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Non-split supermanifolds associated with the cotangent

bundle

’ Arkady Onishchik ‘

Abstract. Here, I study the problem of classification of non-split supermanifolds hav-
ing as retract the split supermanifold (M, 2), where Q is the sheaf of holomorphic
forms on a given complex manifold M of dimension > 1. I propose a general construc-
tion associating with any d-closed (1,1)-form w on M a supermanifold with retract
(M, Q) which is non-split whenever the Dolbeault class of w is non-zero. In particu-
lar, this gives a non-empty family of non-split supermanifolds for any flag manifold
M # CP!. In the case where M is an irreducible compact Hermitian symmetric
space, I get a complete classification of non-split supermanifolds with retract (M, ).
For each of these supermanifolds, the 0- and 1-cohomology with values in the tangent
sheaf are calculated. As an example, I study the II-symmetric super-Grassmannians

introduced by Yu. Manin.
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Editor’s note The work on the problem of deformations of analytical supermanifolds,
especially the study of non-splitness, was dormant for ca 40 years after the discovery of the
first non-split example by Green. Apart from Onishchik and his students nobody studied
this problem. The problem drew new attention of both mathematicians and theoretical
physicists after Donagi and Witten showed that the moduli space of super Riemann surfaces
is not split and how this fact affects working with modules of string theory, see [9%].

This work by Onishchik was preprinted in 1997 as Prépubl. Univ. Poitiers Départ de
Math. N. 109. It was found very helpful several times since, see [52*] — [56*] and [5%].

A.L.Onishchik used to tell me that he understood the meaning of the “non-split” su-
permanifold having learned the papers by Green [17] and Vaintrob [50*], [51*]. Here, I
updated the references; my additions are marked with a =*. I also considerably edited
English, but each time I read this text after a break I see something to be corrected, so
I am afraid there still is something left. I also changed the outdated or ad hoc notation
of several supergroups and superalgebras using the currently used notation and inserted a
couple of clarifying parenthetical remarks (marked by D.L.).

For basics of supermanifold theory, I recommend [8*] and [29*] which still contain
many results, notions and open problems not covered in other sources; see also comments
in [34*, Section 4.8]. I also recommend the wonderful introduction into the theory of
schemes and ringed spaces [31*], and the definition and calculation of curvature tensors
of almost complex supermanifolds, and real-complex supermanifolds endowed with a non-
integrable distribution (see [6*]), examples of such supermanifolds are all superstrings
usually considered in the works of physicists and most of the super Grassmannians.

I am thankful to E. Vishnyakova for her help in editing this manuscript.

In what follows, “I” means “Onishchik”. D.Leites.

1 Introduction

One of the most important features of the theory of complex analytic supermanifolds
is the existence of non-split supermanifolds. The simplest example is the superquadric
Q' in the projective superplane CP*? see Example 2.8 below; it is of dimension 1|2
and has as its base the projective line CP'. This superquadric belongs to one of four
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series of homogeneous complex supermanifolds constructed by Yu. Manin [30] — the flag
supermanifolds; as a rule, they are non-split.

With any supermanifold a split one, called its retract, is associated. In this paper, I
study non-split supermanifolds with retract (M, 2), where Q is the sheaf of holomorphic
forms on a complex manifold M. I present a construction assigning to any d-closed
(1,1)-form w on M a supermanifold with retract (M,€); this supermanifold is non-split
whenever w has a non-zero Dolbeault cohomology class. In particular, for any compact
Kéhler manifold M, we obtain a family of supermanifolds with retract (M, Q) parametrized
by HY (M, C), all members of which are non-split, except the one corresponding to 0. This
family is non-empty, e.g., when M is a flag manifold.

The next problem is the classification of all non-split supermanifolds with retract
(M,€Q), where M is a flag manifold. I solve it in the case where M is an irreducible
Hermitian symmetric space. In this case, the family mentioned above contains precisely
one non-split supermanifold. I prove that this is the only non-split supermanifold with re-
tract (M, Q) if one excludes the case of the Grassmannians M = Gr?, where 2 < s < n—2,
while the non-split supermanifolds for such a Grassmannian form an 1-parameter family.
The proof is based on certain general results concerning classification of supermanifolds
with a given retract. We also calculate the 0- and 1-cohomology of the tangent sheaf for
all the supermanifolds associated with the cotangent bundle over a compact irreducible
Hermitian symmetric space.

The well known examples of supermanifolds studied here are the supermanifolds of
[I-symmetric flags that form one of Manin’s series mentioned above. If M is a symmetric
space, then M = Grl, and we have the II-symmetric super-Grassmannians HGrZﬂj. As
a corollary, we calculate the 0- and 1-cohomology of their tangent sheaf. Note that this
special question initiated the study exposed in this paper. For the three other series of
super-Grassmannians this calculation was performed in [37], [43], [44].

2 Generalities about superalgebras and supermanifolds

2.1 Algebraic background To fix the notation, we give here some definitions.

Let Zy denote not the ring of 2-adic integers but Z/27 = {0,1}. A wector superspace
is any Zs-graded vector space V. In this paper, the ground field is the field of complex
numbers C, By definition, we have

V:V%)EB‘/L

where VG, Vi are vector subspaces called the even part and the odd part of V', respectively.
The non-zero elements of these subspaces are said to be even or odd, respectively, and we
define the parity function by setting for non-zero elements

0if z € Vg
plx) =q-.
1if z € V5.

We write dim V' = n|m, where dim V5 = n, dim Vj = m; this is the superdimension of
a vector superspace V. A standard example of a vector superspace of dimension n|m is
Crm™ = C™ @ IIC™, where II is the change of parity functor.
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A superalgebra is a Zs-graded algebra over C, i.e., a vector superspace A = Ay @ Az
endowed with a multiplication (a,b) — ab satisfying the following condition

AlA] C Ai+j for any Z,] S ZQ.

A morphism f: A — B of superalgebras is, by definition, a parity preserving homomor-
phism of algebras, i.e., satisfying f(A4;) C B; for any i € Z,. If A and B are superalgebras
with units, we also assume that f(1) = 1.

Let A=, , A; be a graded (i.e., a Z-graded) algebra. This means that

€L

AlA] C Ai+j for any Z,j € 7.

A(‘J = @Azi, A = @A%Jrla

1EL 1EZ

Setting

we, clearly, endow A with a parity (Zs-grading), turning it into a superalgebra. In this
case, we say that the Z-grading and the Zs-grading in A are compatible.

2.1 Example (The exterior a.k.a. Grassmann algebra). Let E denote a complex
vector space of dimension m and let A E be the exterior (or Grassmann) algebra over
E. Then, we have the natural Z-grading

/\E:;IZBO/I\E

making A\ F a graded algebra. Using the above procedure, we can regard A\ E as a super-
algebra. Note that setting p(z) =1 for any z € E we endow A E with a (natural) parity.
Any basis &1, ...,&, of E is a set of (odd) generators of A E, and we often write

NE=N\E - &m)

C

Many formulas of Linear Algebra are superized by means of the Sign Rule “if some-
thing of parity a is moved past something of parity b, the sign (—1)* accrues;
formulas defined on homogeneous elements are extended to all elements via
linearity”. Here are examples.

A superalgebra A is called supercommutative if

ba = (_ 1)p(a)p(b)ab

for any even or odd a,b € A. The associativity of A is meant in the usual sense. Clearly,
/\ E from Example 2.1 is an associative supercommutative superalgebra with unit.

Let V and W be two vector superspaces. Then, the tensor product U = V& W becomes
a superspace if we endow it with the following Z,-grading;:

Usg=VoWigap Vi Wi, U=V Wi Vi W,
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For any two superalgebras A and B, let us endow the superspace A ® B with the multi-
plication

(CL1 X b1>(a2 &® bg) = (—1)p(b1)p(“2)(a1a2) X (ble), a; € A, bl € B.

Then, A ® B is a superalgebra (the tensor product of A and B). The tensor product of
two associative (supercommutative) superalgebras is associative (respectively, supercom-
mutative).

Let V and W be two vector superspaces. Then, the vector space L(V, W) of all linear
mappings V' — W is endowed with the following Z,-grading:

LV,W), ={f e LI(V,W) | f(V;) C Wiyk, i € Za}, k € Zs.

Thus, a non-zero f € L(V,W) is even (odd) if it preserves (respectively, changes) the
parity. For example, any morphism of superalgebras is, by definition, even.

Regarding C as C'°, we get a natural Zy-grading in the dual vector space V* = L(V, C)
of a superspace V. Clearly,

(Vo ={f e V" f(Vi) = 0} and (V7)1 = {f € V" [ f(I5) = 0}

are identified with (V5)* and (Vj)*, respectively. For another vector superspace W, the
superspace V* ® W is identified with L(V, W), as usual.

2.2 Example (Associative superalgebra of supermatrices). Let V' be a vector su-
perspace. Then, L(V) = L(V,V), the associative algebra with unit of all linear transfor-
mations of V' is a superalgebra if we endow it with the above Z,-grading.

A corresponding example can be constructed by means of matrices. Let M, ,,(C)
denote the (associative, with unit) algebra of (n 4+ m) x (n +m) matrices over C. Endow
this algebra with a Zy-grading in the following way. Write a matrix X € M,,;,,(C) in the

form
Xoo Xo1
X = ,
(Xm X11>
where Xy fills the first n rows and n columns. Then, p(X) = 0 whenever X¢; = 0, X9 = 0,
and p(X) = 1 whenever Xy = 0, X;; = 0. Clearly, this Z,-grading endows M,,,,(C)

with a superalgebra structure. We denote it by M,,,,(C).
Let V be a vector superspace of dimension n|m. Choosing in V' a basis

€1, sen, f1,..., fm with e; € V5, f; € V7,
we get a natural isomorphism of superalgebras L(V') ~ M, (C).

Let g be a superalgebra and let us agree to denote the multiplication in g by [—, —]
and to call it the bracket. We say that g is a Lie superalgebra if the following conditions
are satisfied for any z,y, 2 € g:

[y,l’] = _(_1)p(:ﬂ)p(y)[x7y]7
[, [y, 2] = [f, ], 2] + (1P, [z, 2]].
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A graded algebra g is called a graded Lie superalgebra if g is a Lie superalgebra being
provided with a Zs-grading (parity). Observe that these two gradings are not necessarily
compatible.

2.3 Example (Lie superalgebra of supermatrices). As in the classical case, there is
a functor £ converting associative superalgebras into Lie ones. If A is an associative
superalgebra, then £(A) is the vector superspace A endowed with the bracket

la,b] = ab — (—1)P“P®pa) for any a,b € A.

Let us note some special cases.

If A is supercommutative, then £(A) is a Lie superalgebra with zero bracket called
commutative Lie superalgebra.

For any vector superspace V, the superalgebra L(V') from Example 2.1 gives the general
linear Lie superalgebra gl(V') = £(L(V)).

By the same example, we get the Lie superalgebra gl

C) = LMjm(C))-

2.4 Example (Lie superalgebra of superderivations). Let A be an arbitrary super-
algebra. A linear transformation v € gl(A) is called a derivation of A if

v(ab) = v(a)b + (—1)POPDay(b) for any a,b € A.

Denote
det A := (der A)g & (der A)g,

where (dev A); C gl(A);, i € Zy, is the vector space of even or odd derivations of A.
One checks easily that det A is a subalgebra of gl(A) and, hence, a Lie superalgebra (the
superalgebra of derivations of A).

Let g be a Lie superalgebra. For any x € L, define the adjoint operator ad, € L(g) by
setting

ad, (y) = [r,3] for any y € g.

A straightforward verification shows that ad, € devg for any x € g and ad : g — Der g
is a homomorphism of Lie superalgebras.

Clearly, gg is a usual Lie algebra. If z € gg, then ad, is an even derivation. Restricting
it onto g,, where p = 0, 1, we get two linear representations ad, of gg in g,, where p = 0, 1.

Similarly, let g = @pEZ g, be a graded Lie superalgebra. Then, g is a Lie algebra, and
the restriction ad |4, determines a representation ad, of go in g, for any p € Z.

If A is an associative and supercommutative superalgebra, then der A is naturally an
A-module according to the rule

(au)(b) = au(b) for any u € der A, a,b € A.

The same definitions apply to sheaves of graded algebras on a topological space M. If,
in particular, A is a sheaf of associative supercommutative graded algebras, then the sheaf
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DerA of derivations of A is defined, which is a sheaf of Lie superalgebras and a sheaf of
A-modules on M.

Let us consider the case where A is a graded algebra and regard it as a superalgebra
with respect to the compatible Zs-grading. Then, det A has a natural structure of the
graded Lie superalgebra. More precisely, det A = Zpez (der A),,, where

(er A), ={d €devr A| (A, C Ay, forany g€ Z}.
One can always define the grading derivation € € (der A)y given by the formula
e(f) =pf for anyf € A, and p > 0. (2.1)
One easily checks that

[e,v] = puv for any v € (dev A),, p € Z. (2.2)

2.5 Example (Vectorial Lie superalgebras). Consider a complex vector space E of
dimension m and its corresponding the Grassmann algebra A = /\ E (see Example 2.1).
Denote W (E) = der A. These Lie superalgebras constitute one of the “Cartan type” series
of simple (for m > 2) finite-dimensional vectorial Lie superalgebras (see [24]).

We need the well known description of derivations from W (E) in terms of multilinear
forms. Any u € W(E), is determined by its restriction onto £ = A;, which can be an
arbitrary linear mapping F — A,,; = A”*' E. Thus, W(E), is isomorphic, as a vector
space, to L(E, A’ E), which can be identified with A\’*' F ® E*. Let us denote by
i(p) € W(E), the derivation corresponding to a linear mapping ¢ € A" E ® E*.

The elements of the latter vector space can be regarded as vector-valued (p + 1)-forms
on E*, ie., as anti-symmetric (p + 1)-linear mappings (E*)P*!' — E*. Regarding A as
the set of all anti-symmetric multilinear forms on E*, we have

i) a) (- Tpig)

1

= TG T Z (sgna)a(@(Tay,-- - Taysr)s Tapras - - -+ Tayy,) fOr the z, € B
a€Sp+q

Denote by §; for j = 1,...,m a basis of F, and by &7 for j = 1,...,m the dual basis
of E*. Clearly, the derivations % =i(§;) € W(E)- for j = 1,...,m, constitute a basis
J
of the A-module W (E). It follows that the derivations

0 . . .
&1"'&?“@ fori; < ... <ipppand j=1,...,m,
constitute a basis of W(E), over C. In particular, we see that W (E), is non-zero only for
—1<p<m

We also write

i(p)(a)=any foranya € Aand p € AR E".
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A similar operation can be defined for two vector-valued forms of arbitrary degrees.
Namely, let ¢ € A, ® E* and ¢ € A; ® E* be given. Regarding these tensors as E*-
valued p- and g-forms on E*, we define the form ¢ A € A,,, 1 ® E* by the formula

(e AY)(a1,. ., Tprg1)
=5 _11)[q! Z (sgn @) @(V(Tays -+ Tay)s Tagirs - Taprg1) (2.3)

a€Sptq—1

for any x, € E*. This operation can be used to express the bracket in W(E). More
precisely, define the bilinear operation {—, —} on A ® E* by setting

{p v} =y Rp— (-1 Ny Ry (2.4)
for any ¢ € A, ® E* and ¢ € A, ® E*. Then,

i({p,}) = [i(p), i(y)].

In what follows, we will use the linear mapping j : A’ E — L(E, A"™" E) given by the
formula

j(W)(u) =u for any u € E. (2.5)

It is injective whenever p < m. Clearly,

i) =ve, ve \E. (2.6)

Regarding L(E, N E) as \"*' E ® E*, we easily see that
= (&) @& (2.7)
k=1

Finally, regarding elements of L(E, A"™" E) as vector-valued (p+1)-forms on E*, we obtain

m

J) (@, wpn) =pl Y (DR (@, Ey o Bpaa )T, where 3 € B (2.8)
k=1

On the other hand, there is the contraction mapping ¢ : A’*' F ® E* — AP E given
by the formula

cle)(zy, ..., x Zg@ Ery X1y, xp) (&), where x; € E*.
k=1

An easy calculation shows that ¢j = p!(m — p)id. It follows that

p+1
/\ E®E"=Imj® Kerc whenever p < m. (2.9)
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2.7 Complex supermanifolds The word “supermanifold” will mean the same as in
2], [3*], [27], but the complex-analytic version of the theory will be considered (see [30]).
Let us begin with a more general notion of the ringed space.

A Zy-graded ringed space is a pair (M, Q), where M is a topological space and O is
a sheaf of associative unital supercommutative superalgebras on M. A morphism between
two Zs-graded ringed spaces (M, Oy) — (N,Oy) is a pair (f, f*), where f : M — N
is a continuous mapping and f* : Oy — Oy a morphism of sheaves of superalgebras.
In particular, if I = (f, f*) is an automorphism of a ringed space (M, O), then we can
consider the mapping f, = (f*)~! instead of f*; this is an automorphism of the sheaf O
over M. The automorphisms of (M, Q) form the group Aut(M, O).

2.6 Example (Complex-analytic supermanifolds). On the space C", consider the
sheaf

Fopm = N\ ) @ Fu = Nrr - 6m),
Fn

where F,, is the sheaf of germs of holomorphic functions on C". Here we assume that the
functions from F, are even, while &; are odd. A superdomain in C"™ is, by definition,
a Zy-graded ringed space of the form (U, F,p), where U is an open subset of C".

A complex-analytic supermanifold of dimension n|m is a Zy-graded ringed space that
is locally isomorphic to a superdomain in C*™. Thus, if (M, Q) is a supermanifold, then
for any point xg € M there exist a neighborhood U of zy in M and an isomorphism of
the ringed space (U, O|yy) onto a superdomain (U, F,,) in C*'™ called a chart on U. Let
x1,...,x, denote the standard coordinates in C". Identifying (U, O) with the superdomain
by means of the chart, we get the elements z; fori =1,...,n, and §; for j =1,...,m of
O(U) called the local coordinates on U.

Let U (resp. V') be two open subsets of M admitting two charts with local coordinates
fori=1,...,n,and { for j=1,...,m (resp. y; fori =1,...,nand n; for j =1,...,m).
Then, in U NV we can write

vi = pi(z1, .. 20, &1, .., &n), where i =1,... n;

2.10
n; =@, ..., 20, &, ..., &), where j=1,...,m, ( )

where ¢;, 1); are, respectively, even and odd sections of F,,|,, called the transition functions.
Similarly, there are transition functions realizing the inverse coordinate transformation.
An atlas of (M, Q) is a cover of M by open subsets that admit certain charts; any atlas
determines a supermanifold up to isomorphism.

Let (M, O) be a supermanifold and

J = (07) = O1 + (O7)? (2.11)

the subsheaf of ideals of O generated by the subsheaf O; of odd elements. Manin (see [30])
denoted
Orq:=0/J. and Myq := (M, O,q).
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So, M,q is a usual complex analytic manifold of dimension n called the odd reduction of
(M, O), and we have a morphism

red = (id, po) : (M, Og) — (M, O),

where py : O — (O,q is the canonical projection. This morphism takes the odd local
coordinates §; to 0 and the even ones z; to certain local coordinates X;,..., X, on My.
Clearly, any chart of (M, Q) determines a chart on M, and, on the intersection of two
charts, the transition functions transforming X; = po(x;) into Y; = po(v;) (see eq. (2.10))
have the form

Yi=¢i(X1,...,X,,0,...,0).

Though one should distinguish between the coordinates x; of (M, Q) and the coordi-
nates X; on M, they often are denoted in the same way. In what follows, we usually denote
the sheaf O,q by F. The complex manifold Mq = (M, F) will usually be denoted just by
M.

Any morphism of supermanifolds
F= (faf*) : (MvoM) — <N7ON)

induces a morphism of manifolds M — N. This just means that the mapping f: M — N
is holomorphic. As a consequence, we get a canonical homomorphism of groups from
Aut(M, O) to Bih M, the group of all biholomorphic transformations of M.

Any superdomain is, clearly, a supermanifold. More complicated examples will be given
below.

2.7 Example (Supermanifold (M, 2)). Let M be a complex manifold of dimension n
and Q = @,_, " be the sheaf of holomorphic exterior forms on M. Then, (M,Q) is a
supermanifold of dimension n|n. Indeed, let U be an open subset of M, where a chart
with local coordinates xy, ..., z, is defined. Clearly, the sheaf Q| can be identified with
Az, (dxy, ... dvy,). Denoting §; := dr;, we see that the z;, {; are local coordinates for
(M, Q). If V is another open subset with local coordinates y; and n; := dy;, then the
transition functions in U NV have the form

Ui = 0i(Y1, -y Yn), 1=1,...,nm,

n o0 .
szzﬂfk, jzla"'ana
k=1
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where ¢; are the usual transition functions for M.

The simplest class of supermanifolds are the so-called split ones. Let (M, F) be a com-
plex manifold and £ a locally free analytic sheaf on it. Defining O = A&, we get a
supermanifold (M, Q). A supermanifold is called split if it is isomorphic to a supermani-
fold of this form.
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The structure sheaf O of a split supermanifold admits the Z-grading O = @pzo Oy,
where

Op:/p\é’;
F

this Z-grading on it is compatible with the Zs-grading. In what follows, we often omit the
subscript F while denoting the exterior powers, the tensor products etc. of the sheaves of
F-modules.

Let U be a coordinate neighborhood in M, over which the sheaf £ is free or, which is
the same, the corresponding vector bundle E is trivial. Then, we can choose special local
coordinates of (M, ©) in U; these are x;, &, where z1,...,x, are local coordinates of M,
while &;,...,&, is a basis of the free Fyy-module I'(U, £). These local coordinates will be
called splitting ones. The transition functions between two systems of splitting coordinates
(see eq. (2.10)) have the following special form:

yi = @i(x1,...,x,), i=1,...,n,

m
njzzw]k(‘rb?xn)£k7 j:17"'7m7
j=1

where ¢;, 1;; are holomorphic functions in x;, and the matrices (1) are the transition
functions of the vector bundle E.
A classical example of a split supermanifold is (M, Q) (see Example 2.7). The sheaf
Q) corresponds to the cotangent bundle E = T(M)* over M. As splitting coordinates one
can choose the x; and &; := dz;, where x; are local holomorphic coordinates on M.
Another important example is that of the complex projective superspace.

2.8 Example (Projective superspace CP”'m). Formally, a “point” of the projective
superspace CP™™ is determined by a row of “homogeneous coordinates”

(zo: vovizn: G oo Gm)s

where p(z;) = 0 and p(¢;) = 1 and (2, ..., 2,) # 0, which is defined up to multiplication
by a non-zero complex number. As M, we take the usual projective space CP"; its points
are given by the homogeneous coordinates (zo : ... : z,). As usual, consider the cover of
M by the affine open sets Uy = {z; # 0} for any k = 0,...,n. In U, we can uniquely
write the coordinate row (z, () as

(xgk), . ,ac,(f), 1, :z:,(:gl, o ,mg“),ék), o ,é(k)),

m

where J?Z(k), §§k) are, by definition, the local coordinates of the supermanifold CP™™ in Uy,

expressed through homogeneous coordinates by

{Zi_l for1 <<k

Zk
il for k+1<i<n,

Zk

e =9 1<j<m.

2k
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One can easily write down the transition functions, showing that CP™™ is a split super-
manifold. The sheaf £ is F(—1)™, where F(—1) is the invertible sheaf determined by
a hyperplane of CPP".

2.11 Subsupermanifold, retract Let (M, O);) be a supermanifold and Z be a Zy-
graded subsheaf of ideals of O,;. Setting

N={zeM|n(p)(z)=0 forall ¢ € (On).}, On=(0n/I)|n,

we get the Zs-graded ringed space (N, Op). If this space is a supermanifold, then it is
called a submanifold of (M, Oy). If the sheaf of ideals Z is generated, over an open set
U C M, by its homogeneous sections (1, . . ., @s, then it is usual to say that the submanifold
is determined in U by the equations ¢; =0 forv=1,...,s.

For example, the subsheaf [, given by the formula eq. (2.11), determines the reduc-
tion M,q of (M, Oys), which is thus a submanifold of (M, Q). For other examples, see
Subsections 2.9, 2.10.

There is a construction that to any supermanifold (M, Q) assigns a split one. Consider
the filtration

O=J">2J">27*>... (2.12)

of O by the powers of the subsheaf of ideals J given by the formula (2.11). The associated
graded sheaf
grQ = @ gr? O,
p=>0
where gr? O = J?/JPT! gives rise to the split supermanifold (M, gr O).

Indeed, gr O ~ A&, where F = gr? O = O,q and € = gr! O is a locally free sheaf of
F-modules. Clearly, (M, Q) and (M, gr O) have the same dimension. The supermanifold
(M, grO) is called the retract of the supermanifold (M, O).

A supermanifold is split if and only if it is isomorphic to its retract. If the x; and &;
are arbitrary local coordinates of (M, ) in a neighborhood U C M, then X; = x; + J?
and Z; = & + J are splitting local coordinates of (M,gr @) in U, and one gets the
transition functions between these splitting coordinates, if one takes the terms of degree
0 (respectively 1) in &; in the transition functions ¢; (respectively ;) for (M, O) (see
eq. (2.10)).

Thus, we see that with any supermanifold (M, Q) two objects of the classical complex
analytic geometry are associated: the complex manifold (M, F) and the holomorphic vector
bundle E over (M, F) corresponding to the sheaf £. It turns out that (A, Q) is not, in
general, determined by these two objects up to an isomorphism, since there exist non-split
supermanifolds. For examples, see below.

To settle, if a given supermanifold (M, Q) is split, one can consider the following exact
sequences of sheaves over M:

0—J —08F 0o,

(2.13)
0—J>—T58¢c—0.
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If the supermanifold (M, @) is split, then both these exact sequences are split, i.e., there
exist homomorphisms ¢y : F — O and ¢, : £ — J such that p;q; = id, ¢+ = 0,1. The
obstructions to splitness lie in certain sheaf cohomology of M (see [30, Ch.4, Sect. 2], [2,
Ch.4, Sects. 6, 7], [3%, Ch.3, Sects. 6, 7]).

2.12 Super-Grassmannians In this subsection, we will briefly consider certain ex-
amples of complex supermanifolds introduced by Yu. Manin in [30]. Actually, four series
of compact complex supermanifolds corresponding to the following four series of classical
complex Lie superalgebras, were constructed:

(1) gl (C) — the general linear Lie superalgebra of the vector superspace C"™;

(2) 0sp,),,(C) — the orthosymplectic Lie superalgebra that annihilates a non-degenerate
even symmetric bilinear form in C*™, m being even;

(3) pe,,(C) — the linear Lie superalgebra that annihilates a non-degenerate odd sym-
metric bilinear form in C™" (Manin denoted pe,,(C) by 7msp, (C) in [30], see also
[54%], but A. Weil’s suggestion to call the odd non-degenerate bilinear form, and the
Lie superalgebra/supergroup it preserves, periplectic took over and is now universally

accepted together with the name queer for the following purely super analog of gl,,,
D.L.);

(4) q,(C) — the linear Lie superalgebra that commutes with an odd involution in C™™.

These supermanifolds are called the flag supermanifolds in case (1), the supermanifolds
of isotropic flags in cases (2) and (3), and the supermanifolds of I1-symmetric flags in case
(4). We will call them the classical flag supermanifolds. They are, in most cases, non-split.

Here we consider the classical flag supermanifolds under assumption that the flags
have the minimal possible length; these are so-called super-Grassmannians. The super-
Grassmannians are basic in Manin’s constructions, because the flag supermanifolds are
defined inductively as relative super-Grassmannians over the flag supermanifolds of lesser
length.

As in Example 2.6, we denote by ey, ..., en, fi,..., fm the standard basis of C"™.

2.9 Example (The super-Grassmannian). The super-Grassmannian Gr&llm of (k|I)-

dimensional subspaces in C"™ is a natural generalization of the projective superspace
cprim = Grﬁgl‘m. Its structure is determined by the (n +m) x (k + ) coordinate matrix

Zoo 2
7 — (%00 2ot}
Z Zn
where Zy, and Z;; are n X k- and m X [-matrices, respectively, whose entries are even
homogeneous coordinates, while Zy; and Z;y are n X I- and m X k-matrices, respectively,
whose entries are odd ones. It is supposed that Z,y and Z;; are complex matrices of ranks

k and [, respectively, so that each of them determines a point of the complex Grassmannian
Gry, or Gr}", respectively.
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Thus, we get an element zy of the manifold M = Grj x Gr;"; this manifold is the
reduction of the super-Grassmannian. The matrix Z is to be regarded up to the following
equivalence:

7~ 7' it 7' = ZQ, where @ is an invertible k& x [-matrix.

If we fix an invertible k x [-submatrix of Z, then the remaining entries of Z give us the
even and the odd local coordinates in a neighborhood of xy. Using the equivalence, we can
I
assume that the fixed submatrix is the unit matrix I = (S ?)
!
For example, choose

Lo = (€nktts- € f1o-- 5 f1) = ((Cncirts - €n)s (f1oo- o5 f1)).

Then, the coordinate matrix can be written in the form

X E
| o
Z=4s 1| (2.14)
H Y

where _
X:<Iij)7 Y:(ya;D)? ::(gip)a H:(nai)a
1=1,....n—k, g=1,...)k,p=1,...)[, a=1l+1,...,n.

Here z;; and y,, are even local coordinates satisfying x;;(zo) = Yap(xo) = 0, while §;,, and
Nai are odd ones. In particular, we have

dim Grzlllm =n(n—Fk)+m(m—10) | n(m—1)+m(n—k).

In the case where 0 < k < n and 0 < [ < m, the supermanifold GrZ||Zm is non-split. The

: : . 212 . .
simplest non-split super-Grassmannian is Grli1 of dimension 2|2.

2.10 Example (The isotropic super-Grassmannian. Superquadric). Let an even
non-degenerate symmetric bilinear form b be given in C*™. Then, it is possible to define

the subsupermanifold IGrZHlm of GrZ“lm, consisting of subspaces that are (totally) isotropic

with respect to b; this IGrZ“Zﬂ is called isotropic super-Grassmannian).
If n is odd, then we get the simplest non-split supermanifolds for

n=3 k=1, m=2s>2,1=0.

The supermanifold Q™ = IGr?ISn is called the superquadric in the projective superplane
CP?™. In homogeneous coordinates (see Example 2.7), we can express the superquadric

by the equation
% —azm+ Z GiCs+i = 0.
i=1
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The local coordinates on the superquadric are given by the formula

r=2=2 5]-:@ for z; # 0;

Z1 ’ Z1

yzj—z, njzﬁ for zo # 0,

22

and the transition functions have the form
y=a'(1+27" Zfi§s+z‘)_17
i=1

n; =z (14272 Zfiﬁsﬂ)’lﬁj, where j=1,...,2s.
i=1

Historically, this was (for m = 2) one of the first examples of non-split supermanifolds
(see [17], [2], [30]).

2.11 Example (The odd isotropic super-Grassmannian). Quite similarly, an isot-
ropic super-Grassmannian, associated with an odd non-degenerate anti-symmetric (or sym-
metric) bilinear form b is defined. In this case, n = m, and we denote by I,qq Grz‘lln the

corresponding submanifold of GYZ\‘zn-

2.12 Example (The I[I-symmetric super-Grassmannian). Suppose that m = n and
that an odd involutive linear transformation II of the vector superspace C™™ is given. Then,
we can define the submanifold II Grzls of Grz”: that consists of Il-invariant subspaces of
dimension s|s (the II-symmetric super-Grassmannian). This super-Grassmannian is one
of the main objects of our study, and therefore it will be considered in more details in
Section 5. We only mention here that the retract of II GrZ‘I: is the supermanifold (Gr?, §2)
of Example 2.7.

3 Tangent sheaf and vector fields

3.1 Tangent space and tangent sheaf We retain the notation of Subsection 2.7.
Let (M,0O) be a complex supermanifold. Fix a point z € M. Using local coordinates

X1y Ty &r, ..., &n in a neighborhood of x, we can identify the superalgebra O, with
Clzy,....zn} @ Ne(&,. .., &n) for any x € M. Notice that this is a local superalge-
bra whose unique maximal ideal is m, := (z1,...,2,,&1,...,&n). The vector superspace

T,(M,O) = (m,/m2)* is called the tangent space to (M, Q) at the point z. Since F = O/J,
we have the exact sequence

0 — Tp —my —n, — 0,
where n, is the maximal ideal of F,. This implies the following exact sequence:

0 — Jo/mpTp — m,/(m,)? = n,/(n,)? — 0.
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The fiber at = of the vector bundle E corresponding to (M, O) is J,/m,J, = E,. Since
T,(M) = (n,/n2)* is the tangent vector space to M at z, we get the exact sequence

0 — T, (M) —T,(M,0) — E; — 0.
This gives the canonical identifications
T.(M,0)y =T,(M), T.(M,O0);=E].

The tangent sheaf of a supermanifold (M, @) is by definition the sheaf 7 = Der O of
derivations of the structure sheaf O. Its stalk at x € M is the Lie superalgebra dercO,
of derivations of the superalgebra O,. Its sections are caled holomorphic vector fields on
(M,0). The vector superspace v(M,O) = I'(M,T) of all holomorphic vector fields is
finite-dimensional whenever M is compact. We regard it as a complex Lie superalgebra
with the bracket

[X,Y] = XY — (—1)PCrMy X, (3.15)

Fix a point # € M. Any ¢ € det O, is such that §(m?) C m,, and hence defines a linear
mapping 0 : m,/m? — O, /m, = C which is an element of T,(M, ©). This permits us to
define an even linear mapping ev, : v(M,0) — T,(M,O) by

evy(v) = Uy

We note that, in contrast with the non-super case, a vector field v is not, in general,
uniquely determined by its values v, at all x € M.
Endow the tangent sheaf 7 with the following filtration:

T = 72_1) > 7?0) D...D 727”) D ﬁm_i'_l) =0, (3.16)

where

T ={6€T|6(0)C J"é(T)C JP} for any p > 0.

Thus, we have obtained a filtered sheaf of Lie superalgebras. Let gr7 denote the corre-
sponding graded sheaf of algebras. Any v € 7, maps J? to J?, inducing a derivation
from (7g)p, where T = Der gr O. As a result, we get a homomorphism oy, : Ty = (Tgr)p.
It is easy to check (see [35*]) that the following assertion is true.

3.1 Proposition (An exact sequence). The following sequences of sheaves are exact:
0 — Tipr1) — Tip) X (Tgr)p — 0, where p > —1.

The homomorphisms o,, where p > —1, determine an isomorphism of the sheaves of
graded algebras grT — Tg = Der gr O.
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In what follows, we will use the cohomology groups HP(M,T) with values in the tan-
gent sheaf. Recall that they are finite-dimensional vector spaces if M is compact. We
have H°(M,T) = v(M,O). Since T is a sheaf of Lie superalgebras, we can define the
corresponding operation in

H (M, T) =D H" (M, T),

p>0

giving a graded algebra. This operation will be denoted by [—, —]; it coincides on H°(M,T)
with the bracket defined above. The filtration (3.16) gives rise to a natural filtration in
H' (M, T), so we get a filtered algebra.

3.3 The tangent sheaf of the split supermanifold Here we make some remarks
concerning vector fields on split supermanifolds. If (M, Q) is split, then T is a Z-graded
sheaf of Lie superalgebras, the grading being given by the formula

-7

p>—1

where

Ty :=Der,0={0 €T |06(0,;) C Oyy, for all ¢ € Z}. (3.17)

Hence, v(M,0) = @,._,0(M,0), is a Z-graded Lie superalgebra. Moreover, we get
a grading in any cohomology H?(M,T), turning H (M, T) into a bigraded algebra. One
easily verifies that the filtration (3.16) of 7 coincides with the filtration associated with
the grading (3.17), so that

Tp) = @ 7Ty

r>p

Since O = A&, where £ is a locally free analytic sheaf on M = (M, F), it follows
that 7 can be regarded as an analytic sheaf on the complex manifold M. It was useful
to interpret 7 directly in terms of the sheaf £. A partial description of 7, for p > —1 is
given by the following exact sequence of locally free analytic sheaves on M (see [35%]):

p+1

) p
0—&oNEST, 300 NE—0, (3.18)

where © = DerF is the tangent sheaf of the manifold M. The mapping « is the restriction
of the derivation of degree p onto the subsheaf F, while ¢ identifies any sheaf homomorphism
E— N 1 € with a derivation of degree p that vanishes on F. Clearly, Im i is the subsheaf
of T consisting of F-derivations; they act on the stalks of O as derivations of a Grassmann
algebra (see Example 2.4).

In particular, in the case p = —1, we have an isomorphism

T1~Homz(E,F)=E", (3.19)
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and in the case p = 0, we have the exact sequence
0—EREDTS O —0. (3.20)

Let E be the holomorphic vector bundle over M corresponding to the locally free sheaf
E. Clearly, 7Ty is the sheaf of infinitesimal automorphisms of E and £* ® £ = End E is its
subsheaf consisting of germs of endomorphisms preserving each fiber.

The first terms of the cohomology exact sequence, corresponding to the sequence (3.20),

have the form '
0 — gl(E) 5 0(M,0)y = o(M), (3.21)

where gl(E) =T'(M,£* ® £) is the Lie algebra of all endomorphisms of E (preserving the
fibers) and v(M) = I'(M, ©) is the Lie algebra of holomorphic vector fields on M, whereas
1 and « are Lie algebra homomorphisms. If M is compact, then we have the corresponding
exact sequence of complex Lie groups

e — GL(E) — AuwtE — Bih M, (3.22)

where Aut E is the group of automorphisms of E and GL(E) its normal subgroup that
consists of automorphisms preserving the fibers (the gauge group of E) (see [35*]). Note
that GL(E) is the group of invertible elements of Mat(E) regarded as an associative algebra.

We remark that the Lie algebra gl(E) is never zero (whenever m > 0). Indeed, it
always contains the identity endomorphism . Regarded as a vector field, € coincides with
the grading derivation of the sheaf O acting by means of eq. (2.1). Clearly, in any splitting
local coordinates z;, §;, it has the form

- 0
€= Zgjaz. (3.23)
j=1

3.4 The tangent sheaf of (M,(2). The splitting mapping I. The Froélicher
and Nijenhuis (FN) bracket Clearly, locally, the exact sequence (3.18) splits. But
in the case where E = T(M)* (see Example 2.7), there is a canonical global splitting,
discovered by Frolicher and Nijenhuis (see [12] and [25]; see also [20*]). In this case, we
have & = Q' and hence the sheaves A € ® © and A\ € ® £* both coincide with the sheaf
2 ® © of holomorphic vector-valued differential forms. Thus, the exact sequence (3.18)
has the form

0—PNROSTIWP0O —0. (3.24)
The splitting mapping [ : 2 ® © — 7T is defined by the formula
l(p) = [i(y), d], (3.25)

where d is the exterior derivative which, clearly, is a section of 7;. One verifies that
a(l(y)) = ¢, so that [ is, in fact, a splitting of the sequence (3.24). It follows that there is
the following decomposition into the direct sum of sheaves of vector spaces:

T=iQ20)®l(Q®0). (3.26)
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More precisely,
T, =121 ®0) B2, ®0) ~ (2,11 ®O) B (2, ®0O). (3.27)

Note that for p = 0 the derivation I(u), u € © is the classical Lie derivative along the
vector field w.

We recall now the Lie bracket in 7. Clearly, i(2 ® O) is a sheaf of subalgebras of T,
and hence we get a bracket {—, —} in the sheaf Q ® O, which is often called the algebraic
bracket and is given by the formula (2.4). In [12], another bracket [—, —] was defined in
) ® ©, namely,

[0, ¥] = a([i(e), L(¥)])-
It is called the FN-bracket. Under this bracket and the grading

(Q®@)p:QP®@7
the sheaf (2 ® © is a sheaf of graded Lie superalgebras as well. We also have

(1), L)) = U[w, ),
[i(0), L(Y)] = (e Ap) + (=1)%i([p,7]), ¢ €Q®O, YeQ®O.

Thus, [ is a homomorphism of sheaves of graded Lie superalgebras, and the formula (3.26)
describes a decomposition into the sum of sheaves of subalgebras (but not ideals!).
In particular, from the isomorphism (3.19) we get the isomorphisms

(3.28)

e (629
and from the sequence (3.21) we get the semi-direct decomposition of Lie algebras
(M, Q) =i(gl(T(M)*) B l(v(M)). (3.30)
For a compact M, we have the following global form of this decomposition:
Aut T(M)* = GL(T(M)*) x Bih M, (3.31)

where the group Bih M of biholomorphic transformations of M acts on differential forms
in an obvious way.
Note that the identity endomorphism id € gl('T(M)*) gives rise to the vector fields

d =1(id) € v(M,Q); and £ = i(id) € v(M, Q),,

the first one being the exterior derivative and the second one the grading derivation.
Let ¢ € I'(M, ) be a holomorphic p-form on M. Using formula (2.5) we can define
a vector-valued form j(¢) € I'(M, Q™! @ ©).
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3.2 Proposition (What is [ o j). We have
() = vd+ (=1)""(dp)e  for any ¢ € T(M, Q7).
Proof. Follows immediately from (1.6) and (2.11). O

We are now going to discuss the problem of calculating the cohomology algebra H* (M, T)
endowed with the bracket induced by the Lie bracket in 7 (for details, see [40]). First, it
follows from the decomposition (3.26) that

H (M, T)=i(H (M, Q% 0))®I*(H' (M,Q® 0)).

To calculate H"(M,Q®0), one can use the standard Dolbeault—Serre resolution consisting
of smooth vector-valued forms on M (actually, it was first considered in [13]). Denote
¢ = @anO o1 where ®P7 is the sheaf of complex-valued smooth (p, q)-forms on M.
Then, for any p > 0, the differential graded sheaf (®7* ® ©,0) is a fine resolution of
0P ® O, whence

HY(M, Q" @ ©) ~ HI(T'(M, "* @ 6),0). (3.32)
The algebraic bracket and the FN-bracket in {2 ® © induce certain brackets in the graded
vector space H' (M, ® ©). By the isomorphism (3.32), they correspond, respectively, to
the algebraic bracket and the FN-bracket in ® ® © defined in [12]. As to the cohomology
of T, we obtain the following result.

3.3 Proposition (Decomposing H'(M,T) using i and [). We have

H (M, T)=4(H (M,Q®0)) & l*(H(M,Q®0))
~ H(I'(M,®®0),0)® H('(M,®x 0),0).

The bigrading in H (M, T) is given by the formula
HYM,T,) ~ H(T(M,®""" ®0),0) ® H{('(M,d" ® ©),0), p>—1, ¢ >0,

and the bracket |«, B], where a, 8 € H'(M,T), is determined by the algebraic bracket of
smooth vector-valued forms in the left summand, by the FN-bracket in the right one and
by the formula (3.28) in the case where «, 8 belong to different summands.

3.7 Actions of Lie superalgebras on supermanifolds. Transitive and O-transi-
tive supermanifolds Let (M, O) be a supermanifold and g a Lie superalgebra. An action
of gon (M, Q) is an arbitrary Lie superalgebra homomorphism ¢ : g — v(M, O). Actions
of Lie superalgebras usually appear as the differentials of actions of Lie supergroups, but we
will avoid to consider the general (rather technical) Lie theory for supermanifolds, referring
to [27]. Actually, we will deal only with the standard actions of classical Lie supergroups
on super-Grassmannians (see Section 6).
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If an action ¢ : g — v(M, O) is given, then with any x € M the linear mapping
SO:E =evypig— Tm(MaO)

is associated. The set g, = Ker ¢” is a subalgebra of g, called the stabilizer of x. The
action ¢ is called transitive if ¢* is surjective for any x € M. In this case one also says
that (M, O) is a homogeneous space of the Lie superalgebra g.

Restricting an action ¢ : g — v(M, O) to the even component, we get a homomor-
phism g : gg — 0(M,O)5. If M is compact, then, as in the classical Lie theory, it is
possible to integrate g, getting a homomorphism ® : G — Aut(M, O), where G is the
simply connected complex Lie group with tangent algebra gz. This homomorphism induces
an action ® : G — Bih M of G on M. We say that the action ¢ is 0-transitive if ® is a
transitive action in the usual sense. Clearly, this is equivalent to the following condition:
0" : g5 — TL(M) is surjective for any z € M. Any transitive action is O-transitive.

Let again ¢ be an action of g on (M, O), where M is compact. Then, G acts on the
sheaf T by the automorphisms

G 2 v (B(g) " H*vd(g)* for any g € G.
One immediately verifies that
eVyr g = dyPo(g)evy, g€ G, x e M.

It follows that
09" Ad, = d,Po(g9)p", gE€G, x€ M.

As a corollary, we get the following proposition.

3.4 Proposition (Transitive and 0O-transitive actions). Let ¢ be a O-transitive ac-
tion of g on (M,Q), where M is compact. Then,

(1) The stabilizers g,, where x € M, of ¢ are conjugate by inner automorphisms of g
(i.e., by the automorphisms of the form Ad, for g € G).

(2) The action ¢ is transitive if and only if the mapping ¢f = g1 — Tpo(M,O)1 is
surjective for a certain xo € M.

3.9 Homogeneous and 0-homogeneous supermanifolds Let now (M, Q) be a su-
permanifold, where M is compact. Then, there is a natural action ¢ = id of the finite-
dimensional Lie superalgebra v(M,O) on (M,O). The supermanifold (M, Q) is called
homogeneous (respectively, 0-homogeneous) if this action is transitive (respectively, O-
transitive). This means that the mapping ev, : 0(M,O) — T,(M, O) (respectively, the
even component of this mapping) is surjective for any = € M. Proposition 3.4 implies that
a 0-homogeneous supermanifold is homogeneous if and only if the odd component of the
mapping ev,, : 0(M,0) — T,,(M, O) is surjective for a certain point zo € M.
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Suppose that an action ¢ of a Lie superalgebra g on a supermanifold (M, Q) is given.
We are going to define an action on the split supermanifold (M, gr O). To do this, we note
that the filtration (3.16) gives rise to the filtration

g=9(-1) 2 80) 2 - 2O Bim) D Ym+1) = 0,
defined by the formula

g = 0N (DM, Ti)) = {ueg|eow)(O) C I, (u)(T)c T}

Clearly, g is a filtered Lie superalgebra, and ¢ determines a homomorphism ¢ of the
correspondent graded Lie superalgebra g into the graded Lie superalgebra v(M, gr O), i.e.,
an action of g on (M, grO).

In particular, consider the natural action ¢ = id of g = v(M,O) on a compact su-
permanifold (M, O). We see that g,y = I'(M, T,)), and ¢ is an injective homomorphism
g — v(M,grO) induced by o, (see Proposition 3.1).

3.5 Example (Super-Grassmannians). Consider the super-Grassmannian Grz“lm de-

fined in Example 2.7. The general linear Lie supergroup GL,,,(C) acts on Grz‘llm by mul-
tiplying the coordinate matrix Z (see formula (2.14)) on the left by a matrix of GL,,,(C).
The differential of this action is an action of the Lie superalgebra gl,,,,(C) on this super-
manifold. One easily checks that it is transitive.

The above action induces transitive actions of the subsuperalgebras 0sp,,,,(C), pe,,,,(C),

and q,,(C) of gl,,,(C) on the subsupermanifolds IGer‘lm, Todd Grz“l", and HGr?llsn of the
general super-Grassmannian, considered in Examples 2.10, 2.11, and 2.12, respectively
(for TI Gr:||:, the transitivity will be proved in Proposition 6.6).

4 Classification of non-split supermanifolds

4.1 Sheaves of automorphisms and the classification theorem Let (M, O) be
a supermanifold. Consider the sheaf Aut O of automorphisms of the structure sheaf O
of (M, ) (as usual, any automorphism is even and maps each stalk O,, where x € M,
onto itself). This is a sheaf of groups. For any F' = (f,p) € Aut(M, O), the mapping
Int £ : a — pap~! is an automorphism of Aut O which gives an action Int of the group
Aut(M, O) on Aut O by automorphisms of this sheaf.

Clearly, any a € Aut O maps J onto itself, and hence preserves the filtration (2.12)
and induces a germ of an automorphism of gr@. By definition, a induces the identity
mapping on F = O/J. Consider the filtration

Aut O = Aut(o)(’) D) Aut(g)(’) Doy, (433)

where

Aut 2,0 = {a € Aut O | a(u) —u € J* for all u € O}.

One easily sees that the Aut,,)O are subsheaves of normal subgroups of Aut O. They
also are invariant under the action Int of Aut(M, Q) defined above.
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Following [17] and [50*], [47], we will use the sheaves of automorphisms in order to
describe the family of all supermanifolds, having as their retract a given split supermanifold
(M, Og). The 1-cohomology sets H* (M, Aut(sp)Og:) for p > 1 play the main role in this
description. We recall (see [19]) that for any sheaf of (not necessarily abelian) groups G on
M the 1-cohomology set H'(M,G) is defined. It has no natural group structure, but has
a distinguished element e, also called the unit element. We will express the cohomology
class by its Cech cocycle in a sufficiently fine open cover of M. The unit element is
determined by the unit Cech cocycle.

Let E be a holomorphic vector bundle over a complex manifold M and £ be the sheaf of
holomorphic sections of E. Then, we can consider the split supermanifold (M, O, ), where
Ogr = N E. Let Aut E be the group of all automorphisms of the vector bundle E. Clearly,
any automorphism of E gives rise to an automorphism of (M, Oy, ), and thus we get a nat-
ural inclusion Aut E C Aut(M, Og,). It follows that Aut E acts on the sheaves Aut (o) Og:
by the action Int. Hence, this group acts on each 1-cohomology set H'(M, Aut (z,)Og,) for
p > 0, leaving the unit element e fixed.

4.1 Theorem (The role of H'(M, Aut(5)O,,)). To any supermanifold (M, O) that has
(M, Og:) as its retract there corresponds an element of the set H' (M, Aut(2)Og,). This cor-
respondence gives rise to a bijection between the isomorphism classes of supermanifolds,
satisfying the above condition, and the orbits of the group AutE on H'(M, Aut(2)Og) un-
der the action Int of the group Aut E. The given split supermanifold (M, Og,) corresponds
to the unit element e € H' (M, Aut () Oy ).

4.2 Corollary (On splitness). The following conditions are equivalent:
(1) The supermanifold is split, i.e., isomorphic to its retract.
(2) HI(M, Aut(g)Ogr) = {e}.

Let us describe the correspondence mentioned in Theorem 4.1. Let (M, O) be a su-
permanifold such that grO = Og. We can choose an open cover 4 = (U;);er of M
such that the exact sequences (2.13) split over each U;. Then, we get isomorphisms
g Oly, — Og|u,, where i € I, inducing the identity isomorphisms of the Z-graded
sheaves. Setting g;; = o*,-aj_l, we obtain a l-cocycle g = (gi;) € Z'(U, Aut(9)Oy). Its
cohomology class v € H'(M, Aut(2)Og) does not depend of the choice of o;; this is the
class desired.

The above cover 4 can be chosen in such a way that E is trivial over U; for any 7 € I.

Then, for any 7 € I, we have an isomorphism

pi: Oulv. — N (& Do,
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providing U; with the local coordinate system azgi), .. :cn ,§1 o, Em " For any pair ¢, j

such that U; N U; # () we get the isomorphism

ei=pir;' N\ €D, = A\ @ D)

Fn(z(9) Fn(z(D)

U;

which is expressed by the transition functions of (A, O ). One can ask: “how to write
the transition functions of (M, Q) in terms of the transition functions of the retract and
the cocycle ¢7”

To answer this question, we have to consider the isomorphisms

Vi = pioio; ;= pigisp; -

Clearly, vi; = (pigijp; *)pi;- This means that the transition functions of (M, ) can
be obtained from the transition functions of (M, Q) by applying the automorphism g;;
expressed in terms of the coordinates (¥, £,

4.4 The exponential mapping and its applications In general, to explicitly de-
scribe the set H'(M, Aut(2)Oy,) is a difficult problem. But we will see below that, under
certain strong conditions, this set coincides with the 1-cohomology of a locally free analytic
sheaf on M. This simple case is sufficient for further applications.

We will use the linearization method proposed in [47]. Let (M,O) be an arbitrary
supermanifold of dimension n|m. As in the classical Lie theory, there exists a natural
relationship between automorphisms and derivations of the sheaf O. From formula (3.16)
we get the filtration

7—(2)() D 7?4)(‘) ... y (434)

where
ﬁZp)ﬁ = 7Z2p) NTo = 7221)—1) NTo=1{0€Ty|d(0) C jQp}-

Then, we have the exponential mapping
exp : Tayg — Aut2)0O

It is expressed by the usual exponential series which is actually a polynomial, since v* = 0
for any v € 790 and any k > [%} One proves that exp is bijective [7] and maps 7z,

onto Aut O for any p = 1,2..... Thus, it is an isomorphism of sheaves of sets (but in
general not of groups). We denote log := exp™!

4.3 Proposition (Necessary conditions of splitness). For any p > 1, there is the
following exact sequence of the sheaves of groups:

0 — Aut(ap10)0 — Aut o) O = Aag (Tgr)2p — 0, (4.35)

where Tg = Der Oy, is the Z-graded tangent sheaf of (M, Og4) and A, is the composition
of the following mappings:

lo, s h
Aop + Aut (9,0 —» s — Tapo — Teopyo/ Tapr2)5 — (Tar)2ps
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mp being the canonical projection and h, the natural isomorphism implied by Proposition
3.1. If (M,0) = (M, Oyg,) is split, then Ay, maps any germ expu € Aut(s,)O onto the
(2p)-component of u € Tiap).
Proof. Consider the mapping Xgp = 7, log. Using the Campbell-Hausdorff formula, we get
Xop((exp u)(expv)) = Agp(exp(u + v + %[u, v+ ...) = mp(u) + mp(v) =
= XQP(eXp u) + Xgp(exp v).

Hence, Xgp is a homomorphism of sheaves of groups. Clearly, Ker Xgp = Autop42) O, and
we get the exact sequence of sheaves of groups

Aap
0— Aut(2p+2)(’) — Aut(gp)(’) N 7?2]))()/7ZQP+2)0 — 0. (4.36)
Clearly, T(2p+2)0 = T(2p+1)0- Using Proposition 3.1, we get
T/ Teep+20 = Tezpyo/ Tezpr1yo = (Ter)2p-

Now the sequence (4.35) follows from the sequence (4.36). O

4.4. Lemma. For any p > 2, if H'(M, (Tg)2p) = 0, then H' (M, Aut(9,)O) = {e}.

Proof. We will use the induction on p. Clearly, the claim is true for all p sufficiently big.
We have to prove that if it is true for a certain p > 3, then it is true for p — 1 as well. The
exact sequence (4.35) gives the cohomology exact sequence (see [19])

)‘Ep—2
H' (M, Aut (9)0) — H' (M, Aut(2p-2)O) == H" (M, (Tar)2p2)-
Clearly, H' (M, Aut(p_2O) = {e} follows from

H' (M, (Tg)ap—2) =0, H'(M, Aut 5, O) = {e}.

4.5. Proposition. Suppose that H' (M, (Tg)2p) = 0 for any p > 2. Then, the mapping
A5 o HY (M, Aut(9)Og) = H' (M, (Tar)2)

18 1njective.
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Proof. The sequence (4.35) for the sheaf O = O,, gives the cohomology exact sequence

HY(Aut(1yOg) — H (M, Aut(2yOp,) 2 H'(M, (Tye)2) (4.37)

Suppose that v,n € H'(M, Aut()Oy,) and that A5(y) = X5(n). Let v be determined by the
cocycle (g;;) and n by the cocycle (h;;) in a cover 4 = (U;);e; of M. Then, our assumption
implies that
/\Z(Qij) = /\2<hij) +¢j — ¢, where ¢; € ((Er)2)Ui-
We can assume that ¢; = Az(g;), where g; € (Aut(2)Og)u,. Then, )\g(gigijgj_l) = Aa(hyj).
Thus, we can suppose from the beginning that A2(gi;) = A2(hij).
Consider the cochain f € C'(M, Aut(2)Og,), given by the formula f;; = hijgzgl. Then,

Aa(f) = 0.
Let (M, O) be the supermanifold corresponding to the cohomology class of v due to

Theorem 4.1. Then, g;; = hihj_l, where h; : Oly, — Ogly, for i € I, are certain

isomorphisms of sheaves of superalgebras inducing the identity mappings on Og,|y,. The
equalities hij = fijgij = fl]hlhj_l and hijhjk = hzk anly that
fishih* fiehiht = fichihy!

or
(hi figha) (hy* fighy) = B fhi.
Clearly, Ao(h; " fi;hi) = 0, whence (h; " fijh;) € Z'(8h, Aut(4O). Therefore,

(hi ! fi;hi) € ZH(M, Aut(4)0O).
By Lemma 4.4, this latter cocycle is cohomologous to e, i.e.,
h;lfijhi = uiuj_l, where u; € (Aut4)O)y,.
Thus, fi; = hiuiuj_lh; ' Tt follows that

hij = fij9i = hawuy byt gy = hiugus 'hi b = (hyushy V) (hihyt) (hjuy thi ') =
= Uigijv;lv

where v; = hu;h; ' € (Aut 4Oy )y, This implies that v = 7. O
4.6. Theorem. Suppose that H' (M, (Tg)2p) = H*(M, (Tg)2p) = 0 for any p > 2. Then,
the mapping N5 - H (M, Aut(2)Og) — H' (M, (Tg)2) is bijective.

Proof. The injectivity follows from Proposition 4.5, while the surjectivity is implied by
Theorem 3 of [47]. O
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To calculate the quotient of H'(M, Aut2)Oq;) by AutE, the following assertion is
useful. For any ¢ € C*, denote by A, the automorphism of E given by the multiplication
by the scalar c.

4.7 Lemma (Technical). We have
A olInt A, = c®\5, where ¢ € C*.

Proof. Consider the grading vector field ¢ € I'(M, (7 )o) on (M, Q). Clearly, A, gives
rise to the automorphism a. = exp(be), where ¢ = expb, of the structure sheaf Oy,. Let
g = (9i5) € Z (4, Aut(2y0Oy;) be a cocycle of a cover U = (U;);er of M and w;; = log g;;.
Then,
acgija; ' = (exp(be))(expwy;) (exp(be)) ™ = exp((Adexp(be))(wy;)) =
= exp((exp(b ade))(w;;)) = exp(w;; + ble, wi;] + %b2[5, e, wi]] +...).

)

Applying A and denoting the 2-component of the vector field w;; by w;;", we get
_ 4b°
Xo(aegijo, D = wg) + wag) + ng) +...=(exp 2b)w§?) = czAg(gij).
Thus, A5((Int a.)y) = *A5(7), where v is the cohomology class of g. O

This yields, in particular, the following simple fact.

4.8 Proposition (Uniqueness of non-split supermanifold with given retract).
Suppose that

H' (M, (Tg)2) =~ C,
HY (M, (Tge)ap) = 0 for any p > 2,
Hl(M, Aut(g)(’)gr) 75 {6}

Then, N is bijective and H'(M, Aut (2O, )/ Awt E consists of two elements. Thus, there
exists precisely one non-split supermanifold having (M, Oy,) as its retract.

Proof. By Proposition 4.5, X5 : H'(M, Aut(2)Os) — C is injective. Therefore, Im A3
contains a non-zero element, and Lemma 4.7 implies that A} is surjective. By the same
lemma, the group Aut E has precisely two orbits on H' (M, Aut(2)Og,). d

4.9. Remark. The conditions of Theorem 4.6 are fulfilled, in particular, if m = 2 or
3. The corresponding special cases were proved in [30, Ch. 4], and [7], respectively. In
the general case, the class Aj(7) is closely related to the first obstruction to splitting the
sequences (2.13) considered in [30, Ch. 4]. If X5(vy) = 0, then v € Im H'(M, Aut ), and
we can apply A}, and so on. The resulting obstruction theory is discussed in [2], [10],
[30], [45]. On the other hand, any non-split supermanifold can be regarded as a result of
deformation of its retract, and \; can be interpreted as the corresponding Kodaira—Spencer
mapping (for details, see [10], [11]).
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4.11 A family of non-split supermanifolds with retract (M, Q) Here we consider
the case where Oy, is the sheaf of holomorphic forms © on M. Using closed (1,1)-forms on
M, we will construct an abelian subsheaf of the sheaf of groups Aut2)€2. The 1-cohomology
of this subsheaf determines a family of supermanifolds with retract (M, §2). This family is
non-trivial whenever M is a compact Kéhler manifold of dim M > 1 and H"*(M, C) # 0.

Let ZQ! denote the subsheaf of Q! consisting of closed forms. Consider the following
sequence of sheaves and their homomorphisms:

Z0' 250" 5 T 2P Auto)Q,
where [ is the identical inclusion and v is given by the formula

v(¥) = . (4.38)

We claim that the composition mapping p : ZQ' — Aut)Q is a homomorphism of
sheaves of groups. By formula (4.38), we see that u(¢)) = exp(i¢d). Clearly, for any
1,109 € ZQY, we have (¢1d)(1)od) = 0. Therefore,

1) = id +4d,

and
(1 + b2) = p(hr) p(tz).

It follows that we have the cohomology mapping taking 0 to the unit element
pt HY(M, ZQY) — H' (M, Aut5)Q).

Consider the homomorphism of sheaves of groups Ay : Aut ()2 — 7 defined in Proposi-
tion 4.3.

4.10 Proposition (Technical). The relation Aoy = v holds. Suppose that dim M > 1.
If p*(¢) = p*(¢') for some ¢, € HY (M, ZQY), then B*(¢) = B*(¢).

Proof. Since \g exp = id on T3, we see that Aoy = v3. Now, it follows from Proposition
3.2 that v3 = 1§38, where j : Q' — Q2 ® © = Hom/(Q!, Q?) is given by the formula

J()(a) = pa. (4.39)

Thus, A\ = 153, whence \ju* = I*5*3*.

Suppose that dim M > 1. We claim that [* and j* are injective. Indeed, both [ and j
are injections onto a direct summand. In the first case this follows from formula (3.26).
Further, if dim M > 1, then j(Q!) admits a direct complement in Q? ® ©, namely, the
kernel of the contraction mapping ¢ : 0? ® © — Q! (see formula (2.9)). Thus, I*j* is
injective, which implies our second assertion. [l
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Let L = (U;) be an open cover of M and let ¢ = (¢;;) € Z*(4, ZQ'). Then, the above
construction assigns to ¢ the supermanifold given by the cocycle

Suppose that dim M > 1. Due to Theorem 4.1, we see from Proposition 4.10 that this
supermanifold is non-split whenever the cohomology class of ¢ in H'(M, Q') is non-zero.

Now we pass to an important case, where a “closed cocycle” i appears. Let w be
a (1,1)-form on M satisfying dw = 0. Then, clearly, dw = 0, and by the Dolbeault
theorem w determines a cohomology class in H'(M, Q). Tt turns out that it can be given
by a closed Cech cocycle.

4.11 Lemma (Technical). We have the exact sequence of sheaves:

0— 20" — 050 25 zol 0, (4.41)

where @é’o C @10 is the subsheaf of O-closed (1,0)-forms and Zd4' C ®M! the subsheaf of
d-closed (1, 1)-forms.

Proof. Clearly, we have the following exact sequence:

0— Q' — o0 L ol — 0,

where &3 C @1 is the subsheaf of 0-closed (1, 1)-forms. By definition, ZQ' = Q' N ®;°,
Therefore, we only have to prove that 9(®;%) = Zob1.

If ¢ € ®9 and Op = 0, then dOy = %(p = —00p = 0. Conversely, suppose that the
form Oy, where ¢ € &40, satisfies d0p = 0. Then, d9p = 0. Since dp € 20, this form is
holomorphic and closed. Therefore, dp = Oy, where ¢; € Q. Hence, o — ¢, € q)é,’o, and

Op = 0(¢ — 1) 0
4.14 An isomorphism D Now, consider the cohomology exact sequence, correspond-
ing to (4.41):

D(M, 0% -2 T(M, ZoM) 25 HY (M, ZQY).
Using 6%, we get the mapping

Pt T(M, Z0M) — HY (M, Aut5)Q).

Thus, any (1, 1)-form w on M such that dw = 0 determines a supermanifold with retract
(M, ). To obtain an expression of the corresponding cocycle g, we have to find a cocycle
1 determining 0*(w). Consider an open cover 4 = (U;) of M such that w = di; in any
U;, where v; € CI%’O(UZ»). By definition of the connecting homomorphism §*, the desired
cocycle is ¢ = (¢y;) € Z1 (U, ZQY), where ¥;; = 1; —; in U;NU; # 0. Finally, the cocycle
g is given by the formula (4.40).
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Note that any w € T'(M, Zd™!) satisfies the condition dw = 0, and hence determines
an element [w] of the Dolbeault cohomology group

HY"(M,C) =T'(M,Z®"") /oT(M, ®'°).
Further, by the Dolbeault theorem, we have an isomorphism

D:H"'(M,C) — H' (M, Q).

4.12 Proposition (An isomorphism D). We have
D([w]) = B*6*w, for any w € (M, Zd"h).

If dim M > 1, then, for any two w,w’ € T'(M, Z®YY), the equation p*6*w = p*6*w’ implies
w] = [W]. In particular, the supermanifold corresponding to |w] is non-split whenever

[w] # 0.
Any Kahler form w on a compact manifold M of dimension > 1 determines a non-split
supermanifold with retract (M, Q).

Proof. The usual proof of the Dolbeault theorem (see, e.g., [18]) shows that D([w]) is
the cohomology class of the cocycle (¢) described above. Thus, D([w]) = f*§*w. If
po*w = pro*w’, then f*0*w = f*0*w’ by Proposition 4.10, and hence D([w]) = D([w']),
and [w] = [w].

If M is compact and w is a Kahler form, then the de Rham class of w is non-zero. Since
M is Kéahler, this implies that [w] # 0. O

The situation is much more simple in the case where M is a compact Kahler manifold.

4.13 Theorem (M is a compact Kahler manifold). If M is a compact Kdhler man-
ifold, then we have a linear mapping

o HY'(M,C) — H' (M, 2Q")
such that 6*5 = D. Ifdim M > 1, then the mapping
pro s HYY (M, C) — H'(M, Aut(»Q)
18 1njective.
Proof. Since M is compact Kéhler, any cohomology class in HY*(M, C) contains a closed
(1,1)-form w, e.g., a harmonic one. We set

$([w]) = 6 ().
To check the correctness of this definition, consider a closed form
W' = w + da, where a € T'(M, ®*1).

Then, by 99-Lemma (see [18]), w' —w = ddy, where ¢ is a C* function on M. If w = di;
in U;, then w’ = 9(¢); + dp). Now it is clear that 6*(w) = ¢*(w’). By Proposition 4.12,
B*0 = D. The injectivity of p*d follows from the same proposition. U
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We return to the sheaf homomorphism j : Q' — Q2®© defined by the formula (4.39).
Due to the formula (2.8), j can be also expressed by

J(W) (ug,uz) = P(ur)ug — P(ug)uy for any wup,ug € O. (4.42)

We want to express the corresponding homomorphism j* : H' (M, Q') — H' (M, Q% ® ©)
in terms of differential forms. Together with the Dolbeault resolution of Q', we use the
Dolbeault-Serre resolution (®2* ® 6, ) of 02 ® © formed by smooth vector-valued forms.
Clearly, j extends to the homomorphism of resolutions

T=1d®j: " 20 — ™ 2 O? ® 6.

Identifying ®%! @ Q! with ®1! and &% ® Q% ® © with ®*! ® O, respectively, we see from
formula (4.40) that J: &' — ®2! ® © is expressed by

F(w) (uy, uz,v) = wlug, v)uy — wlug, v)uy, where ui,uy €0, v € O. (4.43)
This implies the following Proposition.

4.14 Proposition (A useful formula). For any 9-closed form w € T'(M, ®"1), the class
7*(Dw]) € HY(M,Q? ® ©) is determined by the 0-closed form J(w) given by the formula
(4.43).

Now, we apply our construction to the canonical form w defined by Koszul, see [28].
Let V' be a volume form on a complex manifold M. Then, one associates with V" a closed
(1,1)-form w in the following way. Let &l = (U;) be a coordinate cover of M and z\” ..., 2!/
holomorphic coordinates in U;. Then, in any U;, we have

V =Vda" . dePazl) . az®,
where V; is a positive C'*° function in U;, unique up to a constant factor and independent

of 7. Denote , _

T = D(wgz)7...,m$f))
o @ 0y’
D(z,...,x3")

then
Vi = |Ji;|*Vi in U;NU;.

The canonical form w is defined by the formula
w=00logV; in U,
(this definition differs by a sign from that due to Koszul). Clearly, dw = 0.

4.15 Theorem (The canonical supermanifold). The supermanifold with retract
(M, ), corresponding to the canonical form w, does not depend of the choice of V. It is
determined by the following cocycle g € Z' (U, Aut(5)Q):

1
Jij
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Proof. The cocycle 1 corresponding to [w] has the form

1

;= 0logV; —O0logV, = alog% = Jlog |J;;|> = dlog J;; =
This implies our assertion. U

The supermanifold, described in Theorem 4.15, will be called the canonical superman-
ifold, corresponding to M. It is not necessarily non-split.

4.19 Lifting of vector fields Let (M, O) be a supermanifold having (M, O,,) as its
retract. The filtration (3.16) of 7 = Der O gives rise to the filtration

U(M, O) = U(M, O)(_l) D U(M, O)(O) D) D(M, O)(l) D,
where v(M, O),) = I'(M, T)). By Proposition 3.1, we get the exact sequences
0— U(M, O)(erl) — U(M, O)(p) ﬁ) U(M, Ogr)p for p > —1. (4.45)

We say that a vector field u € v(M, Og), lifts to (M, O), if u belongs to Imo,. In this
case, one can suppose that u = o,(u), where @ has the same parity as p. We are going
to express this property in cohomological terms. Let (M,O) be determined by a class
v E HI(M, Aut(g)Ogr).

Suppose that we have an open cover 4 = (U;);e; of M and a system of isomorphisms
of the sheaves of superalgebras f; : Oly, = Og |y, such that f;(¢) = ¢+ T € (Og), for
p € J9. Then, g = (g,j), where g;; = fifj_l, is a 1-cocycle defining 7.

4.16 Proposition (Conditions on lifting). A vector fieldv € v(M, O, ), lifts to (M, O)
if and only if there exists a 0-cochain (v;) € CO(M, (Tg)(p)) such that

Vi ="V mod (Er)(p—i—l)(Ui)u (446)
gijV; = U;iGij m Uz N Uj 7£ @ (447)

In this case, we have
[A5(7),v] = 0. (4.48)

Proof. Suppose that v lifts to (M, O) and © € v(M, O), satisfies 0,(0) = v.

Define v; € (T )(p)(Us) by the formula v; = f;0 ;. Clearly, v; satisfies condition (4.47).
Now, for any ¢ € J¢, denote ¢; := f; ' (¢ + J9*) € J% Then, 9(p;) = g; + h;, where
g: € 17 H(GH(0)) and by € f; (g1 O)igi) = T, Hence,

vilo + T = (fiofi (e + T = fid(ei) = filg:) mod (g1 O)pagin)-
On the other hand, we have by definition

v(e+ T =0(p;) + TP = g, + TP = fi(gi).
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Thus, condition (4.46) is proved.
Conversely, suppose a cochain (v;) € C°(M, (Tg)p)) satisfying conditions (4.46) and
(4.47) be given. By condition (4.47), we have

fitvifi = £ gigvifi = fvigii fi = f i
Then, © = f; 'v;f; is a global section of 7(,). For any ¢ € J9, we have

() = (fi vif)(e) = [ vl + T = fH (v(e + T +9),

where ¢ € (gr O) piq+1)- It follows that 9(¢) lies in v(p + J9t) € Frte/gratt,
Thus, 0(¢) + TP = v(p + J*1), and hence 0,(0) = v.
To prove formula (4.48), we denote w;; = log g;; and deduce from condition (4.47) that

v; = gz‘]nglgl = (eXp w”)vj<exp wij)_l = Adexpwij Uj (4 49)

1
= exp(adu,, ) (v;) = v + [wij, v5] + 5 [weg, [wg, v5]] + - ..

Write v; = UZ-(p) + UZ-(”H) + ..., where vgk) € (Ta)x(U;). By condition (4.46), vz-(p) = v. Then,
formula (4.49) implies that Ui(pH) = vj(-p+2) + [A2(9)sj, v]. Thus, formula (4.48) is proved.

O

Now, we return to the case where Oy = 2 and (M, ) is determined by a class
¢ € HY(M, ZQ') as in Theorem 4.13. Let a vector field u € v(M, ), be given. We would
like to know, whether w lifts to a vector field on the supermanifold (M, Q). This problem
will be studied in the following three cases: u = d, and u = [(v) as well as u = i(v), where
vev(M).

Denote a cocycle representing the class ¢ by ¢ = (¢y;) € Z1(U, ZQ). Then, (M, O)
corresponds to the cohomology class v = p*(¢) of the cocycle g = (g;;) given by the
formula (4.46). We can suppose that there exist isomorphisms f; : Oly, — Q|y, for i € I,
inducing the identity isomorphisms of the Z-graded sheaves and such that g;; = f; fj_l over
U,nU; #0.

4.17 Proposition (The lift of d). The derivation d € v(M, Q) always lifts to (M, O).

Proof. We have

Applying Proposition 4.16 (with v = v; = d), we get our assertion. O

4.18 Proposition (Technical). If u € v(M) and l(u)*(¢) = 0, then I(u) lifts to (M, O).
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Proof. We can assume that [(u)(y;;) = oj — o; in U; N U;, where o; € ZQYU;). Set

Then,
9ij0ig9y;" = (id+id)v; (id —ii;d) = v; + [Wi;d, v;] — Viidv; (Yi;d)
= v; + [i;d, vj] = l(u) + ojd — 1(w)(Yi)d = l(u) + ud = v;.
Thus, Proposition 4.16 can be applied. U

4.19. Corollary. [The lift of u € v(M) on the canonical M| If (M,O) is the canonical
supermanifold, then l(u) lifts to (M, Q) for any u € v(M).

Proof. We want to prove that, if ¢,; = dlog J;;, then [(u) satisfies the condition of Propo-
sition 4.18 (see (4.44)). Denoting w; := dxgl) ... dz{), we have

w; = Jijwj in Ul N Uj.
Applying I(u), we get
Hu)(wi) = L) (Jig)w; + Jijl(u) (w;).
Clearly, I(u)(w;) = @;w;, where @; € F(U;). Tt follows that

i = -1 u)(Jy) + @5,
©j

whence
() () = di(u)(log Jyy) = d (1) (Jys) ) = dpi — dp

This yields our assertion. 0

4.24 A spectral sequence In this subsection, we consider the following problem,
more general than the one studied in Subsection 4.1. Let (M, O) be a supermanifold with
retract (M, O, ). Suppose that (M, O) is determined by a class v € H'(M, Aut(2)Og).
Let us denote 7 := Der O, Ty := Der O. We want to describe H (M, T) under the
assumption that the bigraded algebra H"(M,7g,) is known.

We fix an open Stein cover 4 = (U;);e; of M and consider the corresponding Cech
cochain complex C*(¢, T) = €D, C*(U4, T). The filtration (3.16) gives rise to the filtra-
tion

C'UT)=CyDC) D...2CH D ... D Chng1) =0 (4.50)

of this complex by the subcomplexes
Clp) = C" (&L, Tip)).

Denoting the image of the natural mapping H" (M, Tyy)) — H (M, T) by H(M,T)y), we
get the filtration

HM,T)=HM,T)-)D...0HM,T)p D ... > HM, T )m+1) = 0. (4.51)
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Note that the filtration (4.50) is a filtration of the graded differential algebra C* (L, T)
(under a bracket determined by the Lie bracket in 7") by graded differential subalgebras,
and hence the filtration (4.51) is a filtration of the graded algebra H"(M,7T) by graded
subalgebras. Denote by gr H"(M,T) the bigraded algebra associated with the filtration
(4.51); its bigrading is given by the formula

gt H'(M,T) = @5 G H'(M, T).

p>—1
q=>0

By a general procedure invented by J. Leray (see [14*, Ch. II1.7]), the filtration (4.50) gives
rise to a spectral sequence of bigraded algebras (E,,d,) converging to F, ~ gr H (M, T).
We have

d,(EP?) C EPTHt for any 7, p, q. (4.52)

The algebra E,; is identified with the homology algebra H(E,,d,). If we denote Z,

by Kerd,, then we have the natural homomorphism s, : Z, — Z,,;. For any s > r,

denote »% := »5~1 ... 5, (this composition is not defined on the entire Z,).

The following theorem is proved in [39].
4.20 Theorem (The first three terms of the spectral sequence).

(1) The first three terms of the spectral sequence (E,.) can be identified with the following

bigraded algebras:
EO = C*(Ll, Er)v

Ey=FEy,=H (M, Ty).
Here
E(I)W = Op+q(u7 (Er)p)a
EVY = Bt = HPM(M, (Tar)p)-
(2) dory1 =0, and hence Eopy1 = Fopio for all k > 0.
(3) dg = ad,\g(w).

Proposition 3.1 implies the cohomology exact sequence

HP P (M, Tipy) — HPP (M, Tipy) 3 HPY(M, (Ty),) = E5°.

We would like to describe the subspace Im o, C HP*9(M, (7Tg),) by means of our spectral
sequence. An element a € EY? will be called a permanent cocycle if

dya =0, dy(sc3a) =0, dg(s5a) = 0, etc.

Let us denote the subspace of permanent cocycles by Z2:4.
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4.21 Proposition (Technical, [39]). We have

J;(Hp+q(M7 7210))) - Zgé;q7
oy (H' (M, Tiy)) = 227

Thus, a vector field v € v(M, O, ), lifts to (M, O) if and only if v is a permanent cocycle
of our spectral sequence (and, in particular, satisfies the condition dyv = [A5(7),v] = 0, cf.
Proposition 4.16).

5 Applications to flag manifolds

5.1 Flag manifolds and homogeneous vector bundles A flag manifold of a con-
nected semisimple complex Lie group G is, by definition, a complex homogeneous space
M = G/P, where P is a parabolic subgroup of G. In this subsection, we fix the notation
and summarize some facts about flag manifolds. For proofs, see [1], [4], [38].

Let P be a parabolic subgroup of G, i.e., a subgroup containing a Borel subgroup of G.
We choose a maximal algebraic torus 7" of GG lying in P and a pair of mutually opposite
Borel subgroups B, B_ D T such that B_ C P. Let A denote the root system of G with
respect to T, let A be the system of positive roots corresponding to B, and IT C A, the
subsystem of simple roots. Denote

7:2%204.

(XGA+

If G is simple, then we denote by § the highest (or maximal) root, i.e., the highest
weight of the adjoint representation Ad of G. This root is the only maximal element of A
relative the following partial order in the vector space t(R)*:

A= pif and only if A — pu = Z koo, where all k, are non-negative integers.
a€cll

In particular, we have the decomposition

5= naa, (5.53)

where all n,, are positive integers.
Denote by A(Q) the root system of any Lie subgroup @ of G' normalized by T'; this is
a subsystem of A = A(G). In particular, we have

A(By) = Ay

and
A(P)=A_U]IS],

where [S] is the set of all roots that can be expressed as linear combination of elements in
the subset S C II. Here, S # I if dim M > 0.
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We have the semidirect decomposition
P=RxN_,
where R is the maximal reductive subgroup and N_ is the nilradical of P. Here,

A(R) = [5],
A(N-) =A\I[S5],

and S is the system of simple roots of R, corresponding to B N R. Denote by N, the
unipotent subgroup generated by the root vectors, the roots of which belong to the set
A(N;) = —A(N_). Then, for the corresponding Lie algebras, we have the following
decompositions:
g=n_Grdn,=pdn,,
p=un_oru

Denote by o the point P € M = G/P. Due to formulas (5.54), the holomorphic tangent
space T,(M) = T}°(M) = g/p can be identified with n,. The isotropy representation 7 of
P in T,(M) is induced by the adjoint representation Adp of P in g. Since n, is invariant
under Adg, then 7|g is identified with the representation Adg in n,. It follows that A(NV,)
is the system of weights of 7 relative to t.

On the other hand, it is usual to identify T%*(M) with n_ (see [4]).

Denote by (—, —) the Killing form on g. We suppose that in any root subspace g, of
g, a basis vector e, is chosen so that (e,,e_o) = 1 for @ € A. Then, the h, = [e,, €_4] for
a € 11, form a basis of t. We also will use the notation

(5.54)

_ 2 B)
(o, B) = 5.5 for any «,fp € A.
The Killing form determines an R-invariant duality between n, and n_. Identifying n_
with T%!(M), we see that the isotropy representation of R in T'(M) is induced by Adg
and coincides with 7*|g. Its system of weights is A(N_).

5.2 Montgomery’s theorem Since M is compact and simply connected, any maximal
compact subgroup K of G acts on M transitively, due to Montgomery’s theorem, see [33*]:
“If G is a connected Lie group which acts transitively on a compact manifold M, and if the
stabilizer G, of the point x € M is connected, then G contains a compact subgroup which
acts transitively on M.”

Montgomery’s theorem implies the following

Corollary. If G is a connected Lie group which acts transitively on a compact sim-
ply connected manifold M, then G contains a compact subgroup which also acts transi-
tively on M. See also https://en.wikipedia.org/wiki/Maximal_compact_subgroup#
Existence_and_uniqueness.

The Cartan-Iwasawa-Malcev theorem asserts that every connected Lie group (and in-
deed every connected locally compact group) admits maximal compact subgroups and that
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they are all conjugate to one another. For any semisimple Lie group, uniqueness is a con-
sequence of the Cartan fixed point theorem, which asserts that if a compact group acts by
isometries on a complete simply connected negatively curved Riemannian manifold, then
it has a fixed point.

Maximal compact subgroups of connected Lie groups are usually not unique, but they
are unique up to conjugation.

Therefore, if G contains a compact subgroup that acts transitively, it also contains
a maximal (under inclusion) compact subgroup which acts transitively. Now, we have
one maximal compact subgroup K which acts transitively. Any other maximal compact
subgroup has the form K’ = gKg~!, where g € G. The groups K’ also acts transitively.
Indeed, for any x € M we have Kx = M. Therefore,

K'(z) = gK(g~'z) = gK(y) = M.

Then, M = G/P = K/L, where L = PN K. We can suppose that the corresponding
real Lie subalgebra ¢ C g is spanned by ih, for a € II, and e, — e_,, i(e, + €_) for
a € A;. Then, we have

g=¢C), v=1C).

The subgroup L is the centralizer of its center in K, and hence is a subgroup of maximal
rank. Hence, the Poincaré polynomial of M is expressed by the Hirsch formula, see [32*].
On the other hand, the Dolbeault cohomology groups of M satisfy

HPY(M,C) =0 forp+#q (5.55)
(see, e.g., [4]). Since M is a K&hler manifold, the Hodge decomposition yields

HPP(M,C) for s =2p
0 for s = 2p + 1.

H*(M,C) ~ {

It follows, in particular, that
H"(M,C) ~ H*(M,C) ~ 3(rt) ~ C", wherer = [IT\ S|. (5.56)
We can suppose that G = (Bih M)°. Then, (see [38])
BihM =G x %, (5.57)

where ¥ is a finite group, naturally isomorphic to the subgroup of Aut IT leaving S invariant.
It is well known that with any holomorphic linear representation ¢ : P — GL(E) one
can associate a holomorphic vector bundle E, over M. The total space of this bundle is
the quotient
Gx,E:=(GxE)/P

of G x I by the diagonal action of P. The group G acts on E, by automorphisms, covering
the given action on M. This bundle is called the homogeneous vector bundle determined
by . For example, take the bundle E, isomorphic to T'(M).



Non-split supermanifolds associated with the cotangent bundle 89

The cohomology H'(M,&,) = D,¢ H (M, E,) admits a natural G-module structure.
The corresponding representation ® of G is called induced. If ¢ is irreducible (or completely
reducible), then the induced representation can be calculated with the help of an algorithm
found by Bott.

Denote by W the Weyl group of GG. This group is generated by reflections o, corre-
sponding to the roots @ € A, but as a system of generators one can choose {o, | a € IT}.
As usual, we call a weight A\ of G dominant (resp. strictly dominant) if (A, «) > 0 (resp.
> 0) for all a € II. The Bott algorithm is the following operation & — &£*:

=0+ -1, (5.58)

where £ 4 7 is regular and o € W is chosen in such a way that £* is strictly dominant (or
o(§ + ) is dominant, which is the same). The index of £ 4+ v is the number of roots in
&, =cA_NA, or, which is the same, the minimal number of factors in a decomposition
of o into the product of o, for a € II. The index is also equal to the number of positive
roots « such that (£ +v,a) < 0.

The result of Bott is as follows (see [1], [4], [26]):

5.1 Theorem (Bott’s theorem). Let ¢ : P — GL(E) be an irreducible holomorphic
representation with highest weight A. Then, the induced representation can be determined
as follows:

(1) If A+~ is singular, then H (M, E,) = 0.

(2) If A+~ is reqular of index p, then HI(M,E,) = 0 for g # p and HP(M,E,) is an
irreducible G-module with highest weight A*.

This theorem gives, in particular, a description of the vector space
[(E,) =T(M,E,) = HO(Mv &)

of holomorphic sections of E,. Note that the induced representation ¢ : G — GL(I'(E,))
acts as follows:

(®(g)s)(x) = gs(g 'z) for any g € G, s € T(E,) and x € M. (5.59)

5.2. Corollary. Under the assumptions of Theorem 5.1, T'(E,) # 0 if and only if A is
dominant, and in this case I'(Ey) is an irreducible G-module with highest weight A.

If ¢ is completely reducible, then the induced representation can be calculated as
well, by decomposing ¢ into irreducible components and applying Theorem 5.1 to the
corresponding homogeneous vector bundles. As to the general case, we only make the
following useful remark.
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5.3. Corollary. Let ¢ : P — GL(E) be an arbitrary holomorphic representation and let
A be a highest weight of the induced representation ® of G in I'(E,). Then, A is a highest
weight of ¢.

Proof. Note that a highest weight of ¢ is the same as a highest weight of the completely
reducible representation |g. By Corollary 5.2, our assertion is true whenever ¢ is irre-
ducible. Suppose that it is true for dim £ < m and let us prove it for dim £ = m. Let
E' be a maximal P-submodule of E and denote E” := E/E’. Then, we have the exact
sequence of G-sheaves

0—& —€—E&—0

and the corresponding exact sequence of cohomology with G-equivariant mappings
0—T(E&) —TE) —TE").

Let A be a highest weight of the G-module T'(£). Since ® is completely reducible, A
is a highest weight of I'(£’) or I'(£”). Using the inductive hypothesis and the complete
reducibility of ¢|r, we see that A is a highest weight of ¢. O

5.6 Vector fields on (M,Q) Here we will study the split supermanifold (M,€),
assuming that G is simple. Our goal is to calculate the graded Lie superalgebra of vector
fields v(M, ) (see [35%]).

It is known (see [1], [38]) that the Lie group (Bih M)° is simple and its isotropy sub-
group is parabolic. Thus, we can assume that G = (Bih M)° and g = v(M). Thanks to
(3.29) and (3.30), we have

o(M, Q)1 =i(g),

o(M, Q) = i(gl(T(M)*)) 3 I(g). (5.60)

As in Subsection 2.1, denote by ad, the adjoint representation of v(M,Q)y in v(M,2),.
The following lemma was first proved in [23].

5.4. Lemma. If g is simple, then gl(T(M)*) = gl(T(M)) = (id). The representation
ad_q is irreducible and faithful.

Proof. From the classical relation (see also (3.28))

[Z(U)J(U)] = Z([“? U])? u,v € g,

we see that ad_; is irreducible and faithful on [(g).
Further, let us regard gl(T(M)*) as H°(M, Q! ® ©) = gl(T(M)). Then, (2.4) implies
that
[i(n),i(v)] = i({n,v}) = —n Av,  for any n € gi(T(M)") and v € g.

If ad_y i(n) = 0, then n(v) = 0 for any v € g. Since G acts on M transitively, we have

evy(g) =T,(M) for all x € M,
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and hence n = 0. Thus, ad_; is faithful on i(gl{(T(M)*)).

Let a denote the radical of i(gl(T(M)*)). It is non-trivial: it contains () = (i(id)).
Since ad_; is irreducible, its image is a reductive Lie algebra with radical (id) = (ad_; ¢).
By (5.60), a coincides with the radical of v(M,Q)g, and hence a = (g). It follows that
i(gl(T(M)*)) is reductive, and

i(gU(T(M)")) = (¢) @ s,

where s is a semisimple Lie algebra. We have to prove that s = 0.
Clearly, s is invariant under ady(I(g)), and hence we get the homomorphism

ado(l) : g — ders = ads

which is injective if [I(g),s] # 0. In this latter case, we obtain therefore an injective
homomorphism A : g — s satisfying

[h(u), z] = [l(u), z] for any u € g, z € s.

In particular,
h([u,v]) = [h(u), h(v)] = [[(u), h(v)] for any u,v € g. (5.61)

Now, we note that gl(T(M)*) = I'(T(M)*® T(M)) is the vector space of holomorphic
sections of the homogeneous vector bundle T(M)* ® T(M) = E,, where ¢ = 7*7. From
(5.59) we deduce that the induced representation ® of G in I'(T(M)* ® T(M)) satisfies
the following condition

i(d®(u)n) = [l(u),i(n)] for any u € g, n € gl(T(M)"). (5.62)

Suppose that [I(g),s] # 0. Then, eqs. (5.61) and (5.62) imply that Im h determines
a G-submodule of gl(T(M)*), where the adjoint representation of G is realized. Thus, the
highest root § is a highest weight of ®. By Corollary 5.3, § is a highest weight of ¢. But
the weights of ¢ have the form o — 3, where a, 5 € A,. This yields a contradiction.
Thus, we have proved that [I(g),s] = 0. It follows that ad_;(s) commutes with the
irreducible linear Lie algebra ad_;[(g). By the Schur lemma, ad_;(s) = 0, and hence
s =0. U

A graded Lie superalgebra of the form
b=, (5.63)
p>1

is called transitive if for any p > 1 it satisfies
{rev,|[z,0_1] =0} =0. (5.64)

A graded Lie superalgebra of the form (5.63) is called irreducible if the representation ad_;
of vy is irreducible. All irreducible transitive complex graded Lie superalgebras of finite
dimension were classified in [24] (see also [48]).
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5.5 Theorem (v(G/P, Q) for G simple).

1) For any flag manifold M = G /P of a simple complex Lie group G, the graded Lie
superalgebra v(M, Q) is transitive and irreducible.

2) Under the above assumptions, suppose that v(M,O) = g. Then,

(M, )1 =i(g),
b(M,Q2)o = () & I(g),
v(M, )1 = (d),
o(M,Q), =0 for any p > 2.

Proof. By Lemma 5.4, v(M, Q) is irreducible and satisfies condition (5.64) for p = 0. Thus,
we need to prove (5.64) for any p > 0.

We will use the following fact: if ¢ € QP where p > 0, and if i(v)p = 0 for all v € g,
then ¢ = 0. To prove this, we note that

(i(v)p)s(v1, ... vp) = pu(evy(v),v1,...,0,), v; € Tp(M) for x € M.

Since g acts transitively, the condition i(v)p = 0 yields ¢, = 0 for any = € M.
Now, suppose that a vector field v € v(M, ), for p > 0 satisfies [u,i(v)] = 0 for all
v € g. Then, for any f € F, we have

By the above, we have u(f) = 0. Therefore, for any ¢ € Q! we get

[i(v), ul(¢) = i(v)ulp) + (=1 u(i(v)(¢)) = i(v)u(p) = 0.

Since u(p) € QP this implies u(¢) = 0. Thus, u = 0, and item (1) is proved.

The item (2) for p = —1,0 follows from (5.60) and Lemma 5.4. It is also clear that
(d) C o(M,Q);. In particular, we see that the representation ad_; of v(M,Q) ~ g is the
adjoint one, while the representation ad; of this Lie algebra contains a trivial component
of dimension 1. The classification of transitive irreducible graded Lie superalgebras v given
in [24, Theorem 4], shows that if v satisfies the above conditions, then dimbv; = 1 and
v, = 0 for p > 2. Thus, item (2) follows from item (1). O

5.8 A family of non-split supermanifolds Here, we apply the construction of Sub-
section 5.2 to the case where M = G/ P is a flag manifold of a simple complex Lie group
G. We show that in this situation one always obtains a non-empty family of non-split
supermanifolds having (M, ) as their retract. We also study holomorphic vector fields on
these supermanifolds.
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5.6. Theorem. Let M = G/P be a flag manifold, where G is simple and dim M > 1, and
denote r := [\ S|. Then, there exists a family of distinct non-split supermanifolds that
have (M,Q)) as their retract, parametrized by CP""' /. Here ¥ is the finite group from
(5.57).

If P is mazimal, then this family consists of a unique supermanifold, which is isomor-
phic to the canonical one.

Proof. The group Aut T(M)* naturally acts on HY*(M,C), and the mapping
@6 HYY(M,C) — H' (M, Aut 2)§2)

is equivariant. By Theorems 4.1 and 4.13, this mapping determines a family of distinct
non-split supermanifolds having (M, 2) as their retract which is parametrized by the set
(H“'(M,C)\ {0}) / Aut T(M)*. On the other hand, GL(T(M)*) = C* (see Lemma 5.4),
and (3.31) yields

Aut T(M)* = C* x Bih M.

Thanks to (5.57), we see that
Aut T(M)" =C* x (G x X).
Clearly, the action of G on H“ (M, C) is trivial. Using Lemma 4.11, we deduce that
(H"(M,C)\{0})/ Aut T(M)* = (H"(M,C) \ {0})/(C* x 2) = P(H" (M, C))/%.

Due to (5.56), this implies our first assertion.

To prove the second claim, we note that the canonical supermanifold corresponding to
M is non-split, since in our case the canonical form w is positive-definite [28] and hence
[w] # 0. Thus, it enters the family just constructed. But if P is maximal, then » = 1, and
CP"! contains only one point. O

Now we will study holomorphic vector fields on supermanifolds (M, Q) of the family
constructed above, applying Proposition 3.1 to O, = 2. We have to settle what derivations
of Q described in Theorem 5.5 can be lifted to (M, O). We need the following lemma.

5.7. Lemma. Let M = G/P be a flag manifold. Then, both homomorphisms of the
sequence

HY (M, C) = BY (M, 204 2 BV (0, 0
(see Theorem 4.13) are isomorphisms, and H*(M, ZQ") is a trivial G-module.

Proof. Clearly, we have the exact sequence of sheaves

0— 20t Lot % 202 — 0,
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where ZQ? is the sheaf of closed forms from Q2. Consider the corresponding cohomology
exact sequence:

HOM, 202) — HY (M, 20Y) X5 7Y (M, Q).

Since M is Kahler, all holomorphic forms on it are closed, and hence
HO(M,Z0?*) = H°(M,Q?) ~ H*°(M, C).

By (5.55), this group is trivial, and therefore 8* is injective. It is also surjective, since B4
is the Dolbeault isomorphism. It follows that 5* and § are isomorphisms. The natural
G-action on H'(M, ZQ"') is trivial, since this is true for H» (M, C). O

5.8 Proposition (Technical). Let M = G/P be as in Theorem 5.6, g = v(M), and let
(M, Q) be any non-split supermanifold of the family described in Theorem 5.6. Then, l(v)
forv € g, and d can be lifted to (M, ), and we have

U(Ma O)(O) = U(Mv O)f) S¥ <dA>7

(M, 0)q) = (d),

=
o(M,0) ) =0 forp > 2.
Here g : 0(M, )y —> g is an isomorphism, d # 0, o1(d) = d and [d,d] = [d,v] = 0 for
allv e v(M,O)s.

Proof. Consider the exact sequence (4.45) for Oy = Q. From Theorem 5.5 we deduce that
o(M,O)p = 0 for p > 2 and that oy : ©(M,0)q) — v(M,Q); = (d) is injective. By
Proposition 4.17, we see that v(M,O)q) = (d), where d is odd and o (d) = d. For p =0,
the exact sequence has the form

0 — v(M, O)(l) — (M, O)(O) BN (M, Q) = (e) ®l(g).

By Lemma 5.7 and Corollary 4.19, any v € [(g) lifts to (M,O). On the other hand, ¢
does not lift by Proposition 4.16, since [g, \a(7)] = 2Xa(y) # 0 by eq. (2.2). Hence,
Im oo = I(g). This implies our assertion concerning v(M, O) ).

Since v(M, 0) g is a subalgebra of v(M, O), it follows that d is a weight vector of the
representation adj of o(M, O)g, but the corresponding weight is 0, since g is simple. Thus,
[d v] = 0 for all v € v(M, O),. It follows that [d, d] lies in the center of v(M, O);, whence
d,d] = 0. O

One can ask whether v(M, O) coincides with it subalgebra v(M, O)) calculated in
Proposition 5.8. This is not true in general, and in Theorem 5.33 I give the complete
answer for the case where M is an irreducible Hermitian symmetric space.
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5.10 Irreducible Hermitian symmetric spaces A Hermitian symmetric space is,
by definition, a connected complex manifold M, endowed with a Hermitian structure and
satisfying the following condition: for any x € M, there exists a holomorphic isometry s,
of M such that d,s, = —id.

Let M be a compact Hermitian symmetric space. Let K be the identity component
of the group of all holomorphic isometries of M; this is a compact Lie group. It is known
(see [21]) that M is a homogeneous space of K, and hence can be regarded as the coset
space K /L, where L is the stabilizer K, of a point o € M.

In what follows, we suppose that M is simply connected and irreducible (as a Hermitian
space). It is known (see [21]) that if M is simply connected, then L is the centralizer of
a torus in K, containing the symmetry s,. Now, G = (Bih M)° is the complexification
G = K(C),and M = G/P, where P = G, is a parabolic subgroup of G. Thus, M is a flag
manifold of a special type. Now, a simply connected compact Hermitian symmetric space
M is irreducible if and only if K and G are simple. In this case, P is maximal.

Let G be a connected simple complex Lie group. We retain the notation of Subsec-
tion 5.1 and suppose that a maximal torus 7" and a Borel subgroup B D T of GG are chosen.
Consider the decomposition (5.53) of the highest root §. A simple root a € II will be called
special if n, = 1.

Let P be a parabolic subgroup of G containing the Borel subgroup B_. In the above
notation, the flag manifold M = G/P is Hermitian symmetric if and only if the subset
S C II defining P has the form S = IT \ {«ap}, where «q is a special simple root. Thus, in
this case,

A(P) = A_ U\ {ao}].

It follows that
A(N-) = A_\ [T\ {ao}],

i.e., this is the set of those negative roots —f of G, whose expression through simple roots
contains «p (necessarily with coefficient 1). The subgroups N, and N_ are commutative.
The isotropy representation 7 : P — GL(n,) is irreducible; in particular, 7| N_ is trivial,
and 7 is completely determined by its restriction onto R.

For all simple Lie groups G of rank > 1 that have special simple roots, [36, Table 6]
shows the Dynkin diagrams of extended systems of simple roots I=1IIU {—=4d}, where for
any « € II the coefficient n,, is indicated.

Note that a simple root is special if and only if it lies in the same orbit as —¢ under
the symmetry group of II.

On the other hand, the nontrivial symmetries of II, existing for the types A;, D;, FEj,
transform special roots into special roots, and we have to consider special roots up to these
symmetries. In all cases, we have (ag, ag) = 2 for a special root «y.

5.11 The three cases We also see that any irreducible symmetric Hermitian space of
dimension > 2 satisfies to one of the following three conditions, depending on the choice
of G and of a special simple root «y:

L. (6, ) = 0, and there exists a unique ay € II such that (ap, ;) # 0.
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This case occurs for the groups G of types B;, C;, D;, Eg, E; and for any special
rootayg; we have n,, = 2.

I1. (6, ) = 0, and there exist two different simple roots oy, g, such that (ag, ;) # 0
fori=1,2.

This case occurs for the groups G of type A;, [ > 3, for any ag corresponding to the
interior vertices of the (non-extended) Dynkin diagram. Here, we have n,, = n,, = 1.
The manifolds M are the Grassmannians Gri™ for 1 < s < [.

III. (9, ) # 0.

This case occurs for the groups G of type A; for [ > 2, for any of the two roots «y
corresponding to the end vertices of the (non-extended) Dynkin diagram. There exists
a unique «; € II such that (ag, ;) # 0, and we have n,, = 1. The manifolds M are the
projective spaces CP', where [ > 2.

The roots aq, as € II, described above, will be called the neighbors of ag. We admit
a numbering of simple roots Il = {ag, a1, ..., 1} using this notation. For a weight A of
G, we will denote by m(\) the coefficient at «; (or the sum of the coefficients of ay, o)
in the expression of A in terms of II. In particular, we see that

2 in the cases I, II
m(d) = q .
1 in the case III.

Clearly, the weight system of the irreducible representation 7 coincides with A(NV,),
the highest weight being § and the lowest one «g. Similarly, the weight system of 7% is
A(N_), the highest weight being —aq and the lowest one —d.

5.12 Invariant vector-valued forms In this Subsection, we discuss invariant vector-
valued forms on flag manifolds and the invariant cohomology H' (M, Q®©)¢ of irreducible
Hermitian symmetric spaces.

Retaining the notation of Subsection 5.1, consider a flag manifold M = G/P = K/L.
Clearly, K naturally acts on the vector space I'(M,® ® ©) of all smooth vector-valued
forms on M. The well-known E. Cartan principle of reducing invariants of a transitive
action to invariants of the isotropy group (see, e.g., [38, Theorem 4.2]) gives

5.9. Proposition. The evaluation mapping of I'(M, P ® ©) onto
NTOM) @ TN (M) @ T,°(M)
given by o — @, determines an isomorphism of the bigraded vector spaces
LM, ®0)" = (\T°(M) o T9N (M) © T,°(M))"
= (/\(“+ @n)) @ny)t
= (/\(n-‘r ©n)) @ny)"

preserving the operations A and {—,—}. This isomorphism maps T'(M, ®"? @ ©)K onto

((/\n+ ® /\”—)* ®ng) = (/\"i ® /\“i @ng)t = (/\"— ® /\n+ ©ng)t
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Now we give examples of invariant vector-valued forms.

5.10 Example (w € T'(M,®") on a complex manifold M). Let M be a complex
manifold and w € T'(M, ®*'). Consider the form

0y = J(w) € T'(M, d*' ® O)
given by the formula (4.43). Thus,
Oy (uy, U, v) = w(u, v)ug — w(Us, vV)uy, ui,uy €O, v EO. (5.65)

More generally, we can construct the following vector-valued (p,p — 1)-form 6, for p > 1:

w(ur,v1) ... w(u,vp—1) W
w(ug,v1) ... w(ug,v,_1) u

Op(ur,. .., up,v1,...,0p—1) = (p—1)! ( 2 1) ( 2' r-1) '2 , (5.66)
W(tp, v1) .. w(Up, Up_1) Uy

where u; € © and v; € O. In particular, §; = id and 6, is as in (5.65). Clearly, 6, # 0 for
p <n=dim M. We note that (see [40])

0, A0y = pOyig1. (5.67)

By Proposition 5.9, the form 6, is completely determined by its value at o € M which is
expressed by the same formula (5.66) through the value w, at 0. As w,, we can choose any
L-invariant (1,1)-form at o. For example, the Killing form on g determines an invariant
form w satisfying

wo(u,v) = (u,v), u€Eny, ven_. (5.68)

In what follows, we consider the case where M is an irreducible compact Hermitian sym-
metric space. Then, the isotropy representation is irreducible, and hence the form (5.68)
is the only (up to a constant factor) L-invariant (1, 1)-form on T,(M).

5.11 Example (M = Gr?). Consider the complex Grassmannian M = Gr}, where s is

an integer in {1,...,n — 1}. This is an irreducible compact Hermitian symmetric space
with G = SL,,(C) and K = SU,,. It is convenient to regard M as a homogeneous space of
the group Gy = GL,,(C) with a natural action on M (this action is not effective). As usual,
we choose in G the maximal torus T' consisting of all diagonal matrices and the Borel
subgroup B consisting of all upper triangular matrices. Then, B_ is the subgroup of all
lower triangular matrices. Denote r := n—s. For o we take the point (e,41,...,e,) € Grl.
Then, the isotropy subgroup P of G at o is parabolic and contains B_; it consists of all

matrices of the form y
1 0
(V AQ) , (5.69)
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where A; € GL,(C) and Ay € GL4(C). Its maximal reductive subgroup R consists of
matrices of the form (5.69) with V' = 0 and can be identified with GL,(C) x GL4(C),
while the unipotent radical N_ is abelian and consists of matrices of the form (5.69) with
Ay =1, and As = I,. The subalgebras n_ and n, consist of matrices of the form

(o) (5)

respectively, v being an (s x r)-matrix and v an (r X s)-matrix. We will identify n_ and
n; with the vector spaces of matrices M, (C) and M, 4(C), respectively. The isotropy
representation 7 of P on ny = T,(M) is as follows:

. <(‘é1 ;D) (1) = Ayud;’. (5.70)

Let us replace the Killing form by the following invariant bilinear form on g, (C):
(X,Y) = tr XY

Then, using (5.68), we can define the K-invariant vector-valued forms 6, on M by (5.66).
Now, we construct new examples of K-invariant vector-valued (2,1)- and (3,2)-forms. Note
that the same method permits to construct certain invariant vector-valued (p, p — 1)-forms
for any p > 1.

Define the K-invariant vector-valued (2,1)-form n by its L-invariant value

No(U1, Uz, V) = U VU — UgVUY, Up, Uz € Ny, U E N_. (5.71)

The forms 6, and n are linearly independent whenever 1 < s < n — 1, and they coincide
fors=1ors=n-—1.

Similarly, we define the K-invariant vector-valued (3,2)-forms 7y, 72, 173, whose L-invar-
iant values at o are as follows:

(m)o = Alt tr(uviugve)us = Alt (uqv1, ugve)ug
= 2((U1U1, UQUQ)U:J, + (Ug?)l, U3U2>U1 + (Ug?]l, Ul’Ug)UQ (572)

- (Uzvl, U102)U3 - (U3U1,U202)U1 - (Uﬂ)l, U3U2)U2),

(m2)o = Alt tr(ujvy Jugvoug = Alt (uy, v1)usvous
= (Uh U1)U2U2U3 + (UQ; Ul)U3712u1 + (U37 U1)U11}2U2
— (ug, v1)ugvous — (ug, v1)ugveuy — (U, v1)UzvUs (5.73)
- (Ul, U2)U201U3 - (UQ, U2)U301U1 - (U3702)U1U1U2
+ (ug, vo)uyviuz + (us, v2)ugviuy + (U1, va)uzviug,
(M3)0 = Alt ujv1UVUg = UV ULVUZ + UV UZV2UY + UV U Voo
— UV U Vollz — UV UgVally — UV UV Uo (5.74)
— U1VU2V1 U3 — U2V2U3V1 U] — U3V2U1 V1 U2
+ U VU1 V1U3 + UV U2V UT + U VU3V Uo -

Here, uy,ug, us € ny for vy, ve € n_.
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We will need the following properties of the forms introduced in Examples 5.10 and
5.11.

5.12. Lemma. Suppose that M = Gr? and (recall, r :=n — s)
(1) The forms 03, n1, na2, N3 are linearly independent whenever s,r > 3.

(2) If r =2 for s > 3, then 63, m1, n2 are linearly independent, while
N3 =12 + %771 - %93- (5.75)
(3) If s =2 forr >3, then 63, 1, n2 are linearly independent, while
N3 = —M2 — %771 - %93- (5.76)
(4) If s =1 =2, then 03, m; are linearly independent, while
N2 = —%771, N = —%93- (5.77)

Proof. To check the relations (5.75), (5.76), (5.77), we use the following simple fact: for
any two 2 x 2-matrices A, B we have

AB+ BA = (trA)B+ (tr B)A+ (tr AB — (tr A)(tr B))1. (5.78)

In the case (2), we obtain (5.75) by applying (5.78) to A = wyv; and B = ugvy, and
alternating the resulting expression of

UV U2VoU3 + UV U V1 U3 = (U1U1U2U2 + U202U1U1)U3'

Similarly, in the case (3) we apply (5.78) to A = vjuy and B = wyuz and alternate the
resulting expression of

U1V U2V2U3 + UL VU3V U2 = U7 (U1U2’U2'LL3 + /UQU3U1U2).

Now, (5.75) and (5.76) imply (5.77) in the case (4).
I skip the proof of linear independence. O

It is well known (thanks to E. Cartan) that the real cohomology algebra of a compact
Riemannian symmetric space M = K/L is naturally isomorphic to the algebra of K-
invariant differential forms on M (see, e.g., [38, Corollary of Theorem 9.7]). We want to
prove a similar assertion concerning the invariant cohomology H' (M, ® ©)X of a simply
connected compact Hermitian symmetric space M.

We use the fine resolution (®®0, d) of the sheaf Q®©. By the Dolbeault-Serre theorem,

the sheaf cohomology H" (M, ® ©) and the cohomology of the complex (I'(M, P ® 0),0)
are isomorphic. Actually, we have

HY(M, QP © ©) ~ HP(D(M,®  0),d).
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Under this isomorphism, the algebraic and the FN-bracket in H' (M, ® ©) are induced
by the same operations in I'(M, ® ® ©). Denote the operator in I'(M, ® ® ©) conjugate to
0 with respect to the given K-invariant Hermitian metric on M by 0* and the Beltrami-
Laplace operator by [J = 00* + 0*0. As usual, a form ¢ € I'(M, ® ® O) is called harmonic
if Oy = 0. For a harmonic ¢, we have dp = 0, and any cohomology class contains precisely
one harmonic form.

5.13. Proposition. Let M be a simply connected compact Hermitian symmetric space,
K the identity component of the group of all holomorphic isometries of M. Then,

(M, ®" ® ©)% =0 whenever r is even.

Moreover, any ¢ € I'(M,® ® ©)X is harmonic, and hence 0-closed. Assigning to a form
o € (M, ® ® ©)X its cohomology class, we get an isomorphism of bigraded algebras

AN T(M,@®0)% — H'(M,Q®06)°

both for the algebraic and the FN-brackets.
The FN-bracket in H' (M,Q ® ©)% is identically 0.

Proof. For any form ¢ € T'(M,®" ® ©)X we have s*p = ¢. Since ds, = —id, we see that
(s*p)o = (—1)"Tl,. If r is even, then ¢, = 0, and hence ¢ = 0. This proves the first
assertion.

Moreover, in the same situation we have dp € I'(M,®" ! @ ©)K. If r is odd, then
O = 0. Similarly, 0*¢ = 0, and hence ¢ is harmonic. It follows that

AN T(M,®20)* — H(M,Qee)" =1 (M,Q%0)°¢

is defined and injective. To prove that A is surjective, suppose that ¢ € I'(M,® ® O) is
a harmonic form representing a G-invariant cohomology class. Then, for any k € K, the
form k*p is harmonic and lies in the same cohomology class as ¢. Therefore, k*p = ¢ for
ke K,sopel(M®x0)~K.

Clearly, I'(M,® ® ©)X is a subalgebra under both brackets and A is an isomorphism
of algebras. The FN-bracket is 0, since H4(M, QP ® ©)% = 0 whenever p + ¢ is even. [

5.14. Corollary. Under assumptions of Proposition 5.13, we have (recall definition of R
under (5.69))
p q
HIY(M, QP @ 0)¢ ~ (/\n, ® /\mr @ny)".

Now we are going to calculate certain invariant cohomology groups assuming that M
is irreducible. First of all, we will find the degrees for which they are non-zero.

5.15. Proposition. For any simply connected irreducible compact Hermitian symmetric
space M of dimension n > 2 we have HI(M, ¥ ® ©)¢ # 0 if and only if ¢ = p—1 for any
p=1,...,n.
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Proof. Let w be the Kahler form on M corresponding to the given Kahler metric. Consider
the invariant forms 6, for p = 1,...,n, given by the formula (4.14). By Proposition 5.13,
they determine non-zero cohomology classes in HP~1(M, QP @ ©)°.

By Corollary 5.14, it is sufficient to show that the representation of R induced in
A’n_ ® A%n. ® n, has no zero weights whenever ¢ # p — 1. But each weight of this
representation has the form

-1
A= (—p+q+1)ao+2kjozj.

j=1
If A=0,thenqg=p—1. O
It was proved in [40] that
HP Y (M, QP ® ©)Y ~ C, where p=1,...,n,

for M = CP" (case III). We investigate now the degrees p = 1,2, 3 in the general case.
By Lemma 5.4, we have
H(M,Q'®©)¢ ~C.

For the case p = 2 we need the following fact, implied by a result of Kostant (see [26])].
We will denote by o; the reflection o,;, € W corresponding to the simple root «;.

5.16. Lemma. The irreducible components of the R-module /\2 n, correspond one-to-one
to those simple roots oy, of G that are neighbors of ay. The component that corresponds to
oy, has the lowest weight 2a + o, and the lowest weight vector ey, N €ay+ay -

Thus, /\2 n, is iwrreducible in the cases I, 111 and has two irreducible components in the
case II.

Proof. By [26, Section 8], the irreducible components of /\2 n, correspond to those elements
o € W satisfying

1. 0 =00y for j #k,
2. &, =cA_NA, CA(N,).
The set ®, = {«, 8} can be determined from the relation
oy=v—a—[.

The lowest weight of the component corresponding to ¢ is a + 3, and the lowest weight
vector 1s e, A eg.
Clearly,

oy =00y = 05(7 — ) =7 — o — 0.
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Hence, o + 8 = «a; + o0y, where o0y, = o — (o, j)j. Since a and f contain ay with
coefficient 1, the same property must have the roots «; and o;cy. It follows that 7 = 0
and (ag, ag) # 0, i.e., ay is a neighbor of ag. Since (ay, ap) = —1, we have

CY+5:OCO—|—(CYO+O%>.

This easily implies that o = ag and § = g + a4, (or vice versa). 0

5.17 Proposition (H'(M,Q*® ©)%). We have

HY(M, 2?2 6)C ~ C  in the cases I, III
’ C? in the case II.

Proof. By Corollary 5.2,

2
HY(M,Q*® 0)°¢ ~ (/\n, ®@n, @ng)t

Now,
2

n+®n+ :/\n+@s2n+.

By Lemma 5.16, /\2 n, is the irreducible R-module with lowest weight 2ay 4+« in the cases
I, II1. Tt is easy to prove that it is not isomorphic to any submodule of S>n,. Indeed, the
lowest weight vector of such a submodule must be e,,€q+a,, Which is impossible. Thus,
n,. ®n, contains precisely one component dual to /\2 n_, implying the result. The case II
is considered similarly. O

5.18. Remark. Clearly, in the cases I, III, a basic element of H*(M,Q? ® ©)% is deter-
mined by the invariant form 6, given by the formula (5.65), w being determined by the
formula (5.68). In the case II, a basis of H*(M,Q? ® ©)% is formed by the cohomology
classes of 05 and 7, where 7 is given by the formula (5.71), see Example 5.11.

The following proposition can be proved by case-by-case verification using the decom-
positions into irreducible components. We omit the proof, since we will not use the result.

5.19 Proposition (dim H?(M,Q3 ® ©)%). The dimension k = dim H*(M,Q3? ® )% is
as follows:

(1) k=0 in the case III for | =2 (M = CP?);

(2) k=1 in the case I for types By, E; and D, forl > 4, if M is a quadric, and in the
case II1 forl > 2;
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(3) k = 2 in the case I for types C, and Dy, if M 1is the isotropic Grassmannian of
mazimal type, and in the case II, if | = s +1 =3 (M = Gr3);

(4) k=3 in the case II whenever2 <s=1—1or2=s<l—1;

(5) k=4 in the case II whenever 2 < s <[ —1.

5.20. Remark. In the case II, a basis of H?(M,Q® ® ©)% is given by the cohomology
classes of the following forms:

62,771 fOI'S:t:2,
Oa,m1,my for s=2fort >3 ors >3, t =2,
927”177727773 for Sat Z 3

(see Example 5.11 and Lemma 5.12).

5.22 An application of a theorem of Bott Let again M be an irreducible simply
connected compact Hermitian symmetric space. In this subsection, we apply Theorem
5.1 to calculation of the cohomology H?(M,® ® ©) for ¢ = 1,2. We regard O ® O as
the sheaf of holomorphic sections of the homogeneous vector bundle A” T(M)* @ T(M)
corresponding to the completely reducible representation 7 A” 7* of P.

The following well-known property of dominant weights will be used (see [22, S 13,
Exercise 8]).

5.21. Lemma. If A is a non-zero dominant weight of a simple group G, then in the

eTPression
-1
A= Z kﬁiOéi
i=0
we have k; >0 for alli=10,...,1 —1.

A weight X of G will be called R-dominant if (\,«;) > 0 foralli=1,...,l—1. Any
highest weight of a representation of R is, evidently, R-dominant.

Recall that in the theory of Bott the operation £ — £* given by the formula (5.58) is
essential. Note that if 0 = o; is the reflection corresponding to the simple root «;, then

We also need the following lemmas.

5.22. Lemma. Let A be an R-dominant weight of G. The weight A+~ has index 1 if and
only if \* = og(A+ ) — v is dominant.
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Proof. Clearly, the condition is sufficient. Now suppose that A 4+~ has index 1. Then, «q
is the only positive root of G such that (A + v, o) < 0. For any ¢ > 0, we have

()\*,Odi) = (0'0()\ + ’}/),Oéi) —1= ()\ + "}/,O'oOéi) — 1.

Since ogay; = o — (ay, )y 18 a positive root not equal to «y, this number is non-negative.
Also
(N a0) = (oA +7),a0) =1 = —=(A+7,0) — 1 > 0.

Thus, A\* is dominant. 0

5.23. Lemma. (1) A root a € A(N,) satisfies m(a) = 0 if and only if o = «.
(2) Let A be a weight of the representation T \* 7 forp > 1, i.e.,
A=a—Bi—...— B (5.80)
where a, f; € A(Ny), Bi are all distinct. Then,

m(\) < 3—p m the cases I, 11
2 —p in the case I11.

If the equality takes place here, then m(a) = m(6§), one of B; coincides with ap, and
we have m(B;) = 1 for all B; # .

Proof. (1) If a does not coincide with the lowest root oy of 7, then there exists a sequence
of simple roots a;,, ..., a;, such that

a=(..((wg+0aj)+a,)+...)+a,

where any sum in parentheses is a root. In particular, we have that oy + o, € A(N,);
whence (ap, o) < 0, and «, is a neighbor of ay.

(2) The number m(\) attains its maximum whenever m(«a) is maximal (that is, when-
ever m(a) = m(6)) and m(f3;) are minimal (that is, = 0,1). Due to item (1), m(3;) =0
for only one root 3; = ap. Therefore,

m(\) < 2_<p_1):3—]9%nthecasesl, I
1—(p—1)=2—pin the case III,

and the equality takes place in the situation described above. 0]

5.24 Proposition (H?(M,Q' ® ©)). We have

g in the cases I, I,
0 wn the case 111,

HP(M, Q' ®0) =0 forp>2.

HY (M, Q' @ 0) ~ {
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Proof. The representation 7%7 contains a unique irreducible component with highest weight

)\0 =0 — Q. By (579),
)\8 = 0'0()\0 + ’Y) — v = 0'0(5 =0 — <(5, 040>C¥0.

In the cases I and II, \j = J is dominant. By Lemma 5.22, Ay + 7 has index 1, and, by
Bott’s theorem, we get a unique G-submodule of H'(M, Q! ® ©) isomorphic to g. In the
case I11, we have (g, ) = —1. Therefore, Ao + 7 is singular, and, by Bott’s theorem, our
component gives nothing to the cohomology.

Now, it suffices to prove that any non-dominant highest weight A of 7*7, such that
A + 7 is regular, coincides with Ag. Clearly, A = a — 3, where «, 8 € A(N,) for a # .
Since A does not contain «g, we have

-1
)\ = Z k’jOﬁj,
j=1

where k; € Z. Since A < a = 4, we have k; < ng, for j = 1,...,1 — 1. In particular,
m(A) < m(d). Since A is R-dominant, but not dominant, and A + ~ is regular, it follows
that (A, ap) < —2. On the other hand, (A, o) = —m(A), whence m(\) > 2. We see that
the case III is impossible and that in the cases I and II we have m(\) = m(d) = 2. Then,
Lemma 5.23(2) implies that 8 = «.

Thus, A = a — ag is the only expression of the weight A as a difference of two roots
from A(N,). It follows that the corresponding highest vector v € ny ® n_ has the form

V=e€4®e_q,-
But this vector cannot be a highest one if a # d. Thus, A = . O

The next proposition reduces calculation of H'(M, 2 ® ©) for p > 2 to the results of
Subsection 5.6, where its invariant part has been calculated.

5.25 Proposition (H'(M,Q ® ©) = HY(M, Q" ® ©)%). For p > 2, we have
HY (M, ®0) = H'(M,QF @ ©)°.
Proof. Let A be a highest weight of 7 A” 7* for p > 2. Then, A has the form (5.80). Hence,
A= (1-p)ag+ p, (5.81)
where o

p=> kjojforkj €Z, k; <ng, j=1,....1—1 (5.82)
j=1
Since 1 — p < 0, it follows that A is not dominant due to Lemma 5.22. Hence (A, ag) < 0.

But it is R-dominant, and hence A + v has index 1 if and only if A* = gg(A + ) — 7 is
dominant (see Lemma 5.21). Clearly,

A" =00 —ag = (p—2)ag + oop = (p — 2 — (p,a0))ao + p = (p — 2+ m(A\))ao + p.
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By Bott’s theorem we have to show that A* cannot be dominant and non-zero.
Suppose that the weight \* is dominant and non-zero. Then, by Lemma 5.21,

kj>0 forj=1,....,1—1; m(\)>2—p.

Applying Lemma 5.23(2), we see that the case III is impossible and that in the cases I and
IT we have m(A\) = 3 — p. Since m(A) > 0, it follows that p = 2 and m(\) = 1. Thus,

N=apg+pu, A=-—ap+p.

In the case II, we have m(\) = k; + ks = 2 which gives a contradiction. Now me must
consider the case I only.

Clearly, ag+ a1 = ogay is a positive root of G. Since A+~ has index 1 and (\, ap) < 0,
we get (A, ap + 1) > 0. On the other hand,

-1 -1
()\, (7)) + Oél) = (—Oé() + aq + Z kjozj, (7)) + O./l) = —2 + (041, ozl) + Z k:j(ozj, Ozl).

Jj=2 Jj=2

If [ > 3, we get (A, ap + ;) < 0 which is a contradiction. If [ = 2, then G is of type By,
and (A, ap + 1) = —1 < 0, too. O

5.26 Proposition (H?(M,Q" ® ©)). For p=2 orp > 4, we have
H*(M, Q" @ ©) = 0.

Also,
H*(M,Q*®0) = H*(M,Q* ® 0)°.

Proof. Let A be a highest weight of 7 A’ 7* for p > 2. Then, as in Proposition 5.26,
statements (5.80), (5.81) and (5.82) hold. Similarly, A is R-dominant, but not dominant,
and hence (A, ag) < 0. Suppose that the index of A+ is 2. As in the proof of Proposition
5.25,
oo(A+7) = (p—2+m(A)ao + p+ 7.

We have

(0'0()\ + ’)/), Oéo) = —(>\ + 7, CY()) > 0,

(co(A+17),05) = (A +7,0005) = (A+7,05) >0,

if a; is not a neighbor of ag. Since the index is equal to 2, oo(A + ) is regular and
non-dominant, and hence
(Go(A+7),01) <0

for a neighbor a; of agy. Then, the weight

A= 0'10‘0()\ +’7) -7
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must be dominant. Using (5.79), we get
N=({p—-24+m\)ag+ ((=p+2 —m(N) (o, a1) — (p,00) + k1 — Doy + !, (5.83)

where
-1
!
,u = E k?jOéj.
i=2

By Proposition 5.15, \* # 0, if p # 3. Suppose that \* # 0 for p = 3, too. Then, by
Lemma 5.21, all the coefficients in (5.83) are positive. In particular,

kj >0for j=2,...,0l—1and m(\) >2—p.

Applying Lemma 5.23(2), we see that the case III is impossible and that in the cases I and
IT we have m(\) = 3 —p.
Now consider the weight _

Clearly, X+ v is of index 1. As we saw, (X +7,a1) < 0, and hence oy is the only positive
root with this property. It follows from formula (5.79) that

A=ay+ p.

Therefore, _
(N ag) =2—m(\) =p—1.

To get a contradiction, we consider separately three cases.
1) Case II. We have, evidently, ko = ... = k;_; = 1, and hence

)\:040+(2—p)a1+a2+...+al,1.
Therefore,

(X ) 3 — 2p if oy corresponds to an end vertex of the Dynkin diagram,
Y o = .
! 2 — 2p otherwise.

Hence,

(X, a1) <0
for all p > 2. If p = 2, then the first case is impossible, because A+ v is singular. Now,
Nar+a)=p—-1)+2-2p)=1-p<0

for p > 2. This gives a contradiction.
2) Case I, the type of G is not C;. We have

A=ap+ (3—p)as + 1, (5.84)
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where y/ # 0 (since [ > 3) and oy is long. Hence,

-1

(3\, Oél) =5—2p+ ij(Oéj,Oél) < b —2p,

=2

and B
(N ag+ay) <4—p.
This gives a contradiction whenever p > 4.
If p =2, then B _
(A ao+a1) =1+ (A ar) < -1,

since (A, 1) < —2, and we get a contradiction as well.

For p = 3, the same argument shows that (X, ay) = —2. Then, we see from (5.84) that
there exists precisely one root a; (say, for j = 2) such that (a;,a1) # 0, and we have
ky =1 for (g, 1) = —1. Then, ag + a3z € A, and hence

0 S (X, o1+ OZQ) =-2+ (X, CYQ).

Thus, (X, as) > 2. But
-1

)\:Oéo—i‘@l—i‘ag—i‘ijOéj,
j=3

whence
-1

(X, 042) = 1+ ij(Oéj,Oég) S 1.

Jj=3

3) Case I, the type of G is ). Here, equality (5.84) holds as well, but «; is short.
Hence,

But in this case, ag + 207 € A(N,), and
(5\/, g + 2061) S 3 —Pp.

This gives a contradiction whenever p > 4. B B

On the other hand, (\,a1) < —2, whence (A, 1) < —1, and (A, ag + 2a1) < p — 3,
which gives a contradiction for p = 2. B

For p = 3, we see that the equality (A, 1) < —1 is compatible with (5.84) only for
2= ag for [ = 2. But then A = —2qy, and it is easy to see that in this case

—200 # a — ag — By — P for any «, By, B2 € A(N).
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5.26 Cohomology of 7 Summarizing the results of Subsections 5.6 and 5.32, we
now describe the structure of the cohomology H?(M,Q ® ©) for ¢ = 0,1,2 under our
assumptions about M.

5.27. Proposition. Suppose that M is a simply connected irreducible compact Hermitian
symmetric space of dimension > 2. The G-modules H1(M,QP ® ©) for ¢ = 0,1,2, are
listed in the following tables:

Case I:
P 0 1 2 3 4. ..
q
0 g C 0 0 0
1 0 g C 0 0
2 0 0 0 C* 0
Case 1I:
[ 0 1 2 3 4
q
0 g C 0 0 0
1 0o g € 0 0
2 0 0 0 C* 0
Case I1I:
D 0 1 2 3 4
q
0 g C 0 0 0
1 0 0 C 0 0
2 0 0 0 CFk 0

where we denote by C the trivial G-module and by g the adjoint one, and the number k is
to be found in Proposition 5.19.

Due to Proposition 3.3, this result permits us to describe H%(M,7,) for ¢ =0, 1, 2.

5.28 Theorem (The G-modules H(M,T,)). Suppose that M is a simply connected ir-
reducible compact Hermitian symmetric space of dimension > 2. The G-modules H1(M,T,)
for q =0,1,2, where T = Der ), are listed in the following tables:

Case I:
P —1 0 1 2 3 4
q
0 i*(g) I*(g) ®i*(C) I*(C) 0 0 0
1 0 i*(g) I*(g) ®i*(C) 1*(C) 0 0
2 0 0 0 i*(C*)  I*(CF) 0
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Case I1:
P -1 0 1 2 3 4
q
0 i*(g) I*(g) ®i*(C) I*(C) 0 0 0
1 0 i*(g) I*(g) ®*(C?) [*(C? 0 0
2 0 0 0 2*(@"7) l*((Ck) 0
Case III:
» —1 0 1 2 3 4
q
0 i*(g) I*(g) ®*(C) I*(C) 0 0 0
1 0 0 i*(C) I*(C) 0 0
2 0 0 0 i*(C) l*((Ck) 0

where we denote by C the trivial G-module and by g the adjoint one, and the number k is
to be found in Proposition 5.19.

Using Proposition 3.3, it is also possible to calculate the Lie bracket [—, —| for the part
of the algebra H"(M,T) that is described in Theorem 5.28. Here we calculate only the
adjoint operator ad ¢, where ¢ € H' (M, Ts).

Recall a result of Bott (see [4, Theorem I and Corollary 2 of Theorem W], and also [26])
that describes the cohomology of a flag manifold M = G/P with values in the sheaf of
holomorphic sections of a homogeneous vector bundle E — M in terms of the cohomology
of the Lie algebra n_. Suppose that E = E,, where ¢ is a holomorphic representation of
P. In contrast to Theorem 5.1, this description is valid for arbitrary .

5.29. Theorem. Let a holomorphic representation of G in a finite-dimensional vector
space V' be given. Then,

Homg (V, HY(M, E)) ~ HY(n_,Hom(V, E,))%, (5.85)

where the representation of n_ in 'V is the restriction of the differential of the given repre-
sentation of G, and that in E, is the restriction of .

Proof. oof (a sketch of) By the Dolbeault-Serre theorem, HY(M, E) can be identified with
the g-th cohomology of the complex (I'(M, ®%* ® £),d) of E-valued forms of type (0, *).
The vector space I'(M, ®%9® £) is the space of smooth sections of the homogeneous vector
bundle AYT% (M)* @ E, whose fiber at o can be identified with A“n* ® F,. By the
Frobenius reciprocity law,

q
Homy (V,T(M, 8" @ £) ~ Homy(V, /\ n* ® E,)

q
= Homp(V, \n* ® E,) = C*(n_, Hom(V, E,))".
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The isomorphism here is defined by the formula
h +— h, where h(v) = h(v)(0) for any v € V, (5.86)

and we denote by C?(n_, Hom(V, E,)) the vector space of ¢g-cochains of the Lie algebra n_
with values in Hom(V, E,). Passing to the cohomology, we get the isomorphism (5.85).
U

5.30. Proposition. Let ¢ =1*([0]) € H' (M, Tz), where [0] € H'(M,Q? ® ©) is the coho-
mology class of the form 6 € T'(M,®*! ® ©)X. The map ad; : H*(M,T_1) — H' (M, T1)
15 as follows:

(1) an isomorphism of the G-modules
H(M,T_,) =i (H°(M,0)) — I"(H'(M,Q' @ 9))
for any 0 # 0 in the case I and for any 0 = afy + by, where a # 0, in the case II;
(2) 0 for 8 =bn in the cases II and III.

Proof. For any w € g we have, by (3.28),

[1(0), i(w)] = [i(w), 1(0)] = 1(6 A w) — i([w, 0]).

Since 6 is K-invariant, we see that [w, 6] = 0. By Proposition 3.3, [I*([0]), *(w)] is deter-
mined by the cocycle [(§ A w). Thus, our problem is reduced to the study of the mapping

H°(M,0) — H'(M,Q' 2 0)

defined on the cochain level by w +— 6 A w. Recall that the form 6 A w € T'(M,®!! ® ©)
is given by the formula

(O A w)(u,v) = 0(w,u,v) for u € O,v € O.
We will use the isomorphism
Homg(g, H'(M, Q' ® ©)) ~ H'(n_, Hom(g,n*. ® ny))"* (5.87)

that follows from (5.85) if we identify the fiber E, of the bundle E = T(M)* ® T(M) with
n} ®n,. As it was noticed above, this isomorphism on the cochain level is determined by
(5.86). Let

h:g—T(M,o" ®0)(=T(M "0 e 0))

be given by the formula hA(w) = 8 A w. Then, h determines the mapping

h:g— (n.®n)®n, =Hom(nh; ®n_,n,)
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given by the formula
h(w)(u,v) = 0,(7(w),u,v), ueEn, forven_,

where we identify the value w(o) of the vector field w at o with 7(w), where 7 : g — n,
is the projection along p in the decomposition (5.54). In order to interprete h(w) as an
element of
n* ® (n} ®ny) =Hom(n_,n} ®ny),
we choose a basis ey, ..., e, of ng and denote by e, ..., e, the dual basis of n,. Then,
hw)(v) = er @ h(w)(u,v) =Y _ e @ Oy(m(w), e;,v), vEn_.
i=1 i=1

Now, this form is viewed as the following cochain ¢, € C*(n*, Hom(g,n_ @ ny)):
co(v)(w) =Y e ®b,(m(w),e;,v), vEN, wEg. (5.88)
i=1

This cochain is an R-invariant cocycle of n_, and we have to understand what is its
cohomology class. By Proposition 5.27, we have

C in the cases I, II,

H'(n_,Hom(g,n* ®n,))" ~
( (g, 0% +)) 0 in the case III.

It is convenient to identify n with n_ using the Killing form. Then, we have to
consider the cochain complex C*(n_, Hom(g,n_ ®n,))%, §). Let us describe the space of
1-coboundaries 6C°(n_, Hom(g,n_ ® n,))%. Clearly,

Co(n—v Hom(g,n_ ® n-i-))R = HOHIR(g,n_ ® I'l+).
For any ¢ € Hompg(g,n_ ® ny), we have dc(y) = yc for any y € n_, i.e.,

de(y)(z) = c([y,z]), foranyyen_, z € g,

since dr(n_) = 0. Clearly, [n_,g] = n_ @ t. Since ¢ is a homomorphism of R-modules,
it follows that (dc)(n_)(g) is contained in the vector subspace of n_ @ n, spanned by all
e_q ®eg, where o, f € A(Ny) and § —a € A(R) or a = f3.
In the cases I and II this subspace does not coincide with n_ & n,, i.e., there exist
a, € A(N,) such that 5 —a ¢ A(R) and a # (. Indeed, we can take f = 0 and o = «y.
Suppose that § = 6,. By (5.88),

n

Co, (V) (w) = Z@Z ® ((es, v)m(w) = (w(w), v)e;)

— Z(ei, v)ef @ m(w) — (m(w),v) Z e ® e

=v@n(w) - (r(w),v) Y e @e

i=1
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In particular,
Co, (e—ao)(e5) = €_qy @ €s.

It follows that cp, ¢ 6C°(n_, Hom(g,n_ ® n;))®. Thus, § = 6, defines a non-zero homo-
morphism in the cases I and II.

Now consider the case 1, i.e., suppose that M = Gr7(C), where 1 < s <n—1. We will
use the notation of Example 5.11. Then, n, and n_ are the following subspaces of gl (C):

n,=(Ep|l1<i<s, s+1<8<m),

. (5.89)
n_=(E,|ls+1<a<m,1<j<s).

Here, E,; = E7, form the basis dual to Ej,. If 0 = 7, then the cochain (5.88) has the form
Z Eui @ (Eiuum(w) — m(w)vE,).
We write v = ) 5. v5;Epj, m(w) =3 _;5w;sEjs. Then,

Eiqum(w) = Eia()_ vgjw;p) Epp = Z VajWipEip,

Bip
( )UE'La = E w]pvpk jkEza: E w]pvpz ja
Jkp
Hence,
E :Ecw®§ :Uaawjp ip E :Ew@ E :wjpvm jo-
tjop ijap

Consider the 0-cochain ¢ € HomR(g[n(C), n_ ®ny) given by the formula

() = e(n) =0,
c(Eyj) = Z E,; @ Eip,

p

C<Eaﬁ) = Z Eor ® Eyp
k

and restrict it to g = sl,,(C). Then, for any v € n_ and w € g, we have
de(v)(w) = c(fv,w]) = e([v, T(w)])
= C(Z VajWipLap — Z VpiW;pEji)

Jap ijp
= VajwjpEak ® Egp — Y 0pijpFai ® Ejo
Jkap ijap

= ¢,(v)(w).

Thus, ¢, = dc, and 1) defines the zero homomorphism. Evidently, this implies the statement.

O
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5.31. Proposition. Let M = Gr? for 2 < s < n—2, and let 0,p € (M, d>! @ ©)K.
Ifn > 5, then O A = 0 implies § = 0 or ¢ = 0. For M = Gr3, the only solutions of
O~ @ =0, up to a constant factor, are 0 = /20, + 1, ¢ = 6> + /2.

Proof. By (5.67),
Oy A Oy = 205.

From (5.72), (5.73), and (5.74) we easily deduce the following relations:

02 A = 2(n1 + 1m2),
N A 0Oy =4n,

nAnN = 4ns.
Write 6 = afy + bn, ¢ = cby + dn with a,b,c,d € C. It follows that
0 N = 2acls + 2adm + 2(ad + 2bc)ny + 4bdns.
Suppose that 3 < s <n — 3. By Lemma 5.12, 6 A ¢ = 0 yields
ac = ad = ad + bc = bd = 0.

Clearly, this implies (a,b) = 0 or (¢, d) = 0.
If n—s=2and s> 3, then, by (5.75),

O N =2(ac—bd)03 + 2(ad — bd)n; + 2(ad + 2bc + 2bd)n,.

By Lemma 5.12, 8 A ¢ = 0 yields ac — bd = ad + bd = ad + 2bc + 2bd = 0. Clearly, this
implies (a,b) = 0 or (¢,d) = 0. The case s =2, n — s > 3 is considered similarly.
Suppose now that n =4 and k = 2. It follows from (5.77) that

O A @ =2(ac —bd)0s + (ad — 2bc)n;.
If 0 Ao =0, then ac — bd = ad — 2bc = 0. If (a,b) # 0, then this implies

C —d ) 2
d _QCI = —2c"+d" =0,
whence d = ++v/2¢. If (¢,d) # 0, then a = +/2b. O

5.31 Non-split supermanifolds In this subsection, we apply our results to the prob-
lem of classification of non-split supermanifolds. Theorem 5.28 implies that the split su-
permanifold (M, Q) satisfies the conditions of Theorem 4.6. Thus, in this case the mapping

Ay HY (M, Aut(Q0) — H' (M, T3)

is bijective. By Theorem 4.1, we can parametrize non-split supermanifolds with retract
(M, ) (up to isomorphism) by orbits of the group Aut T(M)* in H'(M,T;) \ {0}. By
Propositions 5.25 and 5.9, one can identify H'(M,T;) = I*(H'(M,Q*®©)) with the vector
space of K-invariant vector-valued (2,1)-forms I'(M, ®*! ® ©)% using the Dolbeault—Serre
isomorphism. We use this parametrization in the statement of the following classification
theorem.
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5.32. Theorem. Suppose that M is a simply connected irreducible compact Hermitian
symmetric space of dimension > 2.

1) If M is of type I or III, then there exists (up to an isomorphism) precisely one
non-split supermanifold with retract (M,<)), namely, the canonical one. The cor-
responding invariant vector-valued (2,1)-form is the form 0y given by the formula
(5.65), w being determined by (5.68).

2) If M =Grl, 1 <s<n—11isof type 11, then non-split supermanifolds with retract
(M, Q) are parametrized by CP* /%, where

Z:{Zg ifn=2s

{e} otherwise.

The corresponding invariant vector-valued (2, 1)-forms are afy+bn, where n, is given
by the formula (5.71) and a,b € C serve as homogeneous coordinates in CP'. For
n = 2s, the action of the generator o of X is expressed in these coordinates as follows:

ola : b)=(a: —b).
Proof. Similarly to the proof of Theorem 5.6, we have
(H'(M, T5) \ {0})/ Aut T(M)* =P(H' (M, T3))/% = P(T(M,2*' © ©)")/%.

Then, one applies Proposition 5.17.

Suppose that M = Gr? for s > 2. It is known (one deduces this from [38, S 15,
Theorem 3]) that the generator o of 3, being regarded as a biholomorphic transformation
of M, acts as follows:

o(gP) = A(g)P, g € G = SLy(C),

where A is the automorphism of GG given by the formula
_ 0 Is Ty—1 0 Is
10 =7 ¢ (7 6)
We easily check that the automorphism d.A acts on ny by

dA(u) = —u', u€ng.

By formula (5.71),

TIO(_UI’ _u;—’ _UT) = 77(1417 Uz, U)T‘
Therefore, 0*n = —n. Clearly, 0*0y = 6. Thus, o*(aby + bn) = aby + (—b)n. O

Comparing Theorem 5.32 with Theorem 5.6, we see that the construction of Subsec-
tion 5.6 gives all non-split supermanifolds with retract €2 in the cases I and III, while this
is not true in the case II (one uses Proposition 4.14, see Example 5.10).
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Let us now fix a non-split supermanifold (M, Q) with retract (M,$2), where M is
a compact irreducible Hermitian symmetric space. Changing the notation, we will denote
by T the tangent sheaf Der O of (M, ), setting Ty, = Der Q. Our goal is to calculate
the cohomology groups H?(M,T) for ¢ = 0,1. These groups depend on the non-zero
form 6 € T'(M, ®*' ® ©)X which parametrizes the supermanifolds (M, Q), as it has been
described above.

5.33. Theorem. Let M be a simply connected irreducible compact Hermitian symmetric
space of dimension > 2. Let (M, Q) be a non-split supermanifold with retract (M,<Q), the
tangent sheaf T, and the corresponding vector-valued form 6 € T'(M, ®*! @ ©)X.

(1) Let M be of type I and 6 = 0y, where w is determined by (5.68). Then,
H(M,Tg) =0(M,0); ~ g (as Lie algebras),
while (as g-modules)

HO(M77—T) = U(M, O)i ~C
HY (M, T)=H'(M,T5) ~ g.
The basic element d € v(M, O)y satisfies [d,d] = 0.
(2) Let M be of type II, i.e., M = Gr? for 2 < s <n-—2, and 0 = aby+ bn, where a # 0.
Ifn > 5, orn =4 and (a,b) is not proportional to (/2, 1), then HO(M,T) is as

in (1), while
HYM,T)=H"(M,T;) ~g®C (as g-modules).

(3) Let M = Grj, 0 = /20, + 1. Then, H*(M,T) is as in (1), while (as g-modules)
HY(M,T5) ~g&C,
H'(M,T;) ~C
(4) Let M be of type II and 8 =n. Then,
H(M,Tg) =0(M,0)y ~ g (as Lie algebras),

while (as g-modules)
HY(M,T7) =v(M,0); ~g&C,
H'(M,T;) ~gC,
H'(M,Tr) = g.

(5) Let M be of type III, i.e., M = CP"" " forn >3, and 0 = 0, = 1. Then, H*(M,T)
is as in (4), while (as g-modules)

0 forn >4,

1 gl -\~
H(M’T)_H(M’ﬂ)_{c forn = 3.
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5.32.1 Comment and Open problem. Due to the isomorphism between gr, H(M,T)
and EP27P_ in the proof we need H?(M,T) only for ¢ = 0 and 1, so for our purposes it is
not necessary to compute EP47? for ¢ = 2 for any p. Therefore, some terms (denoted by
77”7 in the tables below) remain unknown and should be calculated for completeness.

Proof. Consider the spectral sequence (E,) associated with (M, O) due to Theorem 4.20.
By this theorem, E}*? = HY(M, (T4),) and dy = adj([]), where [0] € H'(M,Q* @ ©)¢
is the cohomology class of 6. Clearly, d, is G-equivariant.

We are going to calculate dy on EN?? for ¢ = 0,1. The case ¢ = 0, p = —1 is settled
by Proposition 5.30. In the case where ¢ = p = 0, we see that

(161, L)) = (16, 0]) = ({6, v]]) = 0,
[(161), €] = =207 (19))-

Clearly, dy(EY") = do(Ey~") = 0. The mapping dy : By — E3° is 0, too, since E3°
is a trivial G-module. Similarly, dy = 0 on I*(H'(M,Q' ® ©) C E,”.
Now, for any ¢ € I'(M, ®*>! @ ©)% we have

[1(0), i(@)] = [i(0), L(O)] = L0 A ),

due to (3.28), since [p, 0] = 0 by Proposition 5.9. By Theorem 4.13, doi*(p) = I*([0 A ¢]).
This class can be calculated with the help of Proposition 5.31 (note that, by Theorem 5.29,
the forms v/26, £ 7 determine isomorphic non-split supermanifolds). This settles the case
p=q=1

Summarizing, we see that the terms EY? " = E7? for ¢ = 0, 1,2, are as follows (for
the definition of s, see (5.89)):

Case I, 0 = 0,:
p -1 0 1 2 3 4
q
0 0 g C 0 0 0
1 0 g 0 0 0 0
2 0 0 0 7?7 Ct 0

» -1 0 1 2 3 4. ..

O~ O |
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Case II, 0 =n:
D -1 0 1 2 3 4
q
0 g g C 0 0 0
1 0 g g C 0 0
2 0 0 0 7 Co? 0

Caselll, n>4,0=0,=n:

» -1 0 1 2 3 4..
q
0 g g C 0 0 0
1 0 0 0 0 0 0
2 0 0 0 ? 0 0

Caselll, n=3,0=0,=n:

P 10 1 2.
q
0 g g C 0
1 0 0 C 0
2 0 0 0 0
Clearly, for ¢ = 0,1 we have dy = dg = ... = 0, and hence EY"? = EP47P for all p > 0.
This implies our theorem. 0

5.34. Corollary. Under assumptions of Theorem 5.33, we have

In the cases (1), (2), (3), o(M,0) = v(M,O)y, and the supermanifold (M,O) is not
homogeneous. In the remaining cases, v(M, O) # v(M, O)(q).

Proof. The claims about v(M, O), are implied by the calculation of the spectral sequence
(E,). It follows that v(M,O); ~ g.

In the cases (1), (2), (3), we see that v(M,O) = v(M, O)). Therefore, ev,(v) = 0 for
all v € 0(M,0)i, x € M, and hence (M, Q) is not homogeneous. O
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6 The II-symmetric super-Grassmannian
nin

s defined in Example 2.9. Its reduction is the subman-

Consider the supermanifold IT Gr

ifold M of Gr” x Gr” consisting of the vector subsuperspaces L C C"" of dimension s|s
satisfying L7 = II(Lg). Projecting M onto the first factor, we identify this manifold with
Grl. Denoting » = n—s, we suppose that r, s > 1. Assume that II is given in the standard

basis by the matrix
0 I,
- (n, §)

and define local coordinates in a neighborhood of the point 0 = {(€,41,...,€,, f1,..., fs) In
M identified with {(e,,1,...,e,) € Grl. Clearly, the subsupermanifold IT Gr?ﬂf of Grz“: is
defined in terms of the coordinate matrix (2.14) by the equations

Y=X, H==Z.

Thus, the coordinate matrix has the form

X E
I, 0

z=12 +| (6.90)
0 I,

where X and = are (r X s)-matrices. Denoting X := (z;4) and Z := (&), we get the even
local coordinates x;, and the odd ones &, 1 <7 <7r, 1 < a < s, in a neighborhood of
the point o.

Denote by @, (C) the subsupergroup of GLy,,(C) that preserves II. Its coordinate

matrix has the form
A B
( B A) , (6.91)

where A and B are (n x n)-matrices of even and odd coordinates, respectively, det A # 0.
The reduction Gy of Q,(C) can be identified, in an obvious way, with GL,(C). The
Lie superalgebra g, (C) of @, (C) consists of all complex matrices of the form (6.91) with
arbitrary (n x n)-matrices A and B, and its even part go can be identified with gl,(C).

The supermanifold II Gr:||: admits the standard action of @,,(C), which is expressed in
coordinates as the multiplication of Z from the left by the coordinate matrix (6.91). This
action induces, clearly, the standard transitive action of the Lie group Gy = GL,(C) on
M = Gr?. Let P denote the isotropy subgroup of G at the point o € M; it consists of all
matrices of the form (4.7). We will use the notation introduced in Example 5.11.

Let us denote by a +— a* the differential of the standard action of @, (C) on I Gr™"

s|s -
This is a homomorphism of the Lie superalgebra q,,(C) into the Lie superalgebra v(II Gr:’“s")
of holomorphic vector fields on II Grz“:. In what follows, we need the expression of this

homomorphism restricted to p. The holomorphic vector fields on II Grg“: will be written in
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terms of the local coordinates in a neighborhood of o given by the matrix (6.90). Denote
the elements of p by

alz(“g) g),a2:(8 <bgﬂ>>’”:(<v2j> 8)’

where (a;;) € gl,(C), (byg) € gl,(C), and (v,;) is an (s x r)-matrix. We want to calculate
the corresponding fundamental vector fields.

Clearly,
A 0 0 O X = A X A=
0 I, 0 O I, 0 | I, 0
0 0 A O = X | AZ AKX
0 0 0 I 0 I 0 I

By substituting A; = expta; with ¢ € C, by differentiating at ¢ = 0 and changing the
signs, we get
a1 (%ia) = —(01X)ia, 0](&ia) = —(a1Z)ia, (6.92)

where we identify a; with (a;;). Similarly, we find that

I. 0 0 0 X = XA;Y =AY
0 A, 0 O I, 0 I 0
0 0 I, 0 = X AT XA
0 0 0 A 0 I 0 I,
whence
a3(Tia) = (X@2)ias a5(&ia) = (Ea2)ia; (6.93)
where we identify ay with (bss).
Further, for any t € C, we get
I. 0 0 0 X = X =
tv I, 0 O I, 0O I, +tvX tv=
0 0 I, 0 = X = X
0 0 tv I 0 I tv= I +tvX
Multiplying the result from the right by
L+tvX w2 \ ' [(L—twX+... —tvZ+...
= I, +tvX o —twE+... L —twX+...)’

where the omitted terms are of order > 1 in ¢, we get the matrix

X —t(XoX +Z0E)+... Z—t(EvX + XvZ)+...
I 0
E—t(EvX + XvE)+ ... X —t(XvX +EvE) + ...
0 I,
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Therefore,
V(i) = (XX 4 Z0E)jq,
v

(i) = (E0X + X0E)a, (6.94)

where we identify v with (v,;).
From (6.92), (6.93), and(6.94) we get

6.1 Proposition (Explicit formulas of vector fields). We have

GT == Z Zazkxkaa Z Zazkgka i

i,k=1 a=1 i,k=1 a=1

0= 30 bsarisy + 30 S bsubisy

a,B=1 i=1 aB=1 i=1

i} T S a
V=) ) (wismjn + Eipja) 5

1,7=1 a,5=1

+ > > vgi&ismia + miﬁﬁja)%
i,j=1 a,B=1

Let O denote the structure sheaf of the supermanifold II Grn|n
G on (M, ©) determines a linear representation of the group P by automorphisms of the
superalgebra O,, which gives a linear representation x = xg+ x1 of this group in T,(M, O),
called the isotropy representation. Proposition 6.1 easily implies its explicit expression.

Indeed, denote the tautological representations of GL,(C) and GL(C) by p; and po,
respectively. Let m, be the linear span of germs at o of all coordinate functions x4, &;a
in m,. Then, m, = m, & m2. As Proposition 6.1 shows, v*(m,) C m?2 for all v € n_,
and hence n_ trivially acts on m,/m2. The same proposition implies that m, is invariant
under t (or R), inducing in both components (m,)s and (m,)7 the representation p; ® po
of R.

As in Example 5.11, we consider the maximal algebraic torus 7" of R and G| consisting
of all diagonal matrices. We will write the matrices of the corresponding Cartan subalgebra
t in the form

Clearly, the action of

H = diag()\l,. . '7At7)\t+15 . 7/\71)’ )\’L e C.

Proposition 6.1 also implies that the germs of ;,, &ui, 7Mia form a weight basis for the
representation x* in m, =~ m,/m? with respect to T, the corresponding weights being
—X\i + Mga, where 1 < i <r, 1 <a <s (with multiplicity 2). Thus, we got

6.2. Proposition. (1) The isotropy representation x is completely reducible, and the
restrictions of its even and odd components onto R are as follows:

Xolr = X1lr =~ p1 @ p5.
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(2) The germs of Tia, & form a weight basis with respect to T in their linear span
m,, the corresponding weights being in both cases —\; + Ai1o, where 1 < i < 1 and
1<a<s.

Note that yg coincides with the isotropy representation 7 of the homogeneous space
Gr2(C) (see (5.70)).

Clearly, the action of G on the sheaf O leaves invariant the filtration (2.12) and induces
an action of this group on the locally free sheaf £ = /2, and hence on the corresponding
vector bundle E, covering its standard action on M. Thus, E is a homogeneous vector
bundle over M.

6.3. Proposition. The vector bundle E is isomorphic to the cotangent bundle T(M)*.
The retract of the super-Grassmannian (M, Q) is isomorphic to the supermanifold (M, Q)
from Example 2.7.

Proof. By Proposition 6.2, the representation of P in E, = T,(M, O); is isomorphic to 7*.
Hence, E ~ E,. = (E,)* ~ T(M)". O

Next, I want to prove that our super-Grassmannian is, as a rule, non-split. Note
that the canonical action of Gy on (M, Q) gives rise to a natural linear action of this
groups on the tangent sheaf 7 leaving invariant the Zs-grading. As a result, we get
a linear representation of GGy in the cohomology groups of 7 and, in particular, in the Lie
superalgebra v(M, Q). The corresponding linear representation of the Lie algebra g is
given by the formula u — ad,.

6.4. Proposition. Ifr > 2 or s > 2, then v(M, O)(—?O = 0.

Proof. Any 6 € v(M, O)GGO determines a P-invariant even derivation of the superalgebra
O, (we denote it by the same character ), Clearly, § preserves the maximal ideal m,.
Consider the vector subspace m, C m,, spanned by the germs of local coordinates at o. By
Proposition 6.2, R preserves the even and the odd parts of this subspace, inducing in each
part an irreducible representation, and the germs of local coordinates constitute a weight
basis of m, with respect to T with the weights —\; + A4, where 1 <i <rand1 < a <s.
Note that the remaining weights of the representation of R in the whole m, are certain
sums of these weights, and hence we see that the weight subspace of m, corresponding to
any of these weights is two-dimensional (and lies in m,). Since § is even and P-invariant,
the germs of local coordinates are eigenvectors for 9. Moreover, the Schur lemma implies
that

5(-771'04) = ATq;, 6(52&) = bgiou
where a,b € C. We have a = 0. Indeed, consider the vector field & = g¢(8) € v(M, gr O),
(see Subsectiog 3.1). Clearly, ¢ is Gy-invariant, too, and hence determines the G-invariant

vector field a(9) (see (3.21). But it is well known (see, e.g., [38]) that the standard action of
GL,(C) on M is asystatic, i.e., M has no non-zero holomorphic Gg-invariant vector fields
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(for the origin of the term asystatic, see [15*, 16*] and interesting references therein). This
implies that §(x;, + J) = 0. Therefore, §(x;,) € J?, whence a = 0. Now we prove that
b = 0, using the relation [§,v*] = 0 for all v € n_. Proposition 6.1 implies that

0=1[0, By 1 1](712) = 6(Ey, 1 (712)) = 6(§11612) = 20611610

This implies our assertion whenever s > 2. To prove the assertion for r > 2, one takes xq;
instead of xs. OJ

This result makes it possible to solve the splittness question concerning the super-
Grassmannians studied here.

6.5 Theorem (On splitness of HGrz“:). The super-Grassmannian HGrZ“:’ is split if
and only if n =2 and s = 1.

Proof. Consider the grading derivation € of the Z-graded sheaf gr O defined in Subsec-
tion 3.2 and the natural homomorphism of Lie superalgebras oo : HY(M, T5) — H°(M, T)
defined in Subsection 3.1. Proposition 6.4 implies that ¢ ¢ Im o whenever s > 2 or r > 2.
Indeed, if € = 0¢(d), where § € H°(M, Tg), then the complete reducibility of the represen-
tation of Gy in H°(M, Tg) implies that ¢ can be chosen to be Gy-invariant. But then § = 0,
whence € = 0, which gives a contradiction. If (M, Q) is split, then o is an isomorphism,
but this is false whenever s > 2 or » > 2. In the case n = 2, s = 1, we can see that the
super-Grassmannian is split, e.g., by calculating its transition functions. 0

An important property of II Gr:||8" is the homogeneity, which we are going to prove now.

6.6 Proposition (II Gr’:l': is homogeneous). (1) The canonical action of ¢,(C) on

the supermanifold I1 Grg“s" is transitive.
(2) The kernel of this action is (In).

Proof. To prove (1), we have to calculate the vector fields y* corresponding to certain odd

elements of q,,(C). More precisely, take the matrix y = (g g) € 4,(C)1, where

0 Y
o=(o0)

Y = (yia) being an (r x s)-matrix. Denoting by 7 an odd parameter, we get

X = X E+71Y
L, B\ L ol | I 0
<TB In> = X| |+ X
0 I 0 I
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It follows that 5
y* = - Z yw‘@&i

Clearly, ev,(y*) span the vector space T,((M, ©));. Since our action is O-transitive, its
transitivity follows from Proposition 3.4(2).

Let us denote by q the kernel of our action. We see from Proposition 6.1 that I, € .
Since go = gl,,(C) acts on M in the standard way, it follows that q N go = ([,). But it is
known (see, e.g., [24]) that the only ideal of g, (C) containing (I,,) is

54, (C) = {(é i) tr B = O} :

As we have seen above, q # sq,,(C). Hence, q = (). O

Now we are able to prove our main result concerning II-symmetric super-Grassman-
nians.

6.7. Theorem. Let (M,0) = HGYZ”: andn > 3.

1) In the classification of non-split supermanifolds with retract (Gr";, Q) given by The-
orem 5.29, (M, O) corresponds to the invariant (2,1)-form 7.

2) The natural action of the Lie superalgebra q,(C) on (M,QO) determines an isomor-
phism of Lie superalgebras

(M, 0) = pgu(C) := q.(C)/{Lnjn)-

3) If2>s>mn—2, then
H'(M,Tg) ~ sl,(C) ® C,
HY(M,T7) ~ s, (C).

4) If s=1 orn—1, then

1 1 )0 jorn >4
HAM,T) = H (M, Th) = {C forn=3
Proof. By Corollary 4.2, the supermanifold corresponding to the form afy 4+ bn in the case
IT cannot be homogeneous if a # 0. By Proposition 6.6(1), this implies (1).

By Proposition 6.6(2), the natural action of q,(C) on (M,O) induces an injective
homomorphism ¢,,(C)/(L,,;n) — v(M, O). Comparing this with Theorem 5.33(4), we see
that this homomorphism is surjective. Thus, (2) is proved.

The assertions (2) and (3) follow from (1) and Theorem 5.33. O

Theorems 6.7(1) and 5.29 imply
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6.8 Corollary (A family of deformations of II Gr:\‘:)- The supermanifold 11 Grg“:’ for
2 < s<n-—2isincluded in a 1-parameter family of mutually non-isomorphic supermani-
folds with the same retract. In particular, it is not rigid.

To conclude, we note that these properties of the II-symmetric super-Grassmannians
contrast with the rigidity of certain other series of super-Grassmannians (see Examples
2.7, 2.8, 2.9). Let us denote by (M, O) one of these super-Grassmannians, by (M, Og,) its
retract and by 7, T the corresponding tangent sheaves.

6.9 Theorem (Rigid super-Grassmannians). Suppose that (M, Q) is one of the fol-
lowing supermanifolds:

Grz||lm with 0 <k <m, 0 <l <m,
(k,1) A2(1,n—1), (m—1,1), (1,n—2), (m—2,1), (2,n—1), (m—1,2);
1G> with r > 2, (r,s) #(2,1);

2s|s

Toaa Gr;L":_S with 4 <s<n-—3.

Then, (M, Q) is the only non-split supermanifold with retract (M, Og) and, moreover,
(M, ) is rigid.

Proof. 1t is known that in all the cases listed above we have

C iftp=2
Hl Ma Tr ==
(M, & )p) {O otherwise

(see [37, Theorem 1] for (M,0) = Grzm, 43, Theorem 1] for (M,0) = IGrI", [44,

2s|s?
Theorem 1] for (M, 0) = Ioqq Grg||:_s. Moreover, it was proved in these papers that the
supermanifolds (M, Q) are non-split. By Proposition 4.8, (M, Q) is the only non-split
supermanifold with retract (M, Oy, ), and the corresponding class A}(7) is a basic element
of HY(M, (Tg)2). As in the proof of Theorem 5.33, we have da(g) = —2X5(7) in the spectral
sequence (E,). Theorem 4.20 implies that H'(M,T) = 0, and hence (M, O) is rigid. (The

vanishing of H*(M,T) was proved in the cited papers as well.) O

Note that the super-Grassmannians listed in Theorem 6.9, together with the [I-symmet-
ric super-Grassmannians, are just the supermanifolds of flags that can be called symmetric
superspaces (see [49]).
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