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Quasi Yamabe Solitons on 3-Dimensional Contact Metric
Manifolds with Qϕ = ϕQ

V. Venkatesha and H. Aruna Kumara

Abstract. In this paper we initiate the study of quasi Yamabe soliton on 3-dimensional
contact metric manifold with Qϕ = ϕQ and prove that if a 3-dimensional contact
metric manifold M such that Qϕ = ϕQ admits a quasi Yamabe soliton with non-zero
soliton vector field V being point-wise collinear with the Reeb vector field ξ, then
V is a constant multiple of ξ, the scalar curvature is constant and the manifold is
Sasakian. Moreover, V is Killing. Finally, we prove that if M is a 3-dimensional
compact contact metric manifold such that Qϕ = ϕQ endowed with a quasi Yamabe
soliton, then either M is flat or soliton is trivial.

1 Introduction

The concept of Yamabe flow was introduced by Hamilton at the same time as the
Ricci flow [13] as a tool to construct Yamabe metrics on compact Riemannian manifold.
On a smooth Riemannian manifold, Yamabe flow can be defined as the evolution of the
Riemannian metric g0 in time t to g = g(t) by means of the equation

∂

∂t
g = −rg, g(0) = g0,

where r denotes the scalar curvature corresponds to g. The significance of Yamabe flow
lies in the fact that it is a natural geometric deformation to metrics of constant scalar
curvature. The Yamabe flow is equivalent to Ricci flow when the dimension is 2. However
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in dimension greater than 2, the Yamabe flow and Ricci flow are different in their properties,
since the first one preserves the conformal class of the metric but the Ricci flow does not
in general. A Yamabe solitons corresponds to self-simillar solution of the Yamabe flow and
it is defined on Riemannian manifold (M, g) by a vector field V satisfying the equation [1]

1

2
LV g = (r − λ)g, (1)

where LV denotes the Lie derivative in the direction of the vector field V and λ is a real
number. A Yamabe soliton is said to be expanding, steady, or shrinking, respectively, if
λ < 0, λ = 0, or λ > 0. In [8], Chen and Deshmukh introduce the concept of quasi Yamabe
soliton. A smooth Riemannian manifold (M, g) is said to be a quasi Yamabe soliton if it
admits a vector field V such that

1

2
LV g = (r − λ)g +

1

m
V # ⊗ V #, (2)

for some constant m, where V # is the dual 1-form of V . The vector field V is called
a soliton vector field for quasi Yamabe soliton. Note that if m → ∞, the equation (2)
defines a Yamabe soliton. So, the quasi Yamabe solitons are natural extension of the
Yamabe solitons. When the vector field V is gradient of smooth function f : M → R, the
equation (2) becomes

Hessf = (r − λ)g +
1

m
df ⊗ df, (3)

where Hessf denotes the Hessian of f and in this case f is called potential function of
the quasi Yamabe soliton and g is called quasi Yamabe gradient soliton and this concept
was introduced by Huang and Li [15]. When f is constant function, we say that (M, g) is
a trivial quasi Yamabe gradient soliton.

There are several works on Yamabe flow and quasi Yamabe flow by Barbosa and Ribeiro
[1], Brendle [5], Bruchard et al. [6], Hsu [14], Daskalopoulos and Sesum [9], Neto and Pina
[17], Ma and Cheng [18], Ma and Miquel [19], Cao et al. [7], Blaga [4], Chen and Deshmukh
[8], Pirhadi and Razavi [20], Wang [25], Yang and Zhang [26] and many others. In the
background of contact geometry, Yamabe solitons were first studied by Sharma [21] in
3-dimensional Sasakian manifold. Then these are studied by Wang [24], Suh and Mandal
[22] and Erken [11].

Recently, the present first author with Naik studied the Yamabe soliton on 3-dimension-
al contact metric manifold with Qϕ = ϕQ in [23] and generalized the result of Sharma [21].
In Sasakian manifold the Ricci operator Q commutes with the fundamental collineation ϕ;
but in contact metric manifold this commutativity need not hold. In this paper, we start
a study of quasi Yamabe soliton on 3-dimensional contact metric manifold with Qϕ = ϕQ
and first we prove the following:

Theorem 1.1. If a 3-dimensional contact metric manifold M such that Qϕ = ϕQ admits
a quasi Yamabe soliton with non-zero soliton vector field V being point-wise collinear with



Quasi Yamabe Solitons on 3-Dimensional Contact Metric Manifolds with Qϕ = ϕQ 193

the Reeb vector field ξ, then V is a constant multiple of ξ, the scalar curvature is constant
and the manifold is Sasakian. Moreover, the soliton vector field is Killing.

Next, we consider a 3-dimensional compact contact metric manifold with Qϕ = ϕQ
and prove

Theorem 1.2. If a 3-dimensional compact contact metric manifold M with Qϕ = ϕQ
admits a quasi Yamabe soliton, then M is a flat or soliton is trivial.

2 Preliminaries

In the present section, we shall collect some fundamental results on contat metric
manifold (for more details see [2]) which will be used to prove our results. A detailed
study on contact metric manifolds under various condition are available in [10], [12], [16],
[23], [24] and references therein.

Let M be a smooth differentiable manifold of dimension (2n+ 1). If on M there exist
a (1,1)-type tensor field ϕ, vector field ξ and 1-form η such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (4)

then we say that the triplet (ϕ, ξ, η) is an almost contact structure on M , and ξ is called
the characteristic or the Reeb vector field. It follows from (4) that ϕξ = 0, η ◦ ϕ = 0 and
rank(ϕ) = 2n. In general, a smooth manifold M with such a structure is called an almost
contact manifold which is denoted by (M,ϕ, ξ, η). It is well known that a smooth manifold
M admits an almost contact structure if and only if the structure group of the tangent
bundle of M reduces to U(n) × 1. If an almost contact manifold admits a Riemannian
metric g such that

g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ), (5)

for all vector fields X, Y on M , then g is said to be compatible with the almost contact
structure and M together with (ϕ, ξ, η, g) is called an almost contact metric manifold.
An almost contact metric manifold (M,ϕ, ξ, η, g) is said to be contact metric manifold if
dη(X, Y ) = g(X,ϕY ), for all vector fields X, Y on M . We recall two self-adjoint operators
h = 1

2
Lξϕ, where L is the usual Lie derivative, and l = R(·, ξ)ξ, where R is Riemannian

curvature. The tensor h and l satisfy hϕ = −ϕh, hξ = 0, trh = trϕh = 0 and lξ = 0.
Furthermore, we also have

∇Xξ = −ϕX − ϕhX, (6)

trl = Ric(ξ, ξ) = 2n− trh2, (7)

where ∇ is the Levi-Civita connection of g and Ric is the Ricci tensor, is defined by
Ric(X, Y ) = g(QX, Y ).
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A contact metric manifold is said to be K-contact if ξ is Killing with respect to g,
equivalently, h = 0, or trl = 2n. An almost contact metric structure on M is said to be
normal if the almost complex structure J on the product manifold M × R defined by

J

(
X, f

d

dt

)
=

(
ϕX − fξ, η(X)

d

dt

)
,

where X denotes the vector field tangent to M , t is the coordinate of R and f is a smooth
function defined on the product manifold M ×R, is integrable. According to Blair [2], the
normality of an almost contact structure is expressed by [ϕ, ϕ] = −2dη ⊗ ξ, where [ϕ, ϕ]
denotes the Nijenhuis tensor of ϕ defined by

[ϕ, ϕ](X, Y ) = ϕ2[X, Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ],

for any vector fields X, Y on M . A normal contact metric manifold is called a Sasakian
manifold. Sasakian manifolds are K-contact and 3-dimensional K-contact manifolds are
Sasakian.

On 3-dimensional contact metric manifold with Qϕ = ϕQ, the following relations hold
(see [3]):

R(X, Y )Z =(
r

2
− trl){g(Y, Z)X − g(X,Z)Y }+

1

2
(3trl − r){g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y }, (8)

QX =
1

2
(r − trl)X +

1

2
(3trl − r)η(X)ξ. (9)

Equation (9) is equivalent to

Ric(X, Y ) =
1

2
(r − trl)g(X, Y ) +

1

2
(3trl − r)η(X)η(Y ). (10)

3 Proof of Main Results

3.1 Proof of Theorem 1.1

Proof. We distinguish the cases (i) m = ∞ and (ii) 0 < m < ∞. The first case together
with (2) entails that the associated Riemannian metric g is Yamabe soliton. Hence the
conclusion follows from the result of Venkatesha and Naik (see Theorem 2 in [23]). Next,
we proceed to the case (ii). The soliton vector field V is collinear with the Reeb vector
field ξ implies V = σξ, for some smooth function σ. Taking covariant differentiation of
this along X and making use of (6) we ultimately have

∇XV = (Xσ)ξ − σ(ϕX + ϕhX). (11)

Observe that the equation (2) implies

1

2
{g(∇XV, Y ) + g(X,∇Y V )} = (r − λ)g(X, Y ) +

σ2

m
η(X)η(Y ). (12)
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In view of (11), the equation (12) transform into

1

2
{(Xσ)η(Y ) + (Y σ)η(X)} − σg(ϕhX, Y ) = (r − λ)g(X, Y ) +

σ2

m
η(X)η(Y ). (13)

Substituting X and Y by ξ in (13), we obtain

(ξσ) = (r − λ) +
σ2

m
. (14)

On the other hand, replacing Y by ξ in (13) and making use of the previous equation yields

Dσ − (ξσ)ξ = 0. (15)

Differentiating this and making use of (6) we obtain

∇XDσ = X(ξσ)ξ − (ξσ){ϕX + ϕhX}.

Applying the Poincare lemma (d2 = 0), we see that

X(ξσ)η(Y )− Y (ξσ)η(X) + 2(ξσ)dη(X, Y ) = 0.

Choosing X, Y ⊥ ξ and since dη is non-vanishing on any contact metric manifold, we have
(ξσ) = 0. From this, the equation (15) shows that σ is constant. Thus the equation (14)
entails that the scalar curvature r is also constant. Moreover, the equation (13) reduces to

−σg(ϕhX, Y ) = (r − λ)g(X, Y ) +
σ2

m
η(X)η(Y ).

Differentiating this along Z and making use of (6) we obtain

−σg((∇Zϕh)X, Y ) = (Zr)g(X, Y )− σ2

m
{η(X)g(Y, ϕZ + ϕhZ)

+ η(Y )g(X,ϕZ + ϕhZ)} . (16)

Contracting this over Y and Z and since r is constant, trϕ = trϕh = 0, we obtain

σ(div(ϕh))X = 0. (17)

Remember that for any contact metric manifold div(ϕh)X = 2nη(X)− g(Qξ,X) (see[2]).
In view of Qϕ = ϕQ, equation (7) and ϕξ = 0, we have that Qξ = (trl)ξ. This yields
div(ϕh)X = (2− trl)η(X). By virtue of this, the equation (17) entails that

σ(2− trl) = 0.

Thus we have either σ = 0, or trl = 2. The first case shows that soliton vector field V = 0,
and this leads to a contradiction as V is non-zero. So, we must have trl = 2. By virtue of
this, the equation (7) yields trh2 = 0 and hence, since h is symmetric, h = 0 and so M is
Sasakian. Moreover, since ξ is Killing and σ is constant, the vector field V (= σξ) is also
Killing. This completes the proof of the Theorem.
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Before enter the proof of Theorem 1.2, we give some key lemmas, which will be helpful
to prove Theorem 1.2.

Lemma 3.1. Let M be a 3-dimensional contact metric manifold with Qϕ = ϕQ. If M
admits a quasi Yamabe gradient soliton, then the following formulae are valid

(i) R(X, Y )Df = (Xr)Y − (Y r)X +
r − λ
m
{(Y f)X − (Xf)Y }. (18)

(ii) Ric(Y,Df) = −2(Y r) +
2(r − λ)

m
(Y f). (19)

Proof. We note that the equation (3) can be expressed as

∇YDf = (r − λ)Y +
1

m
g(Y,Df)Df, (20)

where D is the gradient operator of g. Differentiating (20) along an arbitrary vector field
X, we obtain

∇X∇YDf = (Xr)Y + (r − λ)∇XY +
1

m
{g(∇XY,Df)Df

+g(Y,∇XDf)Df + g(Y,Df)∇XDf}.

Making use of previous equation and (20) in the well known expression of curvature tensor,

R(X, Y ) = [∇X ,∇Y ]−∇[X,Y ],

yields (i). Next, contracting (18) over X we get (ii). This finishes the proof.

Lemma 3.2. [3] Let M be a contact metric manifold with a contact metric structure
(ϕ, ξ, η, g) such that Qϕ = ϕQ. Then the function trl is constant everywhere on M and
(ξr) = 0. Further, if trl = 0 then M is flat.

3.2 Proof of Theorem 1.2

Proof. Taking inner product of (18) with ξ we obtain

g(R(X, Y )Df, ξ) = (Xr)η(Y )− (Y r)η(X) +
r − λ
m
{(Y f)η(X)− (Xf)η(Y )}. (21)

Substituting Z by ξ in (8) and then taking inner product of resultant equation with ξ one
gets

g(R(X, Y )ξ,Df) = (
trl

2
){(Xf)η(Y )− (Y f)η(X)}. (22)

Comparing (22) with (21) we infer

(Xr)η(Y )− (Y r)η(X) + (
r − λ
m
− (

trl

2
)){(Y f)η(X)− (Xf)η(Y )} = 0.



Quasi Yamabe Solitons on 3-Dimensional Contact Metric Manifolds with Qϕ = ϕQ 197

It was proved in [15] that the scalar curvature of any compact quasi Yamabe gradient
soliton should be constant. By virtue of this, the previous equation reduces to

2(r − λ)−m(trl)

2m
{(Y f)η(X)− (Xf)η(Y )} = 0,

which is equivalent to

2(r − λ)−m(trl)

2m
{Df − (ξf)ξ} = 0. (23)

Since r, trl and λ are constant, we have either trl = 2(r−λ)
m

, or trl 6= 2(r−λ)
m

. We now discuss
the two cases separately.
Case(i). In this case, we have trl = 2(r−λ)

m
. Then from (20) it follows that

g(∇ξDf, ξ) = (r − λ) +
1

m
(ξf)2.

We know that g(ξ,Df) = (ξf). Differentiation of this along ξ and noting that ∇ξξ = 0
(a consequence of (6)), we obtain g(∇ξDf, ξ) = ξ(ξf). From the above equation, one can
find

ξ(ξf) = (r − λ) +
1

m
(ξf)2. (24)

As a result of (10) and (19), one can get

(
4(r − λ)

m
− trl)(ξf) = 0.

By virtue of trl = 2(r−λ)
m

, it follows from the foregoing equation that (ξf) = 0. Making

use of this in (24) one can obtain (r − λ) = 0. Utilization of this in trl = 2(r−λ)
m

we find
trl = 0. From Lemma 3.2 we conclude that M is flat.
Case(ii). When trl 6= 2(r−λ)

m
, from (23) we have Df = (ξf)ξ. Differentiating this along

X and making use of (6) one can get ∇XDf = X(ξf)ξ − (ξf){ϕX + ϕhX}. Applying
Poincare lemma: d2 = 0 gives

X(ξf)η(Y )− Y (ξf)η(X) + 2(ξf)dη(X, Y ) = 0.

Choosing X, Y ⊥ ξ and we know that dη is non-vanishing on any contact metric manifold,
we have (ξf) = 0. From this we have Df = 0. This shows that f is constant, which in
turn implies that M admits a trivial quasi yamabe gradient soliton. This establishes the
proof of the theorem.

Remark 3.3. It is easy to seen that, the conclusion in Theorem 1.2 still holds if we replace
compactness by constant scalar.
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