, V )(S(Y,W )X − S(X,W )Y ). (42)
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Using (14)–(16), from above we have

Q(S,R)(ξ, V,W ;X, ξ) = 2ng(V,W )X − η(W )S(X,V )ξ + 2nR(X,V )W

− 2nη(W )g(X,V )ξ + S(X,W )V − η(V )S(X,W )ξ

− 2nη(V )g(X,W )ξ. (43)

Since, the condition R ·R = Q(S,R) is realized on M2n+1 we obtain

R(X,V )W + g(V,W )X − g(X,W )V = 2ng(V,W )X − η(W )S(X,V )ξ

+ 2nR(X,V )W − 2nη(W )g(X,V )ξ + S(X,W )V − η(V )S(X,W )ξ

− 2nη(V )g(X,W )ξ. (44)

Setting W = ξ in the foregoing equation and taking inner product with ξ yields

S(X,V ) = −2ng(X,V ). (45)

Using (45) in (44) we get

R(X,V )W = −[g(V,W )X − g(X,W )V ].

The converse follows from Lemma 1 and Proposition 1. �

Theorem 2. In a (k, µ)-almost Kenmotsu manifold the following conditions:

(1) local symmetry (∇R = 0),

(2) semisymmetry (R ·R = 0),

(3) Q(S,R) = 0,

(4) R ·R = Q(S,R),

(5) locally isometric to the hyperbolic space H2n+1(−1)

are equivalent.

Proof. It is known that local symmetry implies semisymmetry and the hyperbolic
space H2n+1(−1) is locally symmetric. The remaining proof follows directly from
Lemma 1, Proposition 1 and Proposition 2. �

4 (k, µ)′-almost Kenmotsu manifolds
Let X ∈ D be the eigen vector of h′ corresponding to the eigen value λ. Then
from (12) it is clear that λ2 = −(k + 1), a constant. Therefore k ≤ −1 and
λ = ±

√
−k − 1. We denote by [λ]′ and [−λ]′ the corresponding eigen spaces related

to the non-zero eigen value λ and −λ of h′, respectively. Throughout this section
we consider h′ 6= 0. Before presenting our main theorems we recall some results:



Some type of semisymmetry on two classes of almost Kenmotsu manifolds 465

Lemma 3. [6, Prop. 4.1 and Prop. 4.3] Let (M2n+1, φ, ξ, η, g) be an almost Ken-
motsu manifold such that ξ belongs to the (k, µ)′-nullity distribution and h′ 6= 0.
Then k < −1, µ = −2 and Spec(h′) = {0, λ,−λ}, with 0 as simple eigen value
and λ =

√
−k − 1. The distributions [ξ] ⊕ [λ]′ and [ξ] ⊕ [−λ]′ are integrable with

totally geodesic leaves. The distributions [λ]′ and [−λ]′ are integrable with totally
umbilical leaves. Furthermore, the sectional curvature are given by the following:

(a) K(X, ξ) = k − 2λ if X ∈ [λ]′ and
K(X, ξ) = k + 2λ if X ∈ [−λ]′,

(b) K(X,Y ) = k − 2λ if X,Y ∈ [λ]′;
K(X,Y ) = k + 2λ if X,Y ∈ [−λ]′ and
K(X,Y ) = −(k + 2) if X ∈ [λ]′, Y ∈ [−λ]′,

(c) M2n+1 has constant negative scalar curvature r = 2n(k − 2n).

Lemma 4. [14, Lemma 3] Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold
with ξ belonging to the (k, µ)′-nullity distribution. If h′ 6= 0, then the Ricci operator
Q of M2n+1 is given by

Q = −2nid+ 2n(k + 1)η ⊗ ξ − 2nh′. (46)

Moreover, the scalar curvature of M2n+1 is 2n(k − 2n).

Lemma 5. [6, Prop. 4.2] Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold
such that h′ 6= 0 and ξ belonging to the (k,−2)′-nullity distribution. Then for
any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′, the Riemann curvature tensor
satisfies:

R(Xλ, Yλ)Z−λ = 0,

R(X−λ, Y−λ)Zλ = 0,

R(Xλ, Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ,

R(Xλ, Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ,

R(Xλ, Yλ)Zλ = (k − 2λ)[g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ],

R(X−λ, Y−λ)Z−λ = (k + 2λ)[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ].

From (2), we have

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ], (47)

where k, µ ∈ R. Also we get from (47)

R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(h′X,Y )ξ − η(Y )h′X]. (48)

Contracting X in (47), we have

S(Y, ξ) = 2nkη(Y ). (49)
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Theorem 3. If a (k, µ)′-almost Kenmotsu manifold satisfies the semisymmetry type
curvature condition Q ·R = 0, then the manifold is locally isometric to the Rieman-
nian product of an (n + 1)-dimensional manifold of constant sectional curvature
−4 and a flat n-dimensional manifold.

Proof. Let us suppose that the semisymmetry type curvature condition Q ·R = 0
holds on M2n+1. Then we have

Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z −R(X,Y )QZ = 0, (50)

for all vector fields X, Y, Z in M2n+1.
Setting X = Z = ξ in the above equation and using (14) we get

µ[h′Q−Qh′]Y = 4nk2[η(Y )ξ − Y ]− 4nkµh′Y. (51)

Now from (46) we observe that h′Q = Qh′. Applying this in (51) we obtain

h′Y =
k

2
[Y − η(Y )ξ]. (52)

Substituting Y by h′Y in the foregoing equation we have

φ2Y = − k2

4(k + 1)
[−Y + η(Y )ξ]. (53)

With the help of (9) we get − k2

4(k+1) = 1, which implies k = −2.

Since λ2 = −k − 1, k = −2 implies λ2 = 1. Without loss of generality we
assume that λ = −1.

Now letting X, Y, Z ∈ [λ]′ and noticing that k = −2, λ = −1, from Lemma 5
we have

R(Xλ, Yλ)Zλ = 0,

and

R(X−λ, Y−λ)Z−λ = −4[g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ],

for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′. Also noticing µ = −2 it
follows from Lemma 4.1 that K(X, ξ) = −4 for any X ∈ [−λ]′ and K(X, ξ) = 0
for any X ∈ [λ]′. Again from Lemma 4.1 we see that K(X,Y ) = −4 for any
X,Y ∈ [−λ]′ and K(X,Y ) = 0 for any X,Y ∈ [λ]′. As is shown in [6] that the
distribution [ξ]⊕ [λ]′ is integrable with totally geodesic leaves and the distribution
[−λ]′ is integrable with totally umbilical leaves by H = −(1 − λ)ξ, where H is
the mean curvature tensor field for the leaves of [−λ]′ immersed in M2n+1. Here
λ = −1, then the two orthogonal distributions [ξ]⊕[λ]′ and [−λ]′ are both integrable
with totally geodesic leaves immersed in M2n+1. Then we can say that M2n+1 is
locally isometric to Hn+1(−4) × Rn. This completes the proof of our theorem. �
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Theorem 4. If a (k, µ)′-almost Kenmotsu manifold satisfies the curvature condi-
tion Q(S,R) = 0, then the manifold is either Einstein or locally isometric to the
Riemannian product of an (n+ 1)-dimensional manifold of constant sectional cur-
vature −4 and a flat n-dimensional manifold.

Proof. Since, the curvature condition Q(S,R) = 0 holds on M2n+1 we have

((X ∧S Y ) ·R)(U, V )W = 0, (54)

which implies

(X ∧S Y )R(U, V )W −R((X ∧S Y )U, V )W

−R(U, (X ∧S Y )V )W −R(U, V )(X ∧S Y )W = 0. (55)

Using (3) in (55) we get

S(Y,R(U, V )W )X − S(X,R(U, V )W )Y −R(S(Y,U)X

− S(X,U)Y, V )W −R(U, S(Y, V )X − S(X,V )Y )W

−R(U, V )(S(Y,W )X − S(X,W )Y ) = 0. (56)

Putting W = ξ in (56) and using (47) and (49) we obtain

− 2[S(h′U, Y )η(V )X − S(h′V, Y )η(U)X]

+ 2[S(h′U,X)η(V )Y − S(h′V,X)η(U)Y ]

+ kS(Y,U)η(X)V + 2S(Y, U)[η(V )h′X − η(X)h′V ]

− kS(X,U)η(Y )V − 2S(X,U)[η(V )h′Y − η(Y )h′V ]

− kS(Y, V )η(X)U + 2S(Y, V )[η(X)h′U − η(U)h′X]

+ kS(X,V )η(Y )U − 2S(X,V )[η(Y )h′U − η(U)h′Y ]

− 2nkη(Y )R(U, V )X + 2nkη(X)R(U, V )Y = 0. (57)

Setting Y = ξ in the foregoing equation and making use of (47) and (49) we have

2[S(h′U,X)η(V )ξ − S(h′V,X)η(U)ξ]− kS(X,U)V + 2S(X,U)h′V

+ kS(X,V )U − 2S(X,V )h′U − 2nkR(U, V )X = 0. (58)

Again replacing U by ξ in the above equation and using (48) and (49) yields

−2S(h′V,X)ξ + kS(X,V )ξ − 2nk2g(X,V )ξ + 4nkg(h′V,X)ξ = 0. (59)

Now letting X, V ∈ [λ]′, then equation (59) reduces to

(k − 2λ)[S(X,V )− 2nkg(X,V )] = 0, (60)

which implies that either S(X,V ) = 2nkg(X,V ) for all X, V ∈ [λ]′ or k = 2λ.
If S(X,V ) = 2nkg(X,V ), then the manifold is an Einstein manifold.
If k = 2λ, then from λ2 = −k − 1 we get λ = −1 and hence k = −2.
Therefore, by the same argument as in Theorem 3 we can say that M2n+1 is

locally isometric to Hn+1(−4) × Rn. �
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Theorem 5. If a (k, µ)′-almost Kenmotsu manifold satisfies the curvature condi-
tion R · R = Q(S,R), then the manifold is either Einstein or locally isometric to
the Riemannian product of an (n + 1)-dimensional manifold of constant sectional
curvature −4 and a flat n-dimensional manifold.

Proof. To complete the proof we first evaluate the terms R ·R and Q(S,R) as given
below.

(R(X,Y ) ·R)(U, V )W = R(X,Y )R(U, V )W −R(R(X,Y )U, V )W

−R(U,R(X,Y )V )W −R(U, V )R(X,Y )W. (61)

Putting Y = U = ξ in the above equation we obtain

(R(X, ξ) ·R)(ξ, V )W = R(X, ξ)R(ξ, V )W −R(R(X, ξ)ξ, V )W

−R(ξ,R(X, ξ)V )W −R(ξ, V )R(X, ξ)W. (62)

For the sake of completeness, we present the terms of the R.H.S of the equation
(62) as follows:

R(X, ξ)R(ξ, V )W = [−k2g(V,W )η(X) + k2η(W )g(X,V )− 4kη(W )g(h′V,X)

+ 2kη(X)g(h′V,W ) + 4η(W )g(h′2X,V )]ξ

+ k2g(V,W )X − 2kg(V,W )h′X − k2η(V )η(W )X

+ 2kη(V )η(W )h′X − 2kg(h′V,W )X + 4g(h′V,W )h′X, (63)

R(R(X, ξ)ξ, V )W = [−k2η(X)g(V,W ) + 2kη(X)g(h′V,W )]ξ + kR(X,V )W

− 2R(h′X,V )W + k2η(X)η(W )V − 2kη(X)η(W )h′V, (64)

R(ξ,R(X, ξ)V )W = [k2η(V )g(X,W )− 4kη(V )g(h′X,W ) + 4g(h′2X,W )]ξ

− k2η(V )η(W )X + 4kη(V )η(W )h′X − 4η(V )η(W )h′2X
(65)

and

R(ξ, V )R(X, ξ)W = [−k2η(V )g(X,W ) + k2η(W )g(X,V )− 4kη(W )g(h′X,V )

+ 2kη(V )g(h′X,W ) + η(W )g(h′2X,V )]ξ + k2g(X,W )V

− 2kg(X,W )h′V − k2η(X)η(W )V + 2kη(X)η(W )h′V

− 2kg(h′X,W )V + 4g(h′X,W )h′V, (66)

for any vector fields X,V,W , where equations (47) and (48) have been used.
Substituting (63)-(66) in (62) we get

(R(X, ξ) ·R)(ξ, V )W = −kR(X,V )W + 2R(h′X,V )W + k2g(V,W )X

− 2kg(h′V,W )X − 2kg(V,W )h′X − 2kη(V )η(W )h′X

+ 4η(V )η(W )h′2X + 4g(h′V,W )h′X − k2g(X,W )V

+ 2kg(h′X,W )V − 4g(h′X,W )h′V + 2kg(X,W )h′V

− [−2kη(V )g(h′X,W ) + 4η(V )g(h′2X,W )]ξ. (67)
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On the other hand

Q(S,R)(U, V,W ;X,Y ) = ((X ∧S Y ) ·R)(U, V )W

= S(Y,R(U, V )W )X − S(X,R(U, V )W )Y

−R(S(Y,U)X − S(X,U)Y, V )W

−R(U, S(Y, V )X − S(X,V )Y )W

−R(U, V )(S(Y,W )X − S(X,W )Y ). (68)

Substituting Y = U = ξ and using (47)-(49) we obtain

Q(S,R)(ξ, V,W ;X, ξ) = k[2nkg(V,W )− 2nkη(V )η(W )]X

− k[2nkg(V,W )η(X)− η(W )S(X,V )]ξ

+ 2[2nkη(X)g(h′V,W )− η(W )S(h′V,X)]ξ

+ 2nkg(h′V,W )X − 2nkR(X,V )W

+ 2nkη(X)[k{g(V,W )ξ − η(W )V } − 2{g(h′V,W )ξ

− η(W )h′V }]− 2nkη(V )[k{g(X,W )ξ − η(W )X}
− 2{g(h′X,W )ξ − η(W )h′X}]− 2nkη(W )[k{g(V,X)ξ−
η(X)V } − 2{g(h′V,X)ξ − η(X)h′V }]
+ S(X,W )[k{η(V )ξ − V }+ 2h′V ]. (69)

Since the condition R ·R = Q(S,R) is realized on M , equating (67), (69) and then
putting W = ξ we get

− kR(X,V )ξ + 2R(h′X,V )ξ + k2η(V )X − 4kη(V )h′X + 4η(V )h′2X − k2η(X)V

+ 2kη(X)h′V = kS(X,V )ξ − 2S(h′V,X)ξ − 2nk2g(X,V )ξ + 4nkg(h′V,X)ξ.

Taking inner product of the foregoing equation with ξ yields

kS(X,V )− 2S(h′V,X)− 2nk2g(X,V ) + 4nkg(h′V,X) = 0. (70)

Now letting X,V ∈ [λ]′, then from (70) we obtain

(k − 2λ)[S(X,V )− 2nkg(X,V )] = 0, (71)

which implies that either S(X,V ) = 2nkg(X,V ) or k = 2λ.
If S(X,V ) = 2nkg(X,V ), then the manifold is an Einstein manifold.
If k = 2λ, then by the same argument as in Theorem 3 we can say that M2n+1

is locally isometric to Hn+1(−4) × Rn. This completes the proof of our theorem.
�

5 Example of a 3-dimensional (k, µ)-almost Kenmotsu manifold
Consider M3 = {(x, y, z) ∈ R3 : z 6= 0}. The vector fields

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z ∂

∂z
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are linearly independent at each point of M3. Let g be the Riemannian metric
defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Let us consider e3 = ξ. The 1-form η is defined by η(X) = g(X, e3) for any vector
field X on M3. The (1, 1)-tensor field φ is defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Using linearity of φ and g we have

η(ξ) = 1, φ2X = −X + η(X)ξ and g(φX, φY ) = g(X,Y )− η(x)η(Y )

for any vector field X, Y on M3. Now it is easy to see that

[e1, ξ] = e1, [e1, e2] = 0 and [e2, ξ] = 0.

In view of the above relations we have h = 1
2£ξφ = 0.

The well known Koszul’s formula is given by

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Using the above Koszul’s formula, we obtain the Levi-Civita connection ∇ as fol-
lows:

∇e1e1 = −ξ, ∇e1e2 = 0, ∇e1ξ = e1,

∇e2e1 = 0, ∇e2e2 = ξ, ∇e2ξ = e2,

∇ξe1 = 0, ∇ξe2 = 0, ∇ξξ = 0.

In view of the above relations we have ∇Xξ = X−η(X)ξ for any vector field X on
M3. Thus (φ, ξ, η, g) is an almost contact metric structure such that dη = 0 and
dΦ = 2η ∧ Φ and hence M3 is an almost Kenmotsu structure.

By the above relations, we can easily obtain the components of the curvature
tensor R as follows:

R(e1, e2)e1 = e2, R(e1, e2)e2 = −e1, R(e1, e2)ξ = 0,

R(e2, ξ)e1 = 0, R(e2, ξ)e2 = ξ, R(e2, ξ)ξ = −e2,
R(e1, ξ)e1 = ξ, R(e1, ξ)e2 = 0, R(e1, ξ)ξ = −e1.

With the help of the expressions of the curvature tensor we conclude that the
characteristic vector field ξ belongs to (k, µ)-nullity distribution with k = −1 and
h = 0. Also we see that

R(X,Y )Z = −[g(Y, Z)X − g(X,Z)Y ].

From above we say that M3 is locally isometric to H3(−1). Also the Ricci
tensor S is of Einstein type, i.e., S(X,Y ) = −2g(X,Y ).
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Since the space is of constant curvature, it is locally symmetric (∇R = 0),
which imply it is semisymmetric (R ·R = 0). Since M3 is Einstein and of constant
curvature, Q(S,R) = 0 holds and therefore, R · R = Q(S,R) holds on M3. Thus,
Theorem 2 is verified.
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