# A non-linear discrete-time dynamical system related to epidemic SISI model 

Sobirjon K. Shoyimardonov


#### Abstract

We consider SISI epidemic model with discrete-time. The crucial point of this model is that an individual can be infected twice. This non-linear evolution operator depends on seven parameters and we assume that the population size under consideration is constant, so death rate is the same with birth rate per unit time. Reducing to quadratic stochastic operator (QSO) we study the dynamical system of the SISI model.


## 1 Introduction

In [3] SISI model is considered in continuous time as a spread of bovine respiratory syncytial virus (BRSV) amongst cattle. They performed an equilibrium and stability analysis and considered an applications to Aujesky's disease (pseudorabies virus) in pigs. In [5] SISI model was considered as an example and characterised the conditions for fixed point equation. In the both these works it was assumed that the population size under consideration is a constant, so the per capita death rate is equal to per capita birth rate. In epidemiology, a susceptible individual (sometimes known simply as a susceptible) is a member of a population who is at risk of becoming infected by a disease. A susceptibility only refers to the fact that the virus is able to get into the cell, via having the proper receptor(s), and as a result, despite the fact that a host may be susceptible, the virus may still not be able to cause any pathologies within the host ${ }^{1}$. In epidemiology, infectivity is the ability of a pathogen to establish an infection. In biology, a pathogen in the oldest and broadest sense, is any organism that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ${ }^{2}$.

[^0]Let us consider SISI model [5]:

$$
\left\{\begin{array}{l}
\frac{d S}{d t}=b\left(S+I+S_{1}+I_{1}\right)-\mu S-\beta_{1} A\left(I, I_{1}\right) S  \tag{1}\\
\frac{d I}{d t}=-\mu I+\beta_{1} A\left(I, I_{1}\right) S-\alpha I \\
\frac{d S_{1}}{d t}=-\mu S_{1}+\alpha I-\beta_{2} A\left(I, I_{1}\right) S_{1} \\
\frac{d I_{1}}{d t}=-\mu I_{1}+\beta_{2} A\left(I, I_{1}\right) S_{1}
\end{array}\right.
$$

where $S$ - density of susceptibles who did not have the disease before, $I$ - density of first time infected persons, $S_{1}$ - density of recovereds, $I_{1}$ - density of second time infected persons, $b$ - birth rate, $\mu$ - death rate, $\alpha$ - recovery rate, $\beta_{1}$ - susceptibility of persons in $S, \beta_{2}$ - susceptibility of persons in $S_{1}, k_{1}$ - infectivity of persons in $I, k_{2}$ - infectivity of persons in $I_{1}$. Moreover, $A\left(I, I_{1}\right)$ denotes the so-called force of infection,

$$
A\left(I, I_{1}\right)=\frac{k_{1} I+k_{2} I_{1}}{P}
$$

and $P=S+I+S_{1}+I_{1}$ denotes the total population size. Here we do some replacements:

$$
x=\frac{S}{P}, u=\frac{I}{P}, y=\frac{S_{1}}{P}, v=\frac{I_{1}}{P}
$$

In (1) we assume that $b=\mu$ and by substituting $x, u, y, v$ we have

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=b-b x-\beta_{1} A(u, v) x  \tag{2}\\
\frac{d u}{d t}=-b u+\beta_{1} A(u, v) x-\alpha u \\
\frac{d y}{d t}=-b y+\alpha u-\beta_{2} A(u, v) y \\
\frac{d v}{d t}=-b v+\beta_{2} A(u, v) y
\end{array}\right.
$$

where all parameters are non-negative. We notice that $\frac{d}{d t}(x+u+y+v)=0$, from this we deduce that the total population size is constant over time and therefore we assume $x+u+y+v=1$.

## 2 Quadratic Stochastic Operators

The quadratic stochastic operator (QSO) [2], [4] is a mapping of the standard simplex

$$
\begin{equation*}
S^{m-1}=\left\{x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}: x_{i} \geq 0, \sum_{i=1}^{m} x_{i}=1\right\} \tag{3}
\end{equation*}
$$

into itself, of the form

$$
\begin{equation*}
V: x_{k}^{\prime}=\sum_{i=1}^{m} \sum_{j=1}^{m} P_{i j, k} x_{i} x_{j}, \quad k=1, \ldots, m \tag{4}
\end{equation*}
$$

where the coefficients $P_{i j, k}$ satisfy the following conditions

$$
\begin{equation*}
P_{i j, k} \geq 0, \quad P_{i j, k}=P_{j i, k}, \quad \sum_{k=1}^{m} P_{i j, k}=1, \quad(i, j, k=1, \ldots, m) . \tag{5}
\end{equation*}
$$

Thus, each quadratic stochastic operator $V$ can be uniquely defined by a cubic matrix $\mathbb{P}=\left(P_{i j, k}\right)_{i, j, k=1}^{m}$ with conditions (5).

Note that each element $x \in S^{m-1}$ is a probability distribution and each such distribution can be interpreted as a state of the corresponding biological system.

For a given $\lambda^{(0)} \in S^{m-1}$ the trajectory (orbit) $\left\{\lambda^{(n)} ; n \geq 0\right\}$ of $\lambda^{(0)}$ under the action of QSO (4) is defined by

$$
\lambda^{(n+1)}=V\left(\lambda^{(n)}\right), n=0,1,2, \ldots
$$

The main problem in mathematical biology consists in the study of the asymptotical behaviour of the trajectories. The difficulty of the problem depends on given matrix $\mathbb{P}$.

Definition 1. A QSO $V$ is called regular if for any initial point $\lambda^{(0)} \in S^{m-1}$, the limit

$$
\lim _{n \rightarrow \infty} V^{n}\left(\lambda^{(0)}\right)
$$

exists, where $V^{n}$ denotes $n$-fold composition of $V$ with itself (i.e. $n$ time iterations of $V$ ).

## 3 Reduction to QSO

In this paper we study the discrete time dynamical system associated to the system (2).

Define the evolution operator $V: S^{3} \rightarrow \mathbb{R}^{4}, \quad(x, u, y, v) \mapsto\left(x^{(1)}, u^{(1)}, y^{(1)}, v^{(1)}\right)$

$$
V:\left\{\begin{array}{l}
x^{(1)}=x+b-b x-\beta_{1} A(u, v) x  \tag{6}\\
u^{(1)}=u-b u+\beta_{1} A(u, v) x-\alpha u \\
y^{(1)}=y-b y+\alpha u-\beta_{2} A(u, v) y \\
v^{(1)}=v-b v+\beta_{2} A(u, v) y
\end{array}\right.
$$

where $A(u, v)=k_{1} u+k_{2} v$. Note that if $k_{1}=k_{2}=0$ then $A(u, v)=0$ and operator (6) becomes linear operator which is well studied.

By definition the operator $V$ has a form of QSO, but the parameters of this operator are not related to $P_{i j, k}$. Here to make some relations with $P_{i j, k}$ we find conditions on parameters of (6) rewriting it in the form (4) (as in [7], [8]). Using $x+u+y+v=1$ we change the form of the operator (6) as following:

$$
V:\left\{\begin{array}{l}
x^{(1)}=x(1-b)(x+u+y+v)+b(x+u+y+v)^{2}-\beta_{1}\left(k_{1} u+k_{2} v\right) x \\
u^{(1)}=u(1-b-\alpha)(x+u+y+v)+\beta_{1}\left(k_{1} u+k_{2} v\right) x \\
y^{(1)}=y(1-b)(x+u+y+v)+\alpha u(x+u+y+v)-\beta_{2}\left(k_{1} u+k_{2} v\right) y \\
v^{(1)}=v(1-b)(x+u+y+v)+\beta_{2}\left(k_{1} u+k_{2} v\right) y
\end{array}\right.
$$

From this system and QSO (4) for the case $m=4$ we obtain the following relations:

$$
\begin{array}{lll}
P_{11,1}=1, & 2 P_{12,1}=1+b-\beta_{1} k_{1}, & 2 P_{13,1}=1+b, \\
2 P_{14,1}=1+b-\beta_{1} k_{2}, & P_{22,1}=b, & 2 P_{23,1}=2 b, \\
2 P_{24,1}=2 b, & P_{33,1}=b, & 2 P_{34,1}=2 b, \\
P_{44,1}=b, & 2 P_{12,2}=1-b-\alpha+\beta_{1} k_{1}, & 2 P_{14,2}=\beta_{1} k_{2}, \\
P_{22,2}=1-b-\alpha, & 2 P_{23,2}=1-b-\alpha, & 2 P_{24,2}=1-b-\alpha, \\
2 P_{12,3}=\alpha, & 2 P_{13,3}=1-b, & P_{22,3}=\alpha, \\
2 P_{23,3}=1-b+\alpha-\beta_{2} k_{1}, & 2 P_{24,3}=\alpha, & P_{33,3}=1-b, \\
2 P_{34,3}=1-b-\beta_{2} k_{2}, & 2 P_{14,4}=1-b, & 2 P_{23,4}=\beta_{2} k_{1}, \\
2 P_{24,4}=1-b, & 2 P_{34,4}=1-b+\beta_{2} k_{2}, & P_{44,4}=1-b,
\end{array}
$$

other $P_{i j, k}=0$.
Proposition 1. We have $V\left(S^{3}\right) \subset S^{3}$ if and only if the non-negative parameters $b, \alpha, \beta_{1}, \beta_{2}, k_{1}, k_{2}$ satisfy the following conditions

$$
\begin{array}{ccc}
\alpha+b \leq 1, & \beta_{1} k_{2} \leq 2, & \beta_{2} k_{1} \leq 2 \\
b+\beta_{2} k_{2} \leq 1, & \left|b-\beta_{1} k_{1}\right| \leq 1, & \left|b-\beta_{2} k_{2}\right| \leq 1  \tag{8}\\
\left|b-\beta_{1} k_{2}\right| \leq 1, & \left|\alpha+b-\beta_{1} k_{1}\right| \leq 1, & \left|\alpha-b-\beta_{2} k_{1}\right| \leq 1
\end{array}
$$

Moreover, under conditions (8) the operator $V$ is a $Q S O$.
Proof. The proof can be obtained by using equalities (7) and solving inequalities $0 \leq P_{i j, k} \leq 1$ for each $P_{i j, k}$.

Remark 1. In the sequel of the paper we consider operator (6) with parameters $b, \alpha, \beta_{1}, \beta_{2}, k_{1}, k_{2}$ which satisfy conditions (8). This operator maps $S^{3}$ to itself and we are interested to study the behaviour of the trajectory of any initial point $\lambda \in S^{3}$ under iterations of the operator $V$.

## 4 Fixed points of the operator (6)

Recall that a fixed point of the operator $V$ is a solution of $V(\lambda)=\lambda$.

### 4.1 Finding fixed points of the operator (6)

Denote

$$
\begin{aligned}
& \lambda_{1}=(1,0,0,0), \quad \lambda_{2}=(0,1,0,0), \quad \lambda_{3}=(0,0,1,0), \quad \lambda_{4}=(0,0,0,1), \\
& \Lambda_{5}=\left\{\lambda=(x, u, y, v) \in S^{3}: x=u=0\right\}, \\
& \Lambda_{6}=\left\{\lambda=(x, u, y, v) \in S^{3}: x=y=0\right\}, \\
& \Lambda_{7}=\left\{\lambda=(x, u, y, v) \in S^{3}: x=v=0\right\}, \\
& \Lambda_{8}=\left\{\lambda=(x, u, y, v) \in S^{3}: u=y=0\right\}, \\
& \Lambda_{9}=\left\{\lambda=(x, u, y, v) \in S^{3}: u=v=0\right\}, \\
& \Lambda_{10}=\left\{\lambda=(x, u, y, v) \in S^{3}: y=v=0\right\}, \\
& \Lambda_{11}=\left\{\lambda=(x, u, y, v) \in S^{3}: x=0\right\}, \\
& \Lambda_{12}=\left\{\lambda=(x, u, y, v) \in S^{3}: u=0\right\}, \\
& \Lambda_{13}=\left\{\lambda=(x, u, y, v) \in S^{3}: y=0\right\}, \\
& \Lambda_{14}=\left\{\lambda=(x, u, y, v) \in S^{3}: v=0\right\}, \\
& \lambda_{15}=\left(\frac{b}{\beta_{1} k_{1}}, \frac{\beta_{1} k_{1}-b}{\beta_{1} k_{1}}, 0,0\right), \quad \lambda_{16}=\left(\frac{b+\alpha}{\beta_{1} k_{1}}, \frac{b\left(\beta_{1} k_{1}-b-\alpha\right)}{\beta_{1} k_{1}(b+\alpha)}, \frac{\alpha\left(\beta_{1} k_{1}-b-\alpha\right)}{\beta_{1} k_{1}(b+\alpha)}, 0\right), \\
& \lambda_{17}=\left(\frac{b}{b+\beta_{1} A}, \frac{b \beta_{1} A}{\left(b+\beta_{1} A\right)(b+\alpha)}, \frac{\alpha b \beta_{1} A}{\left(b+\beta_{1} A\right)\left(b+\beta_{2} A\right)(b+\alpha)}, \frac{\alpha \beta_{1} \beta_{2} A^{2}}{\left(b+\beta_{1} A\right)\left(b+\beta_{2} A\right)(b+\alpha)}\right),
\end{aligned}
$$

where $A$ is a positive solution of the equation

$$
\begin{equation*}
1=\frac{b \beta_{1} k_{1}}{\left(b+\beta_{1} A\right)(b+\alpha)}+\frac{\alpha \beta_{1} \beta_{2} k_{2} A}{\left(b+\beta_{1} A\right)\left(b+\beta_{2} A\right)(b+\alpha)} \tag{9}
\end{equation*}
$$

It is easy to see that

$$
\begin{gathered}
\lambda_{1} \in \Lambda_{8}, \Lambda_{9}, \Lambda_{10}, \Lambda_{12}, \Lambda_{13}, \Lambda_{14}, \quad \lambda_{2} \in \Lambda_{6}, \Lambda_{7}, \Lambda_{10}, \Lambda_{11}, \Lambda_{13}, \Lambda_{14}, \\
\lambda_{3} \in \Lambda_{5}, \Lambda_{7}, \Lambda_{9}, \Lambda_{11}, \Lambda_{12}, \Lambda_{14}, \quad \lambda_{4} \in \Lambda_{5}, \Lambda_{6}, \Lambda_{8}, \Lambda_{11}, \Lambda_{12}, \Lambda_{13}, \\
\Lambda_{5} \subset \Lambda_{11}, \Lambda_{12}, \quad \Lambda_{6} \subset \Lambda_{11}, \Lambda_{13}, \quad \Lambda_{7} \subset \Lambda_{11}, \Lambda_{14} \\
\Lambda_{8} \subset \Lambda_{12}, \Lambda_{13}, \quad \Lambda_{9} \subset \Lambda_{12}, \Lambda_{14}, \quad \Lambda_{10} \subset \Lambda_{13}, \Lambda_{14}
\end{gathered}
$$

By the following proposition we give all possible fixed points of the operator $V$.
Proposition 2. Let Fix ( $V$ ) be set of fixed points of the operator (6). Then

$$
\text { Fix }(V)= \begin{cases}\left\{\lambda_{1}\right\} & \\ \left\{\lambda_{4}\right\} \cup \Lambda_{9}, & \text { if } b=0 \\ \Lambda_{6} \bigcup \Lambda_{9}, & \text { if } b=\alpha=0 \\ \Lambda_{8} \bigcup \Lambda_{9}, & \text { if } b=\beta_{1}=0 \\ \Lambda_{5} \bigcup \Lambda_{9}, & \text { if } b=\beta_{2}=0 \\ \left\{\lambda_{4}\right\} \bigcup \Lambda_{9}, & \text { if } b=k_{1}=0 \\ \Lambda_{5} \bigcup \Lambda_{12}, & \text { if } b=k_{2}=0 \\ \Lambda_{9} \bigcup \Lambda_{13}, & \text { if } b=\alpha=\beta_{1}=0 \\ \Lambda_{9} \bigcup \Lambda_{11}, & \text { if } b=\alpha=\beta_{2}=0 \\ \Lambda_{6} \bigcup \Lambda_{14}, & \text { if } b=\alpha=k_{1}=0 \\ \Lambda_{6} \bigcup \Lambda_{12}, & \text { if } b=\alpha=k_{2}=0 \\ \Lambda_{12}, & \text { if } b=\beta_{1}=\beta_{2}=0 \\ \Lambda_{8} \bigcup \Lambda_{9}, & \text { if } b=\beta_{1}=k_{1}=0 \\ \Lambda_{12}, & \text { if } b=\beta_{1}=k_{2}=0 \\ \Lambda_{5} \bigcup \Lambda_{9}, & \text { if } b=\beta_{2}=k_{1}=0 \\ \Lambda_{12}, & \text { if } b=\beta_{2}=k_{2}=0 \\ S^{3}, & \text { if } b=\alpha=k_{1}=k_{2}=0 \text { or } b=\alpha=\beta_{1}=\beta_{2}=0 \\ \left\{\lambda_{1}, \lambda_{15}\right\}, & \text { if } b>0, \alpha=0 \text { and } \beta_{1} k_{1}>b \\ \left\{\lambda_{1}, \lambda_{16}\right\}, & \text { if } b>0, \alpha>0, \beta_{2}=0, \beta_{1} k_{1}>b+\alpha \\ \left\{\lambda_{1}, \lambda_{17}\right\}, & \text { if } \alpha b \beta_{1} \beta_{2} k_{1}>0\end{cases}
$$

Proof. Evidently that $\lambda_{1}$ is a fixed point.

1. If $b=0$ then the operator (6) has the following representation

$$
V:\left\{\begin{array}{l}
x^{(1)}=x-\beta_{1}\left(k_{1} u+k_{2} v\right) x  \tag{10}\\
u^{(1)}=u-\alpha u+\beta_{1}\left(k_{1} u+k_{2} v\right) x \\
y^{(1)}=y+\alpha u-\beta_{2}\left(k_{1} u+k_{2} v\right) y \\
v^{(1)}=v+\beta_{2}\left(k_{1} u+k_{2} v\right) y
\end{array}\right.
$$

First, we assume that all other parameters are nonzero. From the first equation of this system we get

$$
x^{(1)}=x-\beta_{1}\left(k_{1} u+k_{2} v\right) x=x,
$$

if $x=0$ or (and) $k_{1} u+k_{2} v=0$. If $x=0$ then by second equation

$$
u^{(1)}=u-\alpha u+\beta_{1}\left(k_{1} u+k_{2} v\right) x=u
$$

we have $u=0$. From this and third equation of the system

$$
y^{(1)}=y+\alpha u-\beta_{2}\left(k_{1} u+k_{2} v\right) y=y,
$$

one has $v y=0$, i.e., $v=0$ or (and) $y=0$. Thus, in this case, fixed points are $(0,0,1,0)=\lambda_{3}$ or (and) $(0,0,0,1)=\lambda_{4}$. If $k_{1} u+k_{2} v=0$, i.e., $u=v=0$ then $x^{(1)}=x, u^{(1)}=0, y^{(1)}=y, v^{(1)}=0$, so in this case, we get the set of fixed points $(x, 0, y, 0)=\Lambda_{9}$. Since $\lambda_{1}, \lambda_{3} \in \Lambda_{9}$ it follows that the fixed points of the operator (6) are $\left\{\lambda_{4}\right\} \bigcup \Lambda_{9}$.
2. If $b=0, \alpha=0$ then the operator (6) has the form

$$
V:\left\{\begin{array}{l}
x^{(1)}=x-\beta_{1}\left(k_{1} u+k_{2} v\right) x  \tag{11}\\
u^{(1)}=u+\beta_{1}\left(k_{1} u+k_{2} v\right) x \\
y^{(1)}=y-\beta_{2}\left(k_{1} u+k_{2} v\right) y \\
v^{(1)}=v+\beta_{2}\left(k_{1} u+k_{2} v\right) y
\end{array}\right.
$$

Here also we assume that all other parameters are nonzero and by $x^{(1)}=x$ we get $x=0$ or (and) $u=v=0$. If $x=0$ then $u^{(1)}=u$ and from $y^{(1)}=y$ one has $y=0$, consequently, we have $v^{(1)}=v$. Thus, for $x=0$ we have the fixed point of the form $\Lambda_{6}=(0, u, 0, v)$. If $u=v=0$ then $x^{(1)}=x$ and $y^{(1)}=y$, so the set of fixed points is $\Lambda_{9}=(x, 0, y, 0)$. The other cases including the condition $b=0$ can be handled in the same way.
3. If $b>0, \alpha=0$ then the operator (6) is as follows

$$
V:\left\{\begin{array}{l}
x^{(1)}=x+b-b x-\beta_{1}\left(k_{1} u+k_{2} v\right) x  \tag{12}\\
u^{(1)}=u-b u+\beta_{1}\left(k_{1} u+k_{2} v\right) x \\
y^{(1)}=y-b y-\beta_{2}\left(k_{1} u+k_{2} v\right) y \\
v^{(1)}=v-b v+\beta_{2}\left(k_{1} u+k_{2} v\right) y
\end{array}\right.
$$

From $y^{(1)}=y$ one has $b y+\beta_{2}\left(k_{1} u+k_{2} v\right) y=0$ which holds in the case $y=0$, and so the equation $v^{(1)}=v-b v=v$ holds only $v=0$. Consequently, the solutions of the equation

$$
u^{(1)}=u-b u+\beta_{1} k_{1} u x=u
$$

are $u=0$ and $x=\frac{b}{\beta_{1} k_{1}}$. Therefore, if $\beta_{1} k_{1} \leq b$ then the fixed point is $\lambda_{1}$, if $\beta_{1} k_{1}>b$ then the fixed points are $\lambda_{1}$ and

$$
\lambda_{15}=\left(\frac{b}{\beta_{1} k_{1}} ; 1-\frac{b}{\beta_{1} k_{1}} ; 0 ; 0\right)
$$

4. If $b>0, \alpha>0, \beta_{2}=0, \beta_{1} k_{1}>b+\alpha$ then the operator (6) has the following representation

$$
V:\left\{\begin{array}{l}
x^{(1)}=x+b-b x-\beta_{1}\left(k_{1} u+k_{2} v\right) x  \tag{13}\\
u^{(1)}=u-b u-\alpha u+\beta_{1}\left(k_{1} u+k_{2} v\right) x \\
y^{(1)}=y-b y+\alpha u \\
v^{(1)}=v-b v
\end{array}\right.
$$

Using $v^{(1)}=v-b v=v$ we have $v=0$. In the equation

$$
u^{(1)}=u-b u-\alpha u+\beta_{1} k_{1} u x=u
$$

we assume that $u>0$ (otherwise, clearly that $\lambda_{1}$ is unique) and so we have $x=\frac{b+\alpha}{\beta_{1} k_{1}}$. Substituting $x=\frac{b+\alpha}{\beta_{1} k_{1}}$ into

$$
x^{(1)}=x+b-b x-\beta_{1} k_{1} u x=x
$$

it follows up

$$
u=\frac{b-b x}{\beta_{1} k_{1} x}=\frac{b\left(\beta_{1} k_{1}-b-\alpha\right)}{\beta_{1} k_{1}(b+\alpha)} .
$$

Consequently, from $y^{(1)}=y-b y+\alpha u=y$ we get

$$
y=\frac{\alpha u}{b}=\frac{\alpha\left(\beta_{1} k_{1}-b-\alpha\right)}{\beta_{1} k_{1}(b+\alpha)}
$$

and the condition $\beta_{1} k_{1}>b+\alpha$ should be required which is easy to verify. Hence, we have an additional fixed point $\lambda_{16}$ to $\lambda_{1}$.
5. If $\alpha b \beta_{1} \beta_{2} k_{1}>0$ then the operator can have the fixed point $\lambda_{17}$ which all coordinates are positive. First, using $x^{(1)}=x$ we have $x=\frac{b}{b+\beta_{1} A}$, and so by $u^{(1)}=u$ we get

$$
u=\frac{\beta_{1} A x}{b+\alpha}=\frac{b \beta_{1} A}{\left(b+\beta_{1} A\right)(b+\alpha)}
$$

Consequently, from the equation $y^{(1)}=y$ we have

$$
y=\frac{\alpha u}{b+\beta_{2} A}=\frac{\alpha b \beta_{1} A}{\left(b+\beta_{1} A\right)\left(b+\beta_{2} A\right)(b+\alpha)},
$$

and by $v^{(1)}=v$ it follows up

$$
v=\frac{\beta_{2} A y}{b}=\frac{\alpha \beta_{1} \beta_{2} A^{2}}{\left(b+\beta_{1} A\right)\left(b+\beta_{2} A\right)(b+\alpha)} .
$$

In addition, using $A(u, v)=k_{1} u+k_{2} v$ one has the quadratical equation (9). Thus, the proof of Proposition is completed.

Note that the set of positive solutions of (9) is non-empty when $\beta_{1} k_{1} \geq b+\alpha$ (see the statements before Conjecture 2). For example, $\alpha=0.3, b=0.2, \beta_{1}=0.6$, $\beta_{2}=0.4, k_{1}=k_{2}=1$. Then the equation (9) has the form

$$
30 A^{2}-5 A-1=0
$$

and the positive solution is $A=\frac{5+\sqrt{145}}{60} \approx 0.284$.

### 4.2 Type of fixed points

Definition 2 ([1]). A fixed point $p$ for $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is called hyperbolic if the Jacobian matrix $\mathbf{J}=\mathbf{J}_{F}$ of the map $F$ at the point $p$ has no eigenvalues on the unit circle.

There are three types of hyperbolic fixed points:

1. $p$ is an attracting fixed point if all of the eigenvalues of $\mathbf{J}(p)$ are less than one in absolute value.
2. $p$ is an repelling fixed point if all of the eigenvalues of $\mathbf{J}(p)$ are greater than one in absolute value.
3. $p$ is a saddle point otherwise.

Proposition 3. Let $\lambda_{1}$ be the fixed point of the operator $V$. Then

$$
\lambda_{1}= \begin{cases}\text { nonhyperbolic, } & \text { if } b=0 \text { or } \beta_{1} k_{1}=b+\alpha \\ \text { attractive, } & \text { if } b>0 \text { and } \beta_{1} k_{1}<b+\alpha \\ \text { saddle, } & \text { if } b>0 \text { and } \beta_{1} k_{1}>b+\alpha\end{cases}
$$

Proof. The Jacobian of the operator (6) is as follows:

$$
J=\left[\begin{array}{cccc}
1-b-\beta_{1} A & -\beta_{1} k_{1} x & 0 & -\beta_{1} k_{2} x \\
\beta_{1} A & 1-b-\alpha+\beta_{1} k_{1} x & 0 & \beta_{1} k_{2} x \\
0 & \alpha-\beta_{2} k_{1} y & 1-b-\beta_{2} A & -\beta_{2} k_{2} y \\
0 & \beta_{2} k_{1} y & \beta_{2} A & 1-b+\beta_{2} k_{2} y
\end{array}\right]
$$

Then at the fixed point $\lambda_{1}$ the Jacobian is

$$
J\left(\lambda_{1}\right)=\left[\begin{array}{cccc}
1-b & -\beta_{1} k_{1} & 0 & -\beta_{1} k_{2} \\
0 & 1-b-\alpha+\beta_{1} k_{1} & 0 & \beta_{1} k_{2} \\
0 & \alpha & 1-b & 0 \\
0 & 0 & 0 & 1-b
\end{array}\right]
$$

and the eigenvalues of this matrix are $\mu_{1}=1-b, \mu_{2}=1-b-\alpha+\beta_{1} k_{1}$ which are easy to verify. By the conditions (8) one has $\mu_{1} \geq 0, \mu_{2} \geq 0$. It is easy to see that, if $b=0$ or $\beta_{1} k_{1}=b+\alpha$ then $\mu_{1}=1$ or $\mu_{2}=1$ respectively. Moreover, by definition and conditions (8) it can be shown easily that if $b>0, \beta_{1} k_{1}<b+\alpha$ then the fixed point $\lambda_{1}$ is an attracting, otherwise, saddle fixed point.

Proposition 4. Let $\lambda_{2}$ be the fixed point of the operator $V$. Then

$$
\lambda_{2}= \begin{cases}\text { nonhyperbolic, } & \text { if } b=0 \text { or } b+\beta_{1} k_{1}=2 \\ \text { attractive, } & \text { if } b>0 \text { and } b+\beta_{1} k_{1}<2 \\ \text { saddle }, & \text { otherwise }\end{cases}
$$

Proof. At the fixed point $\lambda_{2}=(0,1,0,0)$ the Jacobian is as follows:

$$
J\left(\lambda_{2}\right)=\left[\begin{array}{cccc}
1-b-\beta_{1} k_{1} & 0 & 0 & 0 \\
\beta_{1} k_{1} & 1-b-\alpha & 0 & 0 \\
0 & \alpha & 1-b-\beta_{2} k_{1} & 0 \\
0 & 0 & \beta_{2} k_{1} & 1-b
\end{array}\right]
$$

Clearly, that the eigenvalues are $\mu_{1}=1-b-\beta_{1} k_{1}, \mu_{2}=1-b-\alpha, \mu_{3}=1-b-\beta_{2} k_{1}$ and $\mu_{4}=1-b$. In conditions (8) there involved the inequalities $\left|\alpha-b-\beta_{2} k_{1}\right| \leq 1$ and $b+\alpha \leq 1$. It is easy to verify that if $b>0$ then $\left|\mu_{2}\right|<1,\left|\mu_{4}\right|<1$ and from $b+\alpha \leq 1$ implies $b+\beta_{2} k_{1}<2$, i.e., $\left|\mu_{3}\right|<1$. Moreover, if $b+\beta_{1} k_{1}<2$ then $\left|\mu_{1}\right|<1$, and so $\lambda_{2}$ is an attractive fixed point. If $b=0$ (resp. $b+\beta_{1} k_{1}=2$ ) then $\mu_{4}=1$ (resp. $\mu_{1}=1$ ) and so $\lambda_{2}$ is nonhyperbolic, if $b>0$ and $b+\beta_{1} k_{1}>2$ then $\left|\mu_{1}\right|>1,\left|\mu_{2}\right|<1,\left|\mu_{3}\right|<1,\left|\mu_{4}\right|<1$, so $\lambda_{2}$ is a saddle fixed point.

Proposition 5. Let $\lambda_{3}$ be the fixed point of the operator $V$. Then

$$
\lambda_{3}= \begin{cases}\text { nonhyperbolic, } & \text { if } b=0 \text { or } b=\beta_{2} k_{2} \\ \text { attractive, } & \text { if } b>0 \text { and } \beta_{2} k_{2}<b \\ \text { saddle, } & \text { if } b>0 \text { and } \beta_{2} k_{2}>b\end{cases}
$$

Proof. At the fixed point $\lambda_{3}=(0,0,1,0)$ the Jacobian is as follows

$$
J\left(\lambda_{3}\right)=\left[\begin{array}{cccc}
1-b & 0 & 0 & 0 \\
0 & 1-b-\alpha & 0 & 0 \\
0 & \alpha-\beta_{2} k_{1} & 1-b & -\beta_{2} k_{2} \\
0 & \beta_{2} k_{1} & 0 & 1-b+\beta_{2} k_{2}
\end{array}\right]
$$

The eigenvalues are $\mu_{1}=1-b, \mu_{2}=1-b-\alpha, \mu_{3}=1-b+\beta_{2} k_{2}$. Here also by the conditions (8) the proof is dealt similarly.

Proposition 6. Let $\lambda_{4}$ be the fixed point of the operator $V$. Then

$$
\lambda_{4}= \begin{cases}\text { nonhyperbolic, } & \text { if } b=0 \text { or } b+\beta_{1} k_{2}=2 \\ \text { attractive, } & \text { if } b>0 \text { and } b+\beta_{1} k_{2}<2 \\ \text { saddle, } & \text { otherwise }\end{cases}
$$

Proof. At the fixed point $\lambda_{4}=(0,0,0,1)$ the Jacobian is

$$
J\left(\lambda_{4}\right)=\left[\begin{array}{cccc}
1-b-\beta_{1} k_{2} & 0 & 0 & 0 \\
\beta_{1} k_{2} & 1-b-\alpha & 0 & 0 \\
0 & \alpha & 1-b-\beta_{2} k_{2} & 0 \\
0 & 0 & \beta_{2} k_{2} & 1-b
\end{array}\right]
$$

It is clear that, the eigenvalues are $\mu_{1}=1-b-\beta_{1} k_{2}, \mu_{2}=1-b-\alpha, \mu_{3}=1-b-\beta_{2} k_{2}$ and $\mu_{4}=1-b$. Based on conditions (8) and by the form of eigenvalues it is east to verify the proof of Proposition.

Remark 2. We have studied the types of fixed points $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ and the types of other fixed points can be investigated with too many calculations.

## 5 The limit points of trajectories

In this section we study the limit behavior of trajectories of initial point $\lambda^{(0)} \in S^{3}$ under operator (6), i.e the sequence $V^{n}\left(\lambda^{(0)}\right), n \geq 1$. Note that since $V$ is a continuous operator, its trajectories have as a limit some fixed points obtained in Proposition 2.
5.1 Case no susceptibility of persons ( $\beta_{1}=\beta_{2}=0$ ).

We study here the case where in the model there is no susceptibility of persons.
Proposition 7. For an initial point $\lambda^{0}=\left(x^{0}, u^{0}, y^{0}, v^{0}\right) \in S^{3}$ (except fixed points) the trajectory (under action of operator (6)) has the following limit

$$
\lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)= \begin{cases}\lambda^{0} & \text { if } \alpha=b=0 \\ \left(x^{0}, 0,1-x^{0}-v^{0}, v^{0}\right) & \text { if } b=0, \alpha>0 \\ \lambda_{1} & \text { if } b>0\end{cases}
$$

Proof. If $\beta_{1}=\beta_{2}=0$ then the operator (6) has the following form:

$$
V:\left\{\begin{array}{l}
x^{(1)}=x+b-b x  \tag{14}\\
u^{(1)}=u(1-b-\alpha) \\
y^{(1)}=y-b y+\alpha u \\
v^{(1)}=v(1-b)
\end{array}\right.
$$

Evidently, that $b=\alpha=0$ then every point is fixed point.
Assume that $b=0, \alpha>0$ then by (14) we get $x^{(n)}=x^{0}, v^{(n)}=v^{0}$ and $u^{(n)}=u^{0}(1-\alpha)^{n} \rightarrow 0$ as $n \rightarrow \infty$. Moreover, $y^{(1)}=y+\alpha u \geq y$, so the limit

$$
\lim _{n \rightarrow \infty} y^{(n)}=\bar{y}=1-x^{0}-v^{0}
$$

exists. Consequently, it follows

$$
\lim _{n \rightarrow \infty} V^{(n)}=\bar{\lambda}=\left(x^{0}, 0,1-x^{0}-v^{0}, v^{0}\right)
$$

Suppose $b>0$ then the sequences $u^{(n)}, v^{(n)}$ have zero limits. From the first equation of (14) one has

$$
\begin{equation*}
x^{(n+1)}=(1-b)^{n} x+b \sum_{k=0}^{n}(1-b)^{k} \tag{15}
\end{equation*}
$$

and using $0<b \leq 1$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x^{(n+1)}=x \lim _{n \rightarrow \infty}(1-b)^{n}+b \sum_{k=0}^{\infty}(1-b)^{k}=1 \quad \text { for any } \quad \lambda^{0} \in S^{3} \tag{16}
\end{equation*}
$$

From the relation $x^{(n)}+u^{(n)}+y^{(n)}+v^{(n)}=1$ follows the assertion of Proposition.
5.2 Case no susceptibility of persons in $S\left(\beta_{1}=0, \beta_{2}>0\right)$.

Proposition 8. For an initial point $\lambda^{0}=\left(x^{0}, u^{0}, y^{0}, v^{0}\right) \in S^{3}$ (except fixed points) the trajectory (under action of the operator (6)) has the following limit
$\lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)= \begin{cases}\lambda^{0} & \text { if } \alpha=b=0, k_{1} u^{0}+k_{2} v^{0}=0 \\ \left(x^{0}, 1-x^{0}, 0,0\right) & \text { if } \alpha=b=0, k_{1} u^{0}+k_{2} v^{0}>0, y^{0}=v^{0}=0 \\ \left(x^{0}, u^{0}, 0,1-x^{0}-u^{0}\right) & \text { if } \alpha=b=0, k_{1} u^{0}+k_{2} v^{0}>0, y^{0}+v^{0}>0 \\ \lambda_{1} & \text { if } b>0 \\ \left(x^{0}, 0, \bar{y}, 1-x^{0}-\bar{y}\right) & \text { if } b=0, \alpha>0, k_{2}=0, \text { where } \bar{y}=\bar{y}\left(\lambda^{0}\right) \\ \left(x^{0}, 0,1-x^{0}, 0\right) & \text { if } b=0, \alpha>0, k_{2}>0, k_{1} u^{0}+k_{2} v^{0}=0 \\ \left(x^{0}, 0,0,1-x^{0}\right) & \text { if } b=0, \alpha>0, k_{2}>0, k_{1} u^{0}+k_{2} v^{0}>0\end{cases}$
Proof. If $\beta_{1}=0$ then the operator (6) has the following representation:

$$
V:\left\{\begin{array}{l}
x^{(1)}=x+b(1-x)  \tag{17}\\
u^{(1)}=u(1-b-\alpha) \\
y^{(1)}=y-b y+\alpha u-\beta_{2}\left(k_{1} u+k_{2} v\right) y \\
v^{(1)}=v-b v+\beta_{2}\left(k_{1} u+k_{2} v\right) y
\end{array}\right.
$$

Case: $b=\alpha=0$. In this case it is easy to see that every of the sequences $x^{(n)}, u^{(n)}$, $y^{(n)}, v^{(n)}$ has a limit. Denote by $\bar{y}, \bar{v}$ the limits of $y^{(n)}$ and $v^{(n)}$ respectively. If

$$
A\left(u^{0}, v^{0}\right)=k_{1} u^{0}+k_{2} v^{0}=0
$$

then from (17) it follows

$$
A\left(u^{(n)}, v^{(n)}\right)=k_{1} u^{(n)}+k_{2} v^{(n)}=k_{1} u^{0}+k_{2} v^{0}=0
$$

Therefore, $V^{(n)}\left(\lambda^{0}\right)=\lambda^{0}, n=1,2,3, \ldots$ and for all $\lambda^{0} \in S^{3}$.
If $k_{1} u^{0}+k_{2} v^{0}>0$ then we consider all possible subcases:

- If $y^{0}=v^{0}=0$ then $y^{(n)}=v^{(n)}=0$, so $\lim _{n \rightarrow \infty} V^{(n)}=\left(x^{0}, 1-x^{0}, 0,0\right)$.
- Let be $y^{0}+v^{0}>0$. Since $k_{1} u^{(n)}+k_{2} v^{(n)} \geq 0$ it follows that the sequence $v^{(n)}$ is a non decreasing. Using this one has

$$
k_{1} u^{(n)}+k_{2} v^{(n)}=k_{1} u^{0}+k_{2} \bar{v} \geq k_{1} u^{0}+k_{2} v^{0}>0
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(k_{1} u^{(n)}+k_{2} v^{(n)}\right)=k_{1} u^{0}+k_{2} \bar{v}>0 \tag{18}
\end{equation*}
$$

Then from the third equation of (17) we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} y^{(n+1)}=\lim _{n \rightarrow \infty} y^{(n)}-\beta_{2} \lim _{n \rightarrow \infty} & \left(k_{1} u^{(n)}+k_{2} v^{(n)}\right) y^{(n)} \\
& \Rightarrow \beta_{2}\left(k_{1} u^{0}+k_{2} \bar{v}\right) \bar{y}=0 \Rightarrow \bar{y}=0
\end{aligned}
$$

Thus, a trajectory of the operator (17) converges to $\left(x^{0}, u^{0}, 0,1-x^{0}-u^{0}\right)$.

Case: $b>0$. In this case by the result (16) we have $x^{(n)} \rightarrow 1$ as $n \rightarrow \infty$. So all the other sequences have zero limit. Thus, limit of the considering operator is $\lambda_{1}=(1,0,0,0)$.
Case: $b=0, \alpha>0, k_{2}=0$. Then $x^{(n)}=x^{0}, u^{(n)}=u^{0}(1-\alpha)^{n} \rightarrow 0$ as $n \rightarrow \infty$, and $v^{(1)}=v+\beta_{2} k_{1} u y \geq v$, i.e., the sequence $v^{(n)}$ has limit, so $y^{(n)}$ also has limit. If we denote $\bar{y}$ the limit of $y^{(n)}$, of course, it depends on initial point $\lambda^{0}$ and consequently, the limit of $v^{(n)}$ is $1-x^{0}-\bar{y}$.
Case: $b=0, \alpha>0, k_{2}>0$. Here also, as previous case, $x^{(n)}=x^{0}, u^{(n)}=u^{0}(1-$ $\alpha)^{n} \rightarrow 0$ and the sequences $y^{(n)}, v^{(n)}$ have limits.
If $k_{1} u^{0}+k_{2} v^{0}=0$ then we can consider two possible subcases:

- If $k_{1}=v^{0}=0$ then $v^{(n)}=0$ and $A\left(u^{(n)}, v^{(n)}\right)=0$, so

$$
\lim _{n \rightarrow \infty} y^{(n+1)}=\lim _{n \rightarrow \infty} y^{(n)}+\alpha \lim _{n \rightarrow \infty} u^{(n)}=\bar{y}=1-x^{0}
$$

- If $u^{0}=v^{0}=0$ then $u^{(n)}=v^{(n)}=0$, so $\bar{y}=1-x^{0}$.

If $k_{1} u^{0}+k_{2} v^{0}>0$ then we consider the following subcases:

- If $y^{0}=v^{0}=0$ then $k_{1} u^{0}>0$, so $y^{(1)}=\alpha u^{0}>0$ and from this

$$
v^{(2)}=\beta_{2} k_{1} \alpha(1-\alpha)\left(u^{0}\right)^{2}>0
$$

- If $y^{0}>0, v^{0}=0$ then $k_{1} u^{0}>0$, so $v^{(1)}=\beta_{2} k_{1} u^{0} y^{0}>0$.
- If $v^{0}>0$ then $v^{(1)}>0$. Here also by taking a limit of $v^{(n+1)}$ we have $\beta_{2} k_{2} \bar{v} \bar{y}=0$. i.e., $\bar{y}=0$, so $\bar{v}=1-x^{0}$.

The proof of the Proposition is completed.
5.3 Case no birth (death) rate and recovery rate ( $b=\alpha=0$ ).

Proposition 9. For an initial point $\lambda^{0}=\left(x^{0}, u^{0}, y^{0}, v^{0}\right) \in S^{3}$ (except fixed points) the trajectory (under action of the operator (6)) has the following limit

$$
\lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)= \begin{cases}\lambda^{0} & \text { if } k_{1} u^{0}+k_{2} v^{0}=0 \\ \left(0,1-y^{0}-v^{0}, y^{0}, v^{0}\right) & \text { if } \beta_{1}>0, \beta_{2}=0, k_{1} u^{0}+k_{2} v^{0}>0 \\ \left(0, u^{0}, 0,1-u^{0}\right) & \text { if } \beta_{1}>0, \beta_{2}>0, k_{1} u^{0}+k_{2} v^{0}>0\end{cases}
$$

We note that the case $\beta_{1}=0, \beta_{2}>0$ is not considered, because, it coincides with some cases of Proposition 8.

Proof. If $b=0, \alpha=0$ then the operator (6) is

$$
V:\left\{\begin{array}{l}
x^{(1)}=x-\beta_{1}\left(k_{1} u+k_{2} v\right) x  \tag{19}\\
u^{(1)}=u+\beta_{1}\left(k_{1} u+k_{2} v\right) x \\
y^{(1)}=y-\beta_{2}\left(k_{1} u+k_{2} v\right) y \\
v^{(1)}=v+\beta_{2}\left(k_{1} u+k_{2} v\right) y
\end{array}\right.
$$

From (19) one can check that the sequences $x^{(n)}, u^{(n)}, y^{(n)}, v^{(n)}$ are monotone, so they have limits and let $\bar{x}, \bar{u}, \bar{v}$ be the limits of $x^{(n)}, u^{(n)}, v^{(n)}$ respectively. The case $k_{1} u^{0}+k_{2} v^{0}=0$ is clear.

If $\beta_{1}>0, \beta_{2}=0, k_{1} u^{0}+k_{2} v^{0}>0$ then from $k_{1} u^{(n)}+k_{2} v^{(n)} \geq 0$ we have that $u^{(n)}$ non decreasing sequence and as (18), we have that

$$
\lim _{n \rightarrow \infty}\left(k_{1} u^{(n)}+k_{2} v^{(n)}\right)=k_{1} \bar{u}+k_{2} v^{0}>0 .
$$

Therefore,

$$
\lim _{n \rightarrow \infty} x^{(n+1)}=\lim _{n \rightarrow \infty} x^{(n)}-\beta_{1} \lim _{n \rightarrow \infty}\left(k_{1} u^{(n)}+k_{2} v^{(n)}\right) x^{(n)}
$$

and it follows $\beta_{1}\left(k_{1} \bar{u}+k_{2} v^{0}\right) \bar{x}=0$, i.e., $\bar{x}=0$, so $\bar{u}=1-y^{0}-v^{0}$.
The case $\beta_{1}>0, \beta_{2}>0, k_{1} u^{0}+k_{2} v^{0}>0$ using

$$
\lim _{n \rightarrow \infty}\left(k_{1} u^{(n)}+k_{2} v^{(n)}\right)=k_{1} \bar{u}+k_{2} \bar{v} \geq k_{1} u^{0}+k_{2} v^{0}>0
$$

can be considered similarly. The Proposition is proved.
5.4 Case no recovery rate and infectivity of persons in $I_{1}\left(\alpha=0, k_{2}=0\right)$.

Proposition 10. For an initial point $\lambda^{0}=\left(x^{0}, u^{0}, y^{0}, v^{0}\right) \in S^{3}$ (except fixed points) the trajectory (under action of the operator (6)) has the following limit

$$
\lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)= \begin{cases}\lambda_{1} & \text { if } \beta_{1} k_{1} \leq b \text { or } u^{0}=0 \\ \lambda_{15} & \text { if } \beta_{1} k_{1}>b \text { and } u^{0}>0\end{cases}
$$

Proof. Here we consider the case $b>0$, otherwise it coincides with previous Proposition cases. If $\alpha=k_{2}=0$ then the operator (6) has the form

$$
V:\left\{\begin{array}{l}
x^{(1)}=x+b-b x-\beta_{1} k_{1} u x  \tag{20}\\
u^{(1)}=u-b u+\beta_{1} k_{1} u x \\
y^{(1)}=y-b y-\beta_{2} k_{1} u y \\
v^{(1)}=v-b v+\beta_{2} k_{1} u y
\end{array}\right.
$$

From the third equation of (20) one has

$$
y^{(1)}=y-b y-\beta_{2} k_{1} u y \leq y(1-b),
$$

i.e., $y^{(n)} \leq y^{0}(1-b)^{n}$, so $y^{(n)} \rightarrow 0$ as $n \rightarrow \infty$. Moreover, from the sum of last two equations of (20) we get

$$
\lim _{n \rightarrow \infty}\left(y^{(n+1)}+v^{(n+1)}\right)=(1-b) \lim _{n \rightarrow \infty}\left(y^{(n)}+v^{(n)}\right)=\left(y^{0}+v^{0}\right) \lim _{n \rightarrow \infty}(1-b)^{n}=0
$$

Hence, the sequence $v^{(n)}$ also converges to zero.

- If $\beta_{1} k_{1}=0$ then $u^{(n)}=u^{0}(1-b)^{n}$ has zero limit. Since the sequences $y^{(n)}$ and $v^{(n)}$ also converge to zero, it follows that the sequence $x^{(n)}$ has limit one. Thus, the limit of the operator $V$ is $\lambda_{1}$.
- If $0<\beta_{1} k_{1} \leq b$ then from

$$
u^{(1)}=u-\left(b-\beta_{1} k_{1} x\right) u \leq u
$$

we get that the sequence $u^{(n)}$ has limit. We assume that $\lim _{n \rightarrow \infty} u^{(n)}=\bar{u}>0$, then from

$$
u^{(n+1)}=u^{(n)}-\left(b-\beta_{1} k_{1} x^{(n)}\right) u^{(n)}
$$

we have $\lim _{n \rightarrow \infty} x^{(n)}=\frac{b}{\beta_{1} k_{1}}$, and

$$
\bar{u}=1-\frac{b}{\beta_{1} k_{1}}=\frac{\beta_{1} k_{1}-b}{\beta_{1} k_{1}} .
$$

The condition $\beta_{1} k_{1} \leq b$ contradicts to assumption $\bar{u}>0$, so $\bar{u}=0$. Hence, limit point of the operator is $\lambda_{1}$.

- If $\beta_{1} k_{1}>b$ and $u^{0}>0$ then from the first two equations of the operator (20) we formulate a new operator:

$$
W:\left\{\begin{array}{l}
x^{(1)}=x+b-b x-\beta_{1} k_{1} u x  \tag{21}\\
u^{(1)}=u-b u+\beta_{1} k_{1} u x
\end{array}\right.
$$

Here we normalize the operator (21) as following:

$$
W_{0}:\left\{\begin{array}{l}
x^{(1)}=\frac{x+b-b x-\beta_{1} k_{1} u x}{x+u+b-b(x+u)}  \tag{22}\\
u^{(1)}=\frac{u-b u+\beta_{1} k_{1} u x}{x+u+b-b(x+u)}
\end{array}\right.
$$

For this operator $x^{(n)}+u^{(n)}=1, n \geq 1$, so from $x^{(1)}+u^{(1)}=1$ we have

$$
\left\{\begin{array}{l}
x^{(2)}=x^{(1)}+b-b x^{(1)}-\beta_{1} k_{1} u^{(1)} x^{(1)} \\
u^{(2)}=u^{(1)}-b u^{(1)}+\beta_{1} k_{1} u^{(1)} x^{(1)}
\end{array}\right.
$$

Thus, operators $W$ and $W_{0}$ have same dynamics. From the first equation of the last system we obtain

$$
x^{(2)}=\left(1-b-\beta_{1} k_{1}\right) x^{(1)}+\beta_{1} k_{1}\left(x^{(1)}\right)^{2}+b .
$$

If we denote $x^{(1)}=x, x^{(2)}=f_{b, \beta_{1} k_{1}}(x)$ then we get

$$
f_{b, \beta_{1} k_{1}}(x)=b+\left(1-b-\beta_{1} k_{1}\right) x+\beta_{1} k_{1} x^{2} .
$$

Definition 3 ([1, p. 47]). Let $f: A \rightarrow A$ and $g: B \rightarrow B$ be two maps. $f$ and $g$ are said to be topologically conjugate if there exists a homeomorphism $h: A \rightarrow B$ such that, $h \circ f=g \circ h$. The homeomorphism $h$ is called a topological conjugacy.

Let $F_{\mu}(x)=\mu x(1-x)$ be quadratic family (discussed in [1]) and

$$
f_{b, \beta_{1} k_{1}}(x)=b+\left(1-b-\beta_{1} k_{1}\right) x+\beta_{1} k_{1} x^{2} .
$$

Lemma 1. Two maps $F_{\mu}(x)$ and $f_{b, \beta_{1} k_{1}}(x)$ are topologically conjugate for $\mu=$ $\beta_{1} k_{1}-b+1$.

Proof. We take the linear map (as in [6]) $h(x)=p x+q$ and by Definition 3 we should have $h\left(F_{\mu}(x)\right)=f_{b, \beta_{1} k_{1}}(h(x))$, i.e.,

$$
p \mu x(1-x)+q=b+(p x+q)\left(1-b-\beta_{1} k_{1}\right)+\beta_{1} k_{1}(p x+q)^{2}
$$

from this identity we get

$$
\left\{\begin{array} { l } 
{ - p \mu = \beta _ { 1 } k _ { 1 } p ^ { 2 } } \\
{ p \mu = p ( 1 - b - \beta _ { 1 } k _ { 1 } ) + 2 p q \beta _ { 1 } k _ { 1 } } \\
{ q = q ( 1 - b - \beta _ { 1 } k _ { 1 } ) + \beta _ { 1 } k _ { 1 } q ^ { 2 } + b }
\end{array} \Rightarrow \left\{\begin{array}{l}
p=-\frac{\mu}{\beta_{1} k_{1}} \\
q=\frac{\mu-1+b+\beta_{1} k_{1}}{2 \beta_{1} k_{1}} \\
\beta_{1} k_{1} q^{2}-\left(b+\beta_{1} k_{1}\right) q+b=0
\end{array}\right.\right.
$$

The roots of the equation

$$
\beta_{1} k_{1} q^{2}-\left(b+\beta_{1} k_{1}\right) q+b=0
$$

are $q=1, q=\frac{b}{\beta_{1} k_{1}}$. If we choose $q=1$ then by $q=\frac{\mu-1+b+\beta_{1} k_{1}}{2 \beta_{1} k_{1}}$ we have $\mu=\beta_{1} k_{1}-b+1$. Then the homeomorphism is $h(x)=\frac{b-\beta_{1} k_{1}-1}{\beta_{1} k_{1}} x+1$. Moreover, since $b<\beta_{1} k_{1} \leq 2$ we have $1<\mu<3$.

The importance of this Lemma is that if two maps are topologically conjugate then they have essentially the same dynamics (see [1, p. 53]). The operator

$$
f_{b, \beta_{1} k_{1}}(x)=b+\left(1-b-\beta_{1} k_{1}\right) x+\beta_{1} k_{1} x^{2}
$$

has two fixed points $p_{1}=1$ and $p_{2}=\frac{b}{\beta_{1} k_{1}}$. In addition,

$$
f_{b, \beta_{1} k_{1}}^{\prime}(x)=1-b-\beta_{1} k_{1}+2 \beta_{1} k_{1} x
$$

from this and $\beta_{1} k_{1}>b$ it obtains that the fixed point $p_{1}=1$ is repelling, $p_{2}=\frac{b}{\beta_{1} k_{1}}$ is attractive. Moreover, for any initial point $x \in(0,1)$ and for $\mu \in(1,3)$ the trajectory of the operator $F_{\mu}(x)$ converges to the attractive fixed point (see [1, p. 32]). Thus, for the case $\beta_{1} k_{1}>b$ the limit point of the operator (20) is $\lambda_{15}$.
5.5 Case no only susceptibility of persons in $S_{1}\left(\beta_{2}=0, \beta_{1}>0\right)$.

Proposition 11. For an initial point $\lambda^{0}=\left(x^{0}, u^{0}, y^{0}, v^{0}\right) \in S^{3}$ (except fixed points) the trajectory (under action of the operator (6)) has the following limit

$$
\lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)= \begin{cases}\left(x^{0}, 0,1-x^{0}-v^{0}, v^{0}\right) & \text { if } b=0, \alpha>0 \text { and } k_{1} u^{0}+k_{2} v^{0}=0 \\ \left(0,0,1-v^{0}, v^{0}\right) & \text { if } b=0, \alpha>0, k_{2} v^{0}>0 \\ \left(\bar{x}, 0,1-\bar{x}-v^{0}, v^{0}\right) & \text { if } b=k_{2} v^{0}=0, k_{1} u^{0}>0, \alpha>0 \\ \lambda_{1} & \text { if } b \alpha>0, k_{1} u^{0}+k_{2} v^{0}=0 \\ \lambda_{1} & \text { if } b \alpha>0, k_{2} v^{0}=0, \beta_{1} k_{1} \leq b+\alpha\end{cases}
$$

where $\bar{x}=\bar{x}\left(\lambda^{0}\right)$

Proof. Here we consider the case $\beta_{1}>0$, otherwise, this proposition is same with Proposition 7. We note that the case $b=\alpha=0$ is considered in Proposition 9. If $\beta_{2}=0$ then the operator (6) has the form

$$
V:\left\{\begin{array}{l}
x^{(1)}=x+b-b x-\beta_{1}\left(k_{1} u+k_{2} v\right) x  \tag{23}\\
u^{(1)}=u-b u-\alpha u+\beta_{1}\left(k_{1} u+k_{2} v\right) x \\
y^{(1)}=y-b y+\alpha u \\
v^{(1)}=v(1-b)
\end{array}\right.
$$

Case: $b=0, \alpha>0, k_{1} u^{0}+k_{2} v^{0}=0$. From $A\left(u^{0}, v^{0}\right)=k_{1} u^{0}+k_{2} v^{0}=0$ we have the following simple cases:

- If $k_{1}=k_{2}=0$ then $x^{(n)}=x^{0}, v^{(n)}=v^{0}$ and $u^{(n)}=u^{0}(1-\alpha)^{n} \rightarrow 0$, as $n \rightarrow \infty$.
- If $k_{1}=v^{0}=0$ then $v^{(n)}=0, x^{(n)}=x^{0}$, so $u^{(n)}=u^{0}(1-\alpha)^{n} \rightarrow 0$ and $y^{(n)} \rightarrow 1-x^{0}$ as $n \rightarrow \infty$.
- If $u^{0}=k_{2}=0$, then $u^{(n)}=0, v^{(n)}=v^{0}$, so $x^{(n)}=x^{0}, y^{(n)}=y^{0}=1-x^{0}$ for all $n$.
- If $u^{0}=v^{0}=0$, then $u^{(n)}=0, v^{(n)}=0$, so $x^{(n)}=x^{0}, y^{(n)}=y^{0}=1-x^{0}$ for all $n$.

Case: $b=0, \alpha>0, k_{2} v^{0}>0$. Then $v^{(n)}=v^{0}$ and $x^{(1)}=x-\beta_{1}\left(k_{1} u+k_{2} v\right) x \leq x$, $y^{(1)}=y+\alpha u \geq y$, i.e., the sequences $x^{(n)}, y^{(n)}, v^{(n)}$ have limits, so $u^{(n)}$ also has limit. From the equation $y^{(n+1)}=y^{(n)}+\alpha u^{(n)}$ we get limit and by $\alpha>0$ it obtains that $u^{(n)}$ converges to zero. Moreover, by the second equation of the system (23),

$$
u^{(n+1)}=(1-\alpha) u^{(n)}+\beta_{1}\left(k_{1} u^{(n)}+k_{2} v^{(n)}\right) x^{(n)}
$$

if we take a limit then we have $0=\beta_{1} k_{2} v^{0} \bar{x}$, from this and $k_{2} v^{0}>0$ we have $\bar{x}=0$, where $\bar{x}$ is a limit of the sequence $x^{(n)}$.
Case: $b=k_{2} v^{0}=0, k_{1} u^{0}>0, \alpha>0$. Here also as previous case, all sequences have limits and $v^{(n)}=v^{0}$. From $y^{(n+1)}=y^{(n)}+\alpha u^{(n)}$ we get limit and by $\alpha>0$ it obtains that $u^{(n)}$ converges to zero. But, the limit $\lim _{n \rightarrow \infty} x^{(n)}=\bar{x}$ depends on initial conditions $x^{0}, u^{0}$.

Case: $b>0, \alpha>0, k_{1} u^{0}+k_{2} v^{0}=0$. We have the following subcases:

- If $k_{1}=k_{2}=0$ then $x^{(1)}=x+(1-x) b \geq x$ and by the results (16) we have that the sequence $x^{(n)}$ has limit 1 .
- If $k_{1}=v^{0}=0$ then $v^{(n)}=0, u^{(n)}=u^{0}(1-b-\alpha)^{n} \rightarrow 0$ and as previous case $x^{(n)} \rightarrow 1, n \rightarrow \infty$.
- If $u^{0}=k_{2}=0$ then $u^{(n)}=0, y^{(n)}=y^{0}(1-b)^{n} \rightarrow 0$ and from $v^{(n)} \rightarrow 0$ implies $x^{(n)} \rightarrow 1$ as $n \rightarrow \infty$.
- If $u^{0}=v^{0}=0$ then $u^{(n)}=0, v^{(n)}=0$, for any $n=1,2,3, \ldots$ and $y^{(n)}=y^{0}(1-b)^{n} \rightarrow 0$ as $n \rightarrow \infty$. So, it follows $x^{(n)} \rightarrow 1$ as $n \rightarrow \infty$.

Case: $b>0, \alpha>0, k_{2} v^{0}=0, \beta_{1} k_{1} \leq b+\alpha$. From $k_{2} v^{0}=0$ we have $k_{2} v^{(n)}=0$ and

$$
u^{(1)}=u-\left(b+\alpha-\beta_{1} k_{1} x\right) u \leq u,
$$

i.e., the sequence $u^{(n)}$ has limit. Let us show the existence of the limit of $y^{(n)}$.

Lemma 2. If $\beta_{1} k_{1} \leq b+\alpha$ then the set

$$
M=\left\{(u ; y) \in S^{1}: b y-\alpha u \leq 0\right\}
$$

is an invariant with respect to operator (23).
Proof. Let $(u, y) \in M$, i.e., $b y-\alpha u \geq 0$. We check the condition by ${ }^{(1)}-\alpha u^{(1)} \geq 0$ :

$$
\begin{aligned}
b y^{(1)}-\alpha u^{(1)} & =b(y-b y+\alpha u)-\alpha\left(u-b u-\alpha u+\beta_{1} k_{1} u x\right) \\
& =b y-\alpha u+b \alpha u-b^{2} y+b \alpha u+\alpha^{2} u-\alpha \beta_{1} k_{1} u x \\
& =b y-\alpha u-b(b y-\alpha u)+\alpha u\left(b+\alpha-\beta_{1} k_{1} x\right) \\
& =(b y-\alpha u)(1-b)+\alpha u\left(b+\alpha-\beta_{1} k_{1} x\right) \geq 0 .
\end{aligned}
$$

Thus, the Lemma is proved.
By the Lemma (2) we show the existence of limit $y^{(n)}$. Assume that $\left(u^{0}, y^{0}\right) \in M$ then $y^{(n)}$ is decreasing for any $n$. Let be $\left(u^{0}, y^{0}\right) \notin M$ then there are two possible cases:

1. If after some finite step $k,\left(u^{(k)}, y^{(k)}\right) \in M$ then $\left(u^{(n)}, y^{(n)}\right) \in M$ for all $n>k$, so $y^{(n)}$ is decreasing for all $n>k$.
2. If $\left(u^{(n)}, y^{(n)}\right) \notin M$ for any $n \in N$ then $b y^{(n)}-\alpha u^{(n)}>0, \forall n \in N$, and so the sequence $y^{(n)}$ is increasing.

Therefore, the sequences $u^{(n)}$ and $y^{(n)}$ have limits and from $v^{(n)} \rightarrow 0$ we get that all sequences have limits. Since limit point must be fixed point and for the case $\beta_{1} k_{1} \leq b+\alpha$ the fixed point $\lambda_{1}$ is unique.

Thus, the proof of the Proposition is completed.
For the case $b \alpha>0, k_{2} v^{0}>0$ numerical calculations suggest the following conjecture. (Fig. 1, Fig 2)

Conjecture 1. If $\beta_{2}=0$ then for an initial point $\lambda^{0}=\left(x^{0}, u^{0}, y^{0}, v^{0}\right) \in S^{3}$ (except fixed points) the trajectory has the following limit

$$
\lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)= \begin{cases}\lambda_{1} & \text { if } \beta_{1} k_{1} \leq b+\alpha, b \alpha>0 \text { and } k_{2} v^{0}>0 \\ \lambda_{16} & \text { if } u^{0}+v^{0}>0 \text { and } \beta_{1} k_{1}>b+\alpha, b \alpha>0\end{cases}
$$



Figure 1: $\alpha=0.2, b=0.6, \beta_{1}=0.5$, Figure 2: $\alpha=0.2, b=0.1, \beta_{1}=0.5$, $\beta_{2}=0, k_{1}=1, k_{2}=0.3, x^{0}=0.1, u^{0}=\beta_{2}=0, k_{1}=1, k_{2}=0.3, x^{0}=0.3$, $0.01, y^{0}=0.2, \lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)=\lambda_{1} . \quad u^{0}=0.2, y^{0}=0.4, \lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)=\lambda_{10}$.

Let $\alpha b \beta_{1} \beta_{2} k_{1}>0$ and assume that all sequences have limits. First, we denote by $f(x), g(x)$ :

$$
\begin{equation*}
f(x)=b+\beta_{1} x, \quad g(x)=\frac{b \beta_{1} k_{1}}{b+\alpha}+\frac{\alpha \beta_{1} \beta_{2} k_{2} x}{\left(b+\beta_{2} x\right)(b+\alpha)} . \tag{24}
\end{equation*}
$$

Then the roots of the equation (9) are roots of the equation $f(x)=g(x)$. We consider graphical solutions of this equation.

Case: $\beta_{1} k_{1}>b+\alpha$. In this case $\frac{b \beta_{1} k_{1}}{b+\alpha}>b$ and the graphic of the function $g(x)$ has horizontal asymptote $y=\frac{\beta_{1}\left(b k_{1}+\alpha k_{2}\right)}{b+\alpha}=$ const, so the equation $f(x)=g(x)$ has unique positive solution (Fig. 3).

Case: $\beta_{1} k_{1}<b+\alpha$. In this case, slope of the $f(x)$ is $\operatorname{Tan} \varphi=\beta_{1}$ and slope of a tangent at the point $x=0$ of $g(x)$ is $\operatorname{Tan} \psi=\frac{\alpha \beta_{1} \beta_{2} k_{2}}{b(b+\alpha)}$. It is clear that, if Tan $\varphi \geq$ Tan $\psi$, i.e., $\beta_{1} \geq \frac{\alpha \beta_{1} \beta_{2} k_{2}}{b(b+\alpha)}$ or $b(b+\alpha) \geq \alpha \beta_{2} k_{2}$ then $f(x)=g(x)$ does not have positive solution (Fig.4).

Case: $\beta_{1} k_{1}=b+\alpha$. In this case the equation $f(x)=g(x)$ has solution $x=0$, i.e., operator (6) has unique fixed point $\lambda_{1}$.


Figure 3: $\beta_{1} k_{1}>b+\alpha$


Figure 4: $\beta_{1} k_{1}<b+\alpha, b(b+\alpha)>\alpha \beta_{2} k_{2}$

These conclusions together with numerical calculations for the operator $V$ (6) lead the following conjecture.

Conjecture 2. If $\alpha b \beta_{1} \beta_{2} k_{1}>0$ then for an initial point $\lambda^{0}=\left(x^{0}, u^{0}, y^{0}, v^{0}\right) \in S^{3}$ (except fixed points) the trajectory has the following limit

$$
\lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)= \begin{cases}\lambda_{1} & \text { if } u^{0}=v^{0}=0 \text { or } \beta_{1} k_{1} \leq b+\alpha, b(b+\alpha) \geq \alpha \beta_{2} k_{2} \\ \lambda_{17} & \text { if } u^{0}+v^{0}>0 \text { and } \beta_{1} k_{1}>b+\alpha\end{cases}
$$



Figure 5: $\alpha=0.1, b=0.6, \beta_{1}=0.5$, Figure 6: $\alpha=0.01, b=0.1, \beta_{1}=0.8$, $\beta_{2}=0.01, k_{1}=1.2, k_{2}=1.1, x^{0}=0.2, \quad \beta_{2}=0.2, k_{1}=0.5, k_{2}=1.2, x^{0}=0.2$, $u^{0}=0.1, y^{0}=0.3, \lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)=\lambda_{1} . \quad u^{0}=0.4, y^{0}=0.1, \lim _{n \rightarrow \infty} V^{(n)}\left(\lambda^{0}\right)=\lambda_{11}$.

## References

[1] R.L. Devaney: An Introduction to Chaotic Dynamical System. Westview Press (2003).
[2] R.N. Ganikhodzhaev, F.M. Mukhamedov, U.A. Rozikov: Quadratic stochastic operators and processes: results and open problems. Inf. Dim. Anal. Quant. Prob. Rel. Fields 14 (2) (2011) 279-335.
[3] D. Greenhalgh, O. Diekmann, M. de Jong: Subcritical endemic steady states in mathematical models for animal infections with incomplete immunity. Math.Biosc. 165 (1) (2000) 25 pp .
[4] Y.I. Lyubich: Mathematical structures in population genetics. Springer-Verlag, Berlin (1992).
[5] J. Müller, Ch. Kuttler: Methods and models in mathematical biology. Springer (2015).
[6] U.A. Rozikov, S.K. Shoyimardonov: Leslie's prey-predator model in discrete time. Inter. Jour. Biomath 13 (6) (2020) 2050053.
[7] U.A. Rozikov, S.K. Shoyimardonov: Ocean ecosystem discrete time dynamics generated by l-Volterra operators. Inter. Jour. Biomath. 12 (2) (2019) 24 pp.
[8] U.A. Rozikov, S.K. Shoyimardonov, R.Varro: Planktons discrete-time dynamical systems. Nonlinear Studies 28 (2) (2021).

Received: 24 July 2020
Accepted for publication: 4 December 2020
Communicated by: Utkir Rozikov


[^0]:    2020: 37C15, 37C25, 37N25
    Key words: Quadratic stochastic operator, fixed point, discrete-time, SISI model, epidemic Affiliation:

    Sobirjon Shoyimardonov. V.I.Romanovskiy institute of mathematics, 9 University street, 100174, Tashkent, Uzbekistan.
    E-mail: shoyimardonov@inbox.ru
    ${ }^{1}$ https://en.wikipedia.org/wiki/Susceptible
    ${ }^{2}$ https://en.wikipedia.org/wiki/Infectivity

