Homogeneous superstrings with retract $\mathcal{CP}^{1|4}$

Mikhail Bashkin

Abstract. Any complex-analytic supermanifold whose retract is diffeomorphic to the complex projective superline (superstring) $C\mathcal{P}^{1|4}$ is, up to a diffeomorphism, either a member of a 1-parameter family or one of 9 exceptional supermanifolds. I singled out the homogeneous of these supermanifolds and described Lie superalgebras of vector fields on them.

1 Preliminaries

Let (M, \mathcal{F}) be a complex-analytic manifold of dimension m. (More precisely, almost complex manifold, see [BGLS*], since the vanishing of the Nijenhuis tensor is never need; however, from the very beginning (see [Gr]) one requires the underlying manifold to be complex. This comment and starred references are added by the editor of this Special Volume. D.Leites.)

Let **E** be a vector bundle of rank *n* over *M*, and \mathcal{E} the be locally free analytic sheaf of sections of **E**. Set $\widetilde{\mathcal{O}} := \Lambda_{\mathcal{F}}^{\boldsymbol{\cdot}}(\mathcal{E})$.

The supermanifold isomorphic to the one of the form $\mathcal{M} := (M, \widetilde{\mathcal{O}})$ is called *split*. The ringed space locally isomorphic to $(M, \Lambda_{\mathcal{F}}^{\cdot}(\mathcal{E}))$ is called a *supermanifold* of *superdimension* m|n. Physicists call supermanifolds of dimension 1|n superstrings, see [W*]. Let \mathcal{O} be a structure sheaf of any supermanifold. Let $\mathcal{I} \subset \mathcal{O}$ be the subsheaf of ideals generated by subsheaf $\mathcal{O}_{\overline{1}}$ and let $\mathcal{O}_{rd} := \mathcal{O}/\mathcal{I}$.

Consider the following filtration of \mathcal{O} by powers of \mathcal{I}

 $\mathcal{O} = \mathcal{I}^0 \supset \mathcal{I} \supset \mathcal{I}^2 \supset \ldots \supset \mathcal{I}^n \supset \mathcal{I}^{n+1} = 0.$

The graded sheaf $\operatorname{gr} \mathcal{O} = \bigoplus_{p=0}^{n} \operatorname{gr}_{p} \mathcal{O}$ with $\operatorname{gr}_{p} \mathcal{O} := \mathcal{I}^{p} / \mathcal{I}^{p+1}$ defines the split supermanifold $(M, \operatorname{gr} \mathcal{O})$ called the *retract* of (M, \mathcal{O}) .

Let $\pi: \mathcal{I}^p \to \operatorname{gr}_p \mathcal{O}$ denote the natural projection. Then, we have the exact sequences of sheaves

$$0 \longrightarrow \mathcal{I}^{p+1} \longrightarrow \mathcal{I}^p \xrightarrow{\pi_p} \operatorname{gr}_p \mathcal{O} \longrightarrow 0.$$
(1)

MSC 2020: Primary 32C11 Secondary 81T30

Keywords: Homogeneous supermanifold, split supermanifold, superstring.

Affiliation: P.A. Solovyov Rybinsk State Aviation Technical University, Rybinsk, Russia

E-mail: mbashkin@rsatu.ru

The supermanifold (M, \mathcal{O}) is split if and only if there exists an isomorphism of the superalgebra sheaves $h: \operatorname{gr} \mathcal{O} \to \mathcal{O}$ such that its restriction $h_p: \operatorname{gr}_p \mathcal{O} \to \mathcal{I}^p$ splits the sequence (1), i.e., satisfies $\pi_p \circ h_p = id$. Such an isomorphism exists in a neighborhood of any point of M.

Let (M, \mathcal{O}) be a supermanifold and \mathfrak{g} a complex finite-dimensional Lie superalgebra. An action of \mathfrak{g} on (M, \mathcal{O}) is an arbitrary Lie superalgebra homomorphism $\varphi : \mathfrak{g} \to \mathfrak{v}(M, \mathcal{O})$. Then, a linear mapping $\varphi^x : \mathfrak{g} \to T_x(M, \mathcal{O})$ is associated with any $x \in M$. The action φ is called *transitive* if φ^x is surjective for any $x \in M$. By restricting the action $\varphi : \mathfrak{g} \to \mathfrak{v}(M, \mathcal{O})$ to the even component we get a homomorphism $\varphi_{\overline{0}} : \mathfrak{g}_{\overline{0}} \to \mathfrak{v}(M, \mathcal{O})_{\overline{0}}$. If M is compact, then it is possible to integrate $\varphi_{\overline{0}}$ getting a homomorphism $\Phi: G \to \operatorname{Aut}(M, \mathcal{O})$, where G is the simply connected complex Lie group whose Lie algebra is $\mathfrak{g}_{\overline{0}}$. This homomorphism induces a homomorphism $\Phi_0: G \to Bih M$ into the group of biholomorphisms of M, in other words — an action of G on M. The action φ is said to be $\overline{0}$ -transitive if Φ_0 is transitive.

If a Lie group G acts $\overline{0}$ -transitivity on M, then $\varphi^x : \mathfrak{g}_{\overline{0}} \to T_x(M)$ is surjective for any $x \in M$. Conversely, if M is compact and $\varphi^x : \mathfrak{g}_{\overline{0}} \to T_x(M)$ is surjective for any $x \in M$, we can integrate this action to a $\overline{0}$ -transitive action of a Lie group.

The supermanifold (M, \mathcal{O}) is called *homogeneous* (resp. 0-homogeneous) if the natural action of the Lie superalgebra $\mathfrak{v}(M, \mathcal{O})$ on (M, \mathcal{O}) is transitive (resp. $\overline{0}$ -transitive), see [BO2], [O3]. This means that the evaluation mapping $ev_x : \mathfrak{v}(M, \mathcal{O}) \to T_x(M, \mathcal{O})$ (resp. the restriction of ev_x to $\mathfrak{v}(M, \mathcal{O})_{\bar{0}}$ is surjective for any $x \in M$.

Thanks to [O3] we know that φ is transitive if and only if it is 0-transitive, M is compact, and the mapping $\varphi_{\overline{1}}^x : \mathfrak{g}_{\overline{1}} \to T_{x_0}(M, \mathcal{O})_{\overline{1}}$ is surjective at a certain point $x_0 \in M$. This implies that a $\overline{0}$ -homogeneous supermanifold is homogeneous if and only if the odd component of the mapping $ev_{x_0}: \mathfrak{v}(M, \mathcal{O}) \to T_{x_0}(M, \mathcal{O})$ is surjective at a certain point $x_0 \in M.$

One easily proves (see [BO2]) that the retract of a homogeneous supermanifold (M, \mathcal{O}) with compact M is homogeneous, too.

In what follows, I consider the problem of classification (up to a diffeomorphism) of supermanifolds with retract $\mathcal{CP}^{1|4}$ and describe which of the supermanifolds considered are homogeneous or at least $\overline{0}$ -homogeneous.

Superstring $\mathcal{CP}^{1|4}$. The first cohomology of the tangent sheaf 2

Over \mathbb{CP}^1 , consider the holomorphic vector bundle

$$\mathbf{E} = \mathbf{L}_{-k_1} \oplus \mathbf{L}_{-k_2} \oplus \mathbf{L}_{-k_3} \oplus \mathbf{L}_{-k_4}, \text{ where } k_1 \ge k_2 \ge k_3 \ge k_4 \ge 0.$$

Let $\mathcal{CP}_{k_1k_2k_3k_4}^{1|4} := (\mathbb{CP}^1, \mathcal{O}_{\Lambda_{\mathcal{F}}^{\bullet}(\mathcal{E})})$ designate the split supermanifold determined by **E**. As

shown in [BO2], if $\mathcal{CP}_{k_1k_2k_3k_4}^{1|4}$ is homogeneous, then the k_i must be non-negative. Let us cover \mathbb{CP}^1 by two charts U_0 and U_1 with local coordinates x and $y = \frac{1}{x}$, respectively. For $\mathcal{CP}_{k_1k_2k_3k_4}^{1|4}$, the transition functions in $U_0 \cap U_1$ are $y = x^{-1}$ and $\eta_i = x^{-k_i}\xi_i$ for $i = 1, \ldots, 4$, where ξ_i and η_i are basis sections of **E** over U_0 and U_1 , respectively.

If $\mathcal{O}_{\mathrm{gr}}$ is the structure sheaf of $\mathcal{CP}^{1|4} := \mathcal{CP}_{1111}^{1|4}$, then $\mathcal{T}_{\mathrm{gr}} := \mathcal{D}er \mathcal{O}_{\mathrm{gr}}$ is the *tangent* sheaf (or the sheaf of vector fields). This is a sheaf of Lie superalgebras. The sections of the tangent sheaf are *holomorphic vector fields* on the supermanifold. Their sections are elements of the Lie superalgebra $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}}) := \Gamma(\mathbb{CP}^1, \mathcal{T}_{\mathrm{gr}})$ of vector fields on $\mathcal{CP}^{1|4}$.

The sheaf \mathcal{T}_{gr} has a \mathbb{Z} -grading $\mathcal{T}_{gr} = \bigoplus_{-1 \leq p \leq 4} (\mathcal{T}_{gr})_p$, where

$$(\mathcal{T}_{\mathrm{gr}})_p := \mathcal{D}er_p\mathcal{O}_{\mathrm{gr}} = \{ v \in \mathcal{T}_{\mathrm{gr}} \mid v((\mathcal{O}_{\mathrm{gr}})_q) \subset (\mathcal{O}_{\mathrm{gr}})_{p+q} \text{ for any } q \}.$$

The Lie superalgebra $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{gr})$ becomes also \mathbb{Z} -graded with the induced grading compatible with $\mathbb{Z}/2$ -grading by parity.

We can regard \mathcal{T}_{gr} as a locally free analytic sheaf on \mathbb{CP}^1 . From [O3] we have the following exact sequence of locally free analytic sheaves on \mathbb{CP}^1 :

$$0 \longrightarrow \mathcal{E}^* \otimes \Lambda^{\boldsymbol{\cdot}} \mathcal{E} \xrightarrow{i} \mathcal{T}_{\mathrm{gr}} \xrightarrow{\alpha} \Theta \otimes \Lambda^{\boldsymbol{\cdot}} \mathcal{E} \longrightarrow 0,$$

where $\Theta = \mathcal{D}er \ \mathcal{F}$ is the tangent sheaf of the manifold \mathbb{CP}^1 , and \mathcal{F} is the sheaf of functions on \mathbb{CP}^1 . The mapping α is the restriction of a derivation of \mathcal{O} to \mathcal{F} , and *i* identifies any sheaf homomorphism $\mathcal{E} \to \Lambda^* \mathcal{E}$ with its prolongation to a derivation that vanishes on \mathcal{F} . Hence, the analytic sheaf \mathcal{T}_{gr} is locally free. Therefore, \mathcal{T}_{gr} is the sheaf of holomorphic sections of a holomorphic vector bundle over \mathbb{CP}^1 . We call it the *supertangent bundle* and denote **ST**.

Thanks to the Bott-Borel-Weil theorem the following theorem holds.

2.1 Theorem ([BO1]). For dim $H^p(\mathbb{CP}^1, (\mathcal{T}_{gr})_q)$, see the following table

The group $\mathrm{SL}_2(\mathbb{C})$ trivially acts on $H^1(\mathbb{CP}^1,(\mathcal{T}_{\mathrm{gr}})_2)$ and $H^1(\mathbb{CP}^1,(\mathcal{T}_{\mathrm{gr}})_4)$.

Set

$$\delta := \xi_1 \xi_2 \xi_3 \xi_4, \quad \delta_l := \frac{\partial \delta}{\partial \xi_l}, \quad \nabla := \sum_{1 \le i \le 4} \xi_i \partial_{\xi_i};$$

$$\delta' := \eta_1 \eta_2 \eta_3 \eta_4, \quad \delta'_l := \frac{\partial \delta'}{\partial \eta_l}, \quad \nabla' := \sum_{1 \le i \le 4} \eta_i \partial_{\eta_i}.$$
(2)

The next Theorem expounds the result of Theorem 2.1 by giving the Čzech cocycles of the covering $\{U_0, U_1\}$; these cocycles determine the bases of non-zero spaces H^1 .

2.2. Theorem. The basis of $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_p)$, where p = 2, 3, 4, can be represented by the following cocycles z_{01} :

Proof. Let us find a basis in $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_2)$. For this, consider the part $\mathbf{ST}(\mathbf{E})_2$ of the tangent space $\mathbf{ST}(\mathbf{E}) := \oplus \mathbf{ST}(\mathbf{E})_i$. In [BO2], the following decomposition was considered:

$$\begin{aligned} \mathbf{ST}(\mathbf{E})_2 &= \bigoplus_{i < j} \mathbf{ST}(\mathbf{E})_2^{(ij)} \oplus \bigoplus_{i < j < k, r \neq i, j, k} \mathbf{ST}(\mathbf{E})_2^{(ijk,r)}, \text{where} \\ \mathbf{ST}(\mathbf{E})_2^{(ij)} &= <\xi_i \xi_j \partial_x \text{ and } \xi_i \xi_j \xi_k \partial_{\xi_k}, \text{ where } i < j, \text{ and } k \neq i, j >, \\ \mathbf{ST}(\mathbf{E})_2^{(ijk,r)} &= <\xi_i \xi_j \xi_k \partial_{\xi_r}, \text{ where } i < j < k, \text{ and } r \neq i, j, k. \end{aligned}$$

Moreover, it was shown in [BO2] that $\mathbf{ST}(\mathbf{E})_2^{(ij)} \simeq \mathbf{L}_{-2} \oplus 2\mathbf{L}_{-1}$ and $\mathbf{ST}(\mathbf{E})_2^{(ijk,r)} \simeq \mathbf{L}_{-2}$. Consider the bundles $\mathbf{ST}(\mathbf{E})_2^{(ij)}$ and $\mathbf{ST}(\mathbf{E})_2^{(ijk,r)}$ separately. Let $(\mathcal{T}_{\mathrm{gr}})_p^{i_1\dots i_k}$ designate the sheaf of holomorphic sections of $\mathbf{ST}(\mathbf{E})_p^{(i_1\dots i_k)}$. We see that (recall notation (2))

$$\delta_l \partial_{\xi_k} = y^{-2} \delta'_l \partial_{\eta_k}, \text{ where } l < k, \quad k \neq i, j, \quad l \neq i, j, \\ \xi_i \xi_j \partial_x = -\eta_i \eta_j \partial_y - y^{-1} \eta_i \eta_j \nabla' = -y^{-1} (\eta_i \eta_j \nabla' + y \eta_i \eta_j \partial_y), \\ \xi_i \xi_j \nabla + x \xi_i \xi_j \partial_x = -y^{-1} \xi_i \xi_j \partial_x.$$

Hence, for the basis sections of \mathbf{L}_{-2} (resp. \mathbf{L}_{-1}) we can take

$$\delta_l \partial_{\xi_k}$$
, $\xi_i \xi_j \partial_x$, (resp. $\xi_i \xi_j \nabla + x \xi_i \xi_j \partial_x$) for all i, j, k, l .

Then, $\mathbf{ST}(\mathbf{E})_2^{(ij)} \simeq \mathbf{L}_{-2} \oplus 2\mathbf{L}_{-1}$ and $(\mathcal{T}_{gr})_2^{ij} \simeq \mathcal{F}(-2) \oplus 2\mathcal{F}(-1)$, where \mathcal{F} is the sheaf of holomorphic functions on \mathbb{CP}^1 , is the corresponding isomorphism of sheaves.

The results of [BO2] imply that

$$H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2^{ij}) \simeq H^1(\mathbb{CP}^1, \mathcal{F}(-2)) \quad \text{and} \quad \dim H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2^{ij}) = 1,$$

so the cocycle desired is of the form

$$x^{-1}\delta_l\partial_{\xi_k}.$$

Let us show that $x^{-1}\delta_l\partial_{\xi_k} \sim x^{-1}\delta_k\partial_{\xi_l}$.

Indeed,

$$x^{-1}\delta_l\partial_{\xi_k} = y^{-1}\delta'_l\partial_{\eta_k} \sim y^{-1}\delta'_l\partial_{\eta_k} + \eta_s\eta_t\partial_y$$

= $x^{-1}\delta_l\partial_{\xi_k} - \xi_s\xi_t\partial_x - x^{-1}\delta_l\partial_{\xi_k} + x^{-1}\delta_k\partial_{\xi_l} \sim x^{-1}\delta_k\partial_{\xi_l},$

where $(l, k; s, t) \in \{(1, 2; 3, 4), (1, 4; 2, 3), (2, 3; 1, 4), (3, 4; 1, 2)\};$

$$x^{-1}\delta_l\partial_{\xi_k} = y^{-1}\delta'_l\partial_{\eta_k} \sim y^{-1}\delta'_l\partial_{\eta_k} - \eta_s\eta_t\partial_y$$

= $x^{-1}\delta_l\partial_{\xi_k} + \xi_s\xi_t\partial_x - x^{-1}\delta_l\partial_{\xi_k} + x^{-1}\delta_k\partial_{\xi_l} \sim x^{-1}\delta_k\partial_{\xi_l},$

where $(l, k; s, t) \in \{(1, 3; 2, 4), (2, 4; 1, 3)\}.$

Since $\delta_r \partial_{\xi_r} = y^{-2} \delta'_r \partial_{\eta_r}$, then take $\delta_r \partial_{\xi_r}$ for a basis section of \mathbf{L}_{-2} . We have

$$\mathbf{ST}(\mathbf{E})_2^{(ijk,r)} \simeq \mathbf{L}_{-2}$$

and the corresponding isomorphism of sheaves $(\mathcal{T}_{\mathrm{gr}})_2^{ijk,r} \simeq \mathcal{F}(-2)$. The results of [BO2] imply that $H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2^{ijk,r}) \simeq H^1(\mathbb{CP}^1, \mathcal{F}(-2))$,

dim $H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2^{ijk,r}) = 1$ for any i < j < k, and $r \neq i, j, k$,

and the cocycle desired is of the form

$$x^{-1}\delta_r\partial_{\xi_r}.$$

Let us now find the basis of $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_3)$. Consider $ST(E)_3$ and again apply the results of [BO2]; we get

$$\mathbf{ST}(\mathbf{E})_3 = \bigoplus_{i < j < k} \mathbf{ST}(\mathbf{E})_3^{(ijk)},$$

where $\mathbf{ST}(\mathbf{E})_3^{(ijk)}$ is spanned by

$$\begin{aligned} &\xi_i \xi_j \xi_k \partial_x, \ \delta \partial_{\xi_l}, \text{ where } 1 \leq i < j < k \leq 4, \ l \neq i, j, k, \ l \in \{1, \dots, 4\}; \\ &\xi_i \xi_j \xi_k \partial_x = -y^{-2} \big(y \eta_i \eta_j \eta_k \partial_y + \eta_i \eta_j \eta_k \eta_l \partial_{\eta_l} \big), \\ &\delta \partial_{\xi_l} - x \delta_l \partial_x = y^{-3} \delta' \partial_{\eta_l} + y^{-2} \delta'_l \partial_y - y^{-3} \delta' \partial_{\eta_l} = y^{-2} \delta'_l \partial_y. \end{aligned}$$

Hence, take $\xi_i \xi_j \xi_k \partial_x$ and $\delta \partial_{\xi_l} - x \delta_l \partial_x$ for basis sections of \mathbf{L}_{-2} and \mathbf{L}_{-1} .

We see that $\mathbf{ST}(\mathbf{E})_3^{(ijk)} \simeq 2\mathbf{L}_{-2}$ and $(\mathcal{T}_{\mathrm{gr}})_3^{ijk} \simeq 2\mathcal{F}(-2)$.

The results of [BO2] imply that

$$H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})^{ijk}_3) \simeq 2H^1(\mathbb{CP}^1, \mathcal{F}(-2)), \text{ and } \dim H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})^{ijk}_3) = 2,$$

where $1 \le i < j < k \le 4$, and the cocycles desired are of the form

$$x^{-1}\delta_l\partial_x$$
 and $x^{-1}\delta\partial_{\xi_l} - \delta_l\partial_x \sim x^{-1}\delta\partial_{\xi_l}$, where $l \neq i, j, k$.

Let us show that

$$x^{-1}\delta_l\partial_x \sim x^{-2}\delta\partial_{\xi_l}.$$

Indeed, $x^{-1}\delta_l\partial_x = -\delta'_l\partial_y + y^{-1}\delta'\partial_{\eta_l} \sim y^{-1}\delta'\partial_{\eta_l} = x^{-2}\delta\partial_{\xi_l}.$

In [BO1], it is proved that the basis element of $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_4)$ can be represented by the cocycle $x^{-1}\delta\partial_x$.

3 Non-split supermanifolds with retract $CP^{1|4}$

The structure sheaf of the split supermanifold (M, \mathcal{O}_{gr}) is endowed with a \mathbb{Z} -grading

$$\mathcal{O}_{\mathrm{gr}} = \bigoplus_{0 \le p \le n} (\mathcal{O}_{\mathrm{gr}})_p, \text{ where } (\mathcal{O}_{\mathrm{gr}})_p = \Lambda^p_{\mathcal{F}}(\mathcal{E}).$$

Clearly, $(\mathcal{O}_{gr})_{rd}$ is naturally isomorphic to the subsheaf $\mathcal{F} \subset \mathcal{O}_{gr}$.

Observe that the natural filtration of the sheaf $\mathcal{T} = \mathcal{D}er \mathcal{O}$ yields the following filtration

$$\mathfrak{v}(\mathbb{CP}^1,\mathcal{O}) = \mathfrak{v}(\mathbb{CP}^1,\mathcal{O})_{(-1)} \supset \ldots \supset \mathfrak{v}(\mathbb{CP}^1,\mathcal{O})_{(4)} \supset \mathfrak{v}(\mathbb{CP}^1,\mathcal{O})_{(5)} = 0,$$

where $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{(p)} = \Gamma(\mathbb{CP}^1, \mathcal{T}_{(p)}).$

Thanks to results in [O1], we have the following exact sequence

$$0 \to \mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{(p+1)} \to \mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{(p)} \xrightarrow{\sigma_p} \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_p \quad \text{for any } p \ge -1.$$

We say that $u \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_p$ is *liftable* in $(\mathbb{CP}^1, \mathcal{O})$, if $u \in \mathrm{Im} \, \sigma_p$. Consider

$$\mathcal{A}ut_{(2)}\mathcal{O}_{\mathrm{gr}} = \{a \in \mathcal{A}ut \, \mathcal{O}_{\mathrm{gr}} \mid a(f) - f \in \mathcal{J}^2 \text{ for any } f \in \mathcal{O}_{\mathrm{gr}}\}$$

Let $\operatorname{Aut} \mathbf{E}$ be the group of fiber-preserving automorphisms of \mathbf{E} . Then, the following theorem holds.

3.1 Theorem ([Gr]). There is a bijective correspondence between the isomorphism classes of supermanifolds (M, \mathcal{O}) such that $\operatorname{gr} \mathcal{O} \simeq \mathcal{O}_{\operatorname{gr}}$ and the orbits of the action of Aut **E** on $H^1(M, \operatorname{Aut}_{(2)}\mathcal{O}_{\operatorname{gr}})$, and $(M, \mathcal{O}_{\operatorname{gr}})$ corresponds to the unit class e in $H^1(M, \operatorname{Aut}_{(2)}\mathcal{O}_{\operatorname{gr}})$.

4 On $\overline{0}$ -homogeneity of supermanifolds with retract $\mathcal{CP}^{1|4}$

Recall a fine resolution of the sheaf $\mathcal{T}_{gr} = \mathcal{D}er\mathcal{O}_{gr}$ endowed with a bracket operation that extends the bracket given in \mathcal{T}_{gr} . Let us denote by $\Phi^{p,q}$ the sheaf of smooth complex-valued forms of type (p,q) on M. We form the standard Dolbeault-Serre resolution $\widehat{\Phi}$ of \mathcal{O}_{gr} by setting for any $\varphi \in \Phi^{0,q}$ and $u \in (\mathcal{O}_{gr})_p$

$$\widehat{\Phi}^{p,q} := \Phi^{0,q} \otimes (\mathcal{O}_{\mathrm{gr}})_p, \quad \widehat{\Phi}^{\boldsymbol{\cdot},\boldsymbol{\cdot}} := \oplus_{p,q \ge 0} \widehat{\Phi}^{p,q}, \quad \overline{\partial}(\varphi \otimes u) = \overline{\partial}(\varphi) \otimes u.$$

Then, regarding S as a sheaf of graded algebras with respect to the total degree, consider the sheaf of bigraded Lie superalgebras $\widehat{\mathcal{T}} = \mathcal{D}er\widehat{\Phi}$. Clearly, $\overline{D} = \operatorname{ad}_{\partial}$ is a derivation of bidegree (0, 1) of $\widehat{\mathcal{T}}$ satisfying $\overline{D}^2 = 0$. Set

$$\mathcal{S} := \{ u \in \widehat{\mathcal{T}} \mid u(\overline{f}) = 0 \text{ and } u(d\overline{f}) = 0 \text{ for any } f \in \mathcal{F} \}.$$

It is easy to see that \mathcal{S} is a \overline{D} -invariant subsheaf of bigraded subalgebras of $\widehat{\mathcal{T}}$. Moreover, $\widehat{\mathcal{T}}_{qr}$ is identified with the kernel of the mapping $\overline{D} : \mathcal{S}^{\boldsymbol{\cdot},0} \longrightarrow \mathcal{S}^{\boldsymbol{\cdot},1}$. Thus, we get the sequence

$$0 \longrightarrow \widehat{\mathcal{T}} \xrightarrow{\tau} \mathcal{S}^{*,0} \xrightarrow{\overline{D}} \mathcal{S}^{*,1} \xrightarrow{\overline{D}} \dots$$

Let us specify an explicit form of τ . Let \mathcal{F}^{∞} be a sheaf of differentiable complex-valued functions on M, then $\mathcal{O}_{gr}^{\infty} = \mathcal{O}_{gr} \otimes \mathcal{F}^{\infty}$ and

$$\mathcal{PA}ut_{(2)}\mathcal{O}_{\mathrm{gr}}^{\infty} = \{a \in \mathcal{A}ut \, \mathcal{O}_{\mathrm{gr}}^{\infty} \mid a(\overline{f}) = \overline{f} \text{ for any } f \in \mathcal{F}; \ a(u) - u \in \bigoplus_{k \ge 2} (\mathcal{O}_{\mathrm{gr}}^{\infty})_k \text{ for any } u \in \mathcal{O}_{\mathrm{gr}}^{\infty} \}.$$

If $z = (z_{ij}) \in Z^1(\mathfrak{U}, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$ is a cocycle in the covering \mathfrak{U} , then $z_{ij} = h_i^{-1}h_j$, where $h_i : \mathcal{O}_{gr}|_{U_i} \to \mathcal{O}|_{U_i}$. On the other hand, $z_{ij} = a_i^{-1}a_j$, where $a_i \in \mathcal{P}\mathcal{A}ut_{(2)}\mathcal{O}_{gr}^{\infty}(U_i)$. Then,

over $U_i \cap U_j$, we have $h_i^{-1}h_j = a_i^{-1}a_j$, and hence $\varrho := a_ih_i^{-1} = a_jh_j^{-1}$ is an injective sheaf homomorphism $\mathcal{O} \longrightarrow \mathcal{O}_{gr}^{\infty}$. Then, $\tau : \widehat{\mathcal{T}} \to \mathcal{S}^{*,0}$ is defined by the formula $\tau(v) := \varrho v \varrho^{-1}$.

Now, let the bundle **E** correspond to the supermanifold $C\mathcal{P}^{1|4}$; let the tangent bundle ST(E) be endowed with a smooth SU₂-invariant hermitian metric (see [O1]). Since \mathbb{CP}^1 is compact, we can apply the Hodge theory. In [O1], [O3], [O2] a complex (S, \overline{D}) is constructed which can be considered as a complex of (0, *)-forms with values in the bundle ST(E).

Let $\mathbf{H} \subset \mathcal{S}$ denote the bigraded space of harmonic elements, H the orthogonal projection to \mathbf{H} . As is known,

$$\mathbf{H}_{p,q} \simeq H^{p,q}(\mathcal{S}, \overline{D}) \simeq H^q(\mathbb{CP}^1, (\widehat{\mathcal{T}}_{\mathrm{gr}})_p) \quad \text{for any } p, q \ge 0.$$
(3)

Set

$$\mathbf{H}_{(1)} = \bigoplus_{p \ge 1} \mathbf{H}_{2p,1} = \mathbf{H}_{2,1} \oplus \mathbf{H}_{4,1} \simeq H^1(\mathbb{CP}^1, (\widehat{\mathcal{T}}_{\mathrm{gr}})_2) \oplus H^1(\mathbb{CP}^1, (\widehat{\mathcal{T}}_{\mathrm{gr}})_4)$$

The SU_2 -invariance of the metric implies SU_2 -equivariance of **H**, and isomorphisms (3).

4.1. Theorem. Let $(\mathbb{CP}^1, \mathcal{O})$ be any supermanifold with retract $\mathcal{CP}^{1|4}$. Then, the SU₂-action on \mathbb{CP}^1 can be lifted to $(\mathbb{CP}^1, \mathcal{O})$. In particular, $(\mathbb{CP}^1, \mathcal{O})$ is $\overline{0}$ -homogeneous.

Proof. Consider the non-linear complex $K = (K^0, K^1, K^2)$ (see [BO2]), where

$$K^{0} = \Gamma(\mathbb{CP}^{1}, \mathcal{PA}ut_{(2)}\mathcal{O}_{\mathrm{gr}}^{\infty}),$$

$$K^{q} = \bigoplus_{k \ge 1} S^{2k,q} \text{ for } q = 1, 2,$$

with the coboundary operators $\delta_q : K^q \to K^{q+1}$ for q = 0, 1, and the action ρ of the group K^0 on K^1 , defined by the formulas

$$\begin{split} \delta_0(a) &= \overline{\partial} - a\overline{\partial}a^{-1},\\ \delta_1(u) &= \overline{\partial}u - \frac{1}{2}[u, u],\\ \rho(a)(u) &= a(u - \overline{\partial})a^{-1} + \overline{\partial} \end{split}$$

By definition, the corresponding set of 1-cohomology has the form $Z^1(K)/\rho(K^0)$, where $Z^1(K) = \{u \in K^1 \mid \delta_1(u) = 0\}.$

Since dim $\mathbb{CP}^1 = 1$, it follows that $\mathbf{H}_{(1)} \subset Z^1(K)$. Moreover, as is shown in [O2], the natural map $\mathbf{H}_{(1)} \longrightarrow H^1(K)$ is surjective.

Further, $H^0(\mathbb{CP}^1, (\mathcal{T}_{gr})_2) = 0$ by Theorem 2.1. Hence, Theorem 3.13 from [O2] is applicable implying that this map is bijective. Thus, the bijection $\mathbf{H}_{(1)} \longrightarrow H^1(K)$ is SU_2 -invariant.

On the other hand, Theorem 2.1 implies that SU_2 acts on $\mathbf{H}_{(1)}$ trivially. Hence, it acts on $H^1(K)$ also trivially, and every cohomology class contains an invariant cocycle.

Applying the obtained in [O3] criterion for lifting the action of the compact groups on the non-split supermanifold we see that the SU₂-action on $\mathcal{CP}^{1|4}$ can be lifted to any supermanifold ($\mathbb{CP}^1, \mathcal{O}$) with $\mathcal{CP}^{1|4}$ as its retract. Since SU₂ transitively acts on \mathbb{CP}^1 , all these supermanifolds are $\overline{0}$ -homogeneous.

5 Description of supermanifolds via cocycles

Thanks to Theorem 3.1, the classes of isomorphic supermanifolds (M, \mathcal{O}) are in bijective correspondence with the Aut **E**-orbits on the set $H^1(M, Aut_{(2)}\mathcal{O}_{gr})$. Let $M = \mathbb{CP}^1$ and the odd dimension of supermanifolds $(\mathbb{CP}^1, \mathcal{O})$ be ≤ 5 .

As in [O2], define the *exponential map*

$$\exp: \mathcal{T}_{\mathrm{gr}} = (\mathcal{T}_{\mathrm{gr}})_2 \oplus (\mathcal{T}_{\mathrm{gr}})_4 \longrightarrow \mathcal{A}ut_{(2)}\mathcal{O}_{\mathrm{gr}},$$

its inverse $\log := \exp^{-1}$, and the map

$$\lambda_{2p}: \mathcal{A}ut_{(2p)}\mathcal{O}_{\mathrm{gr}} \longrightarrow (\mathcal{T}_{\mathrm{gr}})_{2p}$$

sending any $a \in Aut_{(2p)}\mathcal{O}_{gr}$ to the 2*p*-component $(\log a)_{2p}$ of $\log a$.

The map exp is an isomorphism of sheaves of sets, λ_{2p} is a surjective homomorphism of sheaves of groups. In what follows, we will represent the cocycle $g = \exp u$ by the cocycle $u = u_2 + u_4$, where

$$u_2 \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2) \text{ and } u_4 \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_4).$$
 (4)

Since

$$(\mathcal{T}_{\mathrm{gr}})_2 \cdot (\mathcal{T}_{\mathrm{gr}})_4 = (\mathcal{T}_{\mathrm{gr}})_4 \cdot (\mathcal{T}_{\mathrm{gr}})_4 = 0$$

it follows that $(\mathcal{T}_{gr})_4$ is a central ideal in \mathcal{T}_{gr} .

The exact sequence (see [O2])

$$e \longrightarrow \mathcal{A}ut_{(2p+2)}\mathcal{O} \longrightarrow \mathcal{A}ut_{(2p)}\mathcal{O} \xrightarrow{\lambda_{2p}} (\mathcal{T}_{\mathrm{gr}})_{2p} \longrightarrow 0$$

yields — for p = 2 — an isomorphism of the sheaves of groups

$$\exp: (\mathcal{T}_{\mathrm{gr}})_4 \longrightarrow \mathcal{A}ut_{(4)}\mathcal{O}_{\mathrm{gr}} \subset \mathcal{A}ut_{(2)}\mathcal{O}_{\mathrm{gr}}.$$

Hence, $\mathcal{A}ut_{(4)}\mathcal{O}_{gr}$ belongs to the center of $\mathcal{A}ut_{(2)}\mathcal{O}_{gr}$.

Define the action of the sheaf of groups $(\mathcal{T}_{gr})_4$ on $\mathcal{A}ut_{(2)}\mathcal{O}_{gr}$ by mean of right shifts

$$\Psi$$
: $v \mapsto t_v : z \mapsto z(\exp v)$, where $v \in (\mathcal{T}_{gr})_4$, and $z \in \mathcal{A}ut_{(2)}\mathcal{O}_{gr}$.

Let us translate this action to Čzech cocycles of the covering U_0, U_1 . Let us check if it is also well defined on cohomology. Let $v' \sim v$ and $z' \sim z$, where

$$v', v \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_4), \quad z', z \in Z^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{\mathrm{gr}}).$$

Then, $v' = b^{(0)} + v - b^{(1)}$ and $z' = c^{(0)} z(c^{(1)})^{-1}$, where $b^{(i)}, c^{(i)}$ are holomorphic sections over U_i for i = 0, 1 of the sheaves $(\mathcal{T}_{gr})_4$ and $\mathcal{A}ut_{(2)}\mathcal{O}_{gr}$, respectively. We see that

$$z' \exp v' = (c^{(0)} z (c^{(1)})^{-1}) (\exp v) (\exp b^{(0)}) (\exp b^{(1)})^{-1}$$

= $(c^{(0)} \exp b^{(0)}) (z \exp v) (c^{(1)} \exp b^{(1)})^{-1} \sim z \exp v.$

Therefore, the action Ψ on cohomology is well defined.

5.1. Theorem. Let dim($\mathbb{CP}^1, \mathcal{O}$) = 1|n with $n \leq 5$. Then, the action Ψ defines a free action of the group $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_4)$ on $H^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$; the orbits of this action are the fibers of the map

$$\lambda_2^*: H^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{\mathrm{gr}}) \longrightarrow H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2).$$

Proof. To show that $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_4)$ freely acts on $H^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$, i.e., the stabilizer of any element $z \in Z^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$ is trivial, let $z(\exp v) \sim z$. By the above, there exists an element

$$u \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2 \oplus (\mathcal{T}_{\mathrm{gr}})_4)$$

such that $z = \exp u$.

Let $u = u_2 + u_4$, see (4). Since

$$v = v_4 \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_4),$$

then

$$z(\exp v) = \exp(u_2 + u_4)\exp v = \exp(u_2 + u_4 + v_4).$$

Hence,

$$\exp(u_2 + u_4 + v_4) \sim \exp(u_2 + u_4)$$

Therefore,

$$\exp(u_2 + u_4 + v_4) = c^{(0)} \exp(u_2 + u_4) (c^{(1)})^{-1}$$

where $c^{(i)} \in \Gamma(U_i, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$ are holomorphic sections for i = 0, 1.

Let us represent $c^{(i)} = \exp(a_2^{(i)} + a_4^{(i)})$, where $a_2^{(i)}$ and $a_4^{(i)}$ are holomorphic sections of the sheaves $(\mathcal{T}_{gr})_2$ and $(\mathcal{T}_{gr})_4$, respectively, over U_i for i = 0, 1. Then, applying the Campbell-Hausdorff decomposition twice, we see that

$$\exp(a_2^{(0)} + a_4^{(0)}) \exp(u_2 + u_4) \exp(-a_2^{(1)} - a_4^{(1)}) = \exp(a_2^{(0)} + a_4^{(0)} + u_2 + u_4 - a_2^{(1)} - a_4^{(1)} + \frac{1}{2}[a_2^{(0)}, u_2] - \frac{1}{2}[u_2, a_2^{(1)}] - \frac{1}{2}[a_2^{(0)}, a_2^{(1)}]).$$

Hence,

$$u_{2} + u_{4} + v_{4} = a_{2}^{(0)} + a_{4}^{(0)} + u_{2} + u_{4} - a_{2}^{(1)} - a_{4}^{(1)} + \frac{1}{2}[a_{2}^{(0)}, u_{2}] - \frac{1}{2}[u_{2}, a_{2}^{(1)}] - \frac{1}{2}[a_{2}^{(0)}, a_{2}^{(1)}].$$

Therefore,

$$v_4 = a_2^{(0)} + a_4^{(0)} - a_2^{(1)} - a_4^{(1)} + \frac{1}{2}[a_2^{(0)}, u_2] - \frac{1}{2}[u_2, a_2^{(1)}] - \frac{1}{2}[a_2^{(0)}, a_2^{(1)}].$$

With respect to the degrees this equality breaks into two:

$$0 = a_2^{(0)} - a_2^{(1)},$$

$$v_4 = a_4^{(0)} - a_4^{(1)} + \frac{1}{2}[a_2^{(0)}, u_2] - \frac{1}{2}[u_2, a_2^{(1)}] - \frac{1}{2}[a_2^{(0)}, a_2^{(1)}].$$

Hence, we see that $v_4 = a_4^{(0)} - a_4^{(1)}$, i.e., $v \sim 0$.

Let us show now that the orbits of the $H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_4)$ -action on $H^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{\mathrm{gr}})$ are fibers of the map λ_2^* . Indeed, let $z(\exp v) \sim y$, where

$$y, z \in Z^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{\mathrm{gr}}), \quad v = v_4 \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_4).$$

Then, there exist $u, w \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2 \oplus (\mathcal{T}_{\mathrm{gr}})_4)$ such that $z = \exp u$ and $y = \exp w$. Let

$$u = u_2 + u_4$$
 and $w = w_2 + w_4$

where $u_2, w_2 \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_2)$ and $u_4, w_4 \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_4)$. We have

 $\exp(u_2 + u_4 + v_4) \sim \exp(w_2 + w_4)$

or, as in the first part of the proof,

$$\exp(u_2 + u_4 + v_4) = c^{(0)} \exp(w_2 + w_4) (c^{(1)})^{-1},$$

where $c^{(i)} = \exp(a_2^{(i)} + a_4^{(i)})$. We similarly obtain

$$\exp(u_2 + u_4 + v_4) = \exp(a_2^{(0)} + a_4^{(0)} + w_2 + w_4 - a_2^{(1)} - a_4^{(1)}).$$

Having applied λ_2 to both sides of this equality we get

$$u_2 = a_2^{(0)} + w_2 - a_2^{(1)}$$

Hence, $u_2 \sim w_2$, i.e., $z(\exp v)$ and y determine the same class in $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_2)$ with respect to λ_2^* .

5.2. Corollary. The classes in $H^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$ are determined by pairs (u_2, u_4) , see (4).

Proof. Theorem 2.1 implies that $H^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$ can be viewed as the bundle with base $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_2)$ and fiber $H^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_4)$. Thus, any class in $H^1(\mathcal{A}ut_{(2)}\mathcal{O}_{gr})$ is determined by (u_2, u_4) , see (4).

5.3. Theorem. Any supermanifold with retract $C\mathcal{P}^{1|4}$ coincides, up to an isomorphism, with one of the following supermanifolds \mathcal{M} determined by the cocycle $u^{(01)} = u_2 + u_4$, see (4).

For homogeneous of these supermanifolds — the cases marked by *, the Lie superalgebra $\mathfrak{v}(\mathcal{M})$ is described in § 7.

1*)
$$u_2 = 0$$
, and $u_4 = 0$;
2*) $u_2 = x^{-1}\delta_1\partial_{\xi_1}$, and $u_4 = 0$;
3*) $u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}$, and $u_4 = 0$;
4*) $u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}$, and $u_4 = 0$;
5*) $u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}$, and $u_4 = 0$;

6)
$$u_2 = 0$$
, and $u_4 = x^{-1}\delta\partial_x$;
7) $u_2 = x^{-1}\delta_1\partial_{\xi_1}$, and $u_4 = x^{-1}\delta\partial_x$;
8) $u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}$, and $u_4 = x^{-1}\delta\partial_x$;
9) $u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}$, and $u_4 = x^{-1}\delta\partial_x$;
10*) $u_2 = t(x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4})$ with $t \in \mathbb{C}^{\times}$, and $u_4 = x^{-1}\delta\partial_x$.

Proof. Theorem 2.1 implies that

$$H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2) \simeq \mathbb{C}^{10}$$
, and $H^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_4) \simeq \mathbb{C}$.

Thus, by Corollary 5.2, $H^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$ is the bundle with base \mathbb{C}^{10} and fiber \mathbb{C} .

Theorem 2.2 provides us with the system of generating cocycles for the basis and the fiber of this bundle. Thus, any supermanifold with retract $C\mathcal{P}^{1|4}$ is determined, up to an isomorphism, by the cocycle which in U_0 is of the form

$$u = \sum_{i,j=1,\dots,4} c_{ij} x^{-1} \delta_i \partial_{\xi_j} + c x^{-1} \delta \partial_x, \text{ where } c_{ij} = c_{ji}, \text{ and } c \in \mathbb{C}.$$
 (5)

Let $\alpha \in \text{Aut } \mathbf{E}$. Since the automorphism α is a linear function in sections ξ_1, \ldots, ξ_4 , then in U_0 we see that

$$\alpha(\xi_i) = \sum_{1 \le j \le 4} a_{ji}(x)\xi_j$$
, where $a_{ji}(x)$ are holomorphic functions in x .

Therefore, in U_1 this equality takes the form

$$y^{-1}\alpha(\eta_i) = \sum_{1 \le j \le 4} a_{ji}(y^{-1})y^{-1}\eta_j, \quad \text{or} \quad \alpha(\eta_i) = \sum_{1 \le j \le 4} a_{ji}(y^{-1})\eta_j.$$

This is how the action of the group Aut **E** on sections η_1, \ldots, η_4 on U_1 is defined. Hence, $a_{ji}(y^{-1})$ should be holomorphic functions in y on U_1 . Hence, $a_{ji} = const$ for any i, j.

Therefore, any automorphism $\alpha \in \operatorname{Aut} \mathbf{E}$ is given by a complex matrix $A = (a_{ij})$, i.e., Aut $\mathbf{E} \simeq \operatorname{GL}_4(\mathbb{C})$.

Let $B = (b_{ij})$ be the inverse of $A = (a_{ij})$. Then,

$$\alpha(\partial_{\xi_i})\xi_j = (\alpha\partial_{\xi_i}\alpha^{-1})\xi_j = \alpha\partial_{\xi_i}(\sum_{1\le k\le 4} b_{kj}\xi_k) = \alpha(b_{ij}) = b_{ij},$$

i.e.,

$$\alpha(\partial_{\xi_i}) = \sum_{1 \le j \le 4} b_{ij} \partial_{\xi_j}.$$

Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ i & j & k & l \end{pmatrix} \in S_4$$
. Further,

$$\begin{aligned} \alpha(\delta) &= \alpha(\xi_1\xi_2\xi_3\xi_4) = \alpha(\xi_1)\alpha(\xi_2)\alpha(\xi_3)\alpha(\xi_4) \\ &= \left(\sum_{1 \le i \le 4} a_{i1}\xi_i\right) \left(\sum_{1 \le j \le 4} a_{j2}\xi_j\right) \left(\sum_{1 \le k \le 4} a_{k3}\xi_k\right) \left(\sum_{1 \le l \le 4} a_{l4}\xi_l\right) \\ &= \left(\sum_{\sigma \in S_4} \operatorname{sign} \sigma \cdot a_{i1}a_{j2}a_{k3}a_{l4}\right)\delta = \det A \cdot \delta; \\ \alpha(\delta_i) &= \alpha\left(\partial_{\xi_i}\delta\right) = \alpha(\partial_{\xi_i})\alpha(\delta) = \det A \cdot \sum_{1 \le k \le 4} b_{ik}\partial_{\xi_k}\delta = \det A \cdot \sum_{1 \le k \le 4} b_{ik}\delta_k. \end{aligned}$$

We see that

$$\begin{aligned} &\alpha\left(x^{-1}\delta\partial_x\right) = x^{-1}\alpha(\delta)\partial_x \\ &= x^{-1}\left(\sum_{1\leq i\leq 4} a_{i1}\xi_i\right)\left(\sum_{1\leq j\leq 4} a_{j2}\xi_j\right)\left(\sum_{1\leq k\leq 4} a_{k3}\xi_k\right)\left(\sum_{1\leq l\leq 4} a_{l4}\xi_l\right)\partial_x \\ &= x^{-1}\left(\sum_{\sigma\in S_4} \operatorname{sign}\sigma \cdot a_{i1}a_{j2}a_{k3}a_{l4}\right)\delta\partial_x = \det A \cdot x^{-1}\delta\partial_x; \\ &\alpha\left(x^{-1}\delta_i\partial_{\xi_j}\right) = x^{-1}\alpha(\delta_i)\alpha\left(\partial_{\xi_j}\right) \\ &= \det A \cdot \sum_{1\leq k\leq 4} b_{ik}\delta_k \sum_{1\leq l\leq 4} b_{jl}\partial_{\xi_l} = \det A \cdot \sum_{1\leq k,l\leq 4} b_{ik}b_{jl}\delta_k\partial_{\xi_l}. \end{aligned}$$

Then, having applied α to the cocycle (5), we get

$$\alpha(u) = \det A \cdot \sum_{1 \le i, j, k, l \le 4} x^{-1} c_{ij} b_{ik} b_{jl} \delta_k \partial_{\xi_l} + \det A \cdot c x^{-1} \delta \partial_x.$$

This implies, in particular, that the matrix $C = (c_{ij})$ transforms into $(\det A)B^tCB$.

Since every cocycle of the form (5) is uniquely determined by the matrix C and the number c, and the (Aut **E**)-action is known, it suffices to consider the following cases.

1. In this case, C = 0 and c = 0.

2. Let $\operatorname{rk} C = 1$ and c = 0. Then, as follows from Algebra course, the group $\operatorname{GL}_4(\mathbb{C})$ does not change the rank of C and there is an invertible operator reducing C to the 4×4 matrix E_{11} . To this matrix the cocycle $x^{-1}\delta_1\partial_{\xi_1}$ corresponds; we will consider this cocycle as a representative of the corresponding (Aut **E**)-orbit on $Z^1(\mathbb{CP}^1, \operatorname{Aut}_{(2)}\mathcal{O}_{\operatorname{gr}})$.

3, 4 and 5. Let $\operatorname{rk} C = 2, 3$ and 4, respectively and c = 0. As in case 2, we get, respectively, the following representatives:

$$\begin{aligned} x^{-1}\delta_{1}\partial_{\xi_{1}} + x^{-1}\delta_{2}\partial_{\xi_{2}}, \\ x^{-1}\delta_{1}\partial_{\xi_{1}} + x^{-1}\delta_{2}\partial_{\xi_{2}} + x^{-1}\delta_{3}\partial_{\xi_{3}}, \\ x^{-1}\delta_{1}\partial_{\xi_{1}} + x^{-1}\delta_{2}\partial_{\xi_{2}} + x^{-1}\delta_{3}\partial_{\xi_{3}} + x^{-1}\delta_{4}\partial_{\xi_{4}} \end{aligned}$$

6. Let C = 0 and $c \neq 0$. Then, the transformation determined by the matrix A with det $A = \frac{1}{c}$ leads to the cocycle $x^{-1}\delta\partial_x$. Let us take it for the representative of the corresponding (Aut **E**)-orbit on $Z^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$.

7. Let $\operatorname{rk} C = 1$ and $c \neq 0$. Since C is not invertible, it is possible (elementary linear algebra) to find a matrix A with $\det A = \frac{1}{c}$ so that C becomes the matrix unit E_{11} . The cocycle corresponding to this matrix and the number 1 is $x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta\partial_x$. Let us take it for the representative of the corresponding (Aut **E**)-orbit on $Z^1(\mathbb{CP}^1, \operatorname{Aut}_{(2)}\mathcal{O}_{\operatorname{gr}})$.

8 and 9. Let $\operatorname{rk} C = 2$ and 3, respectively, and $c \neq 0$. In analogy with case 7, the representatives are, respectively,

$$x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta\partial_x, x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta\partial_x$$

10. Let $\operatorname{rk} C = 4$ and $c \neq 0$. In this case, by an invertible transformation with matrix A such that $\det A = \frac{1}{c}$ the matrix C can be reduced to the diagonal form $t \, 1_4$, where $t \in \mathbb{C}^{\times}$.

As a result, we get a 1-parameter family of cocycles

$$c_t := t(x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}) + x^{-1}\delta\partial_x,$$

Every cocycle c_t defines an orbit in $Z^1(\mathbb{CP}^1, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$.

Which of the supermanifolds with retract $\mathcal{CP}^{1|4}$ are homogeneous 6

Consider an open covering $\mathcal{U} = (U_i)_{i \in I}$ of a topological space M. Let the supermanifold (M, \mathcal{O}) be determined by a cocycle $g \in Z^1(M, \mathcal{A}ut_{(2)}\mathcal{O}_{gr})$. Recall the definition of a liftable field, see $\S 2$.

6.1 Theorem ([BO1]). The vector field $v \in \mathfrak{v}(M, \mathcal{O}_{gr})_p$ can be lifted to (M, \mathcal{O}) if and only if there exists a $v^{(i)} \in C^0(M, (\mathcal{T}_{gr})_{(p)})$ such that

$$v^{(i)} \equiv v \mod(\mathcal{T}_{\mathrm{gr}})_{(p+1)}(U_i),$$

$$g^{(ij)}v^{(j)} = v^{(i)}g^{(ij)} \quad in \quad U_i \cap U_j \neq \emptyset.$$

Consider the representation

$$g^{(01)} = \exp u^{(01)}$$
, where $u^{(01)} \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{\mathrm{gr}})_2 \oplus (\mathcal{T}_{\mathrm{gr}})_4)$

Let $u^{(01)} = u_2 + u_4$, see (4).

6.2. Corollary. The vector field $v \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_p$ can be lifted if and only if the following conditions hold

$$p = -1 \quad [v, u_2] = v_1^{(1)} - v_1^{(0)}, \tag{2}$$

$$[v, u_4] = v_3^{(1)} - v_3^{(0)} + [u_2, v_1^{(1)}] + \frac{1}{2}[u_2, [u_2, v]], \tag{3}$$

$$p = 0 \quad [v, u_2] = v_2^{(1)} - v_2^{(0)}, \qquad [v, u_4] = v_4^{(1)} - v_4^{(0)} + [u_2, v_2^{(1)}] + \frac{1}{2}[u_2, [u_2, v]], \qquad p = 1 \quad [v, u_2] = v_3^{(1)} - v_3^{(0)}.$$

Proof. Let $v \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_p$, where p = -1, 0. Let us seek $v^{(i)}$ in the form $v + v_{p+2}^{(i)} + v_{p+4}^{(i)}$ for $v_{p+2}^{(i)} \in \mathfrak{v}(U_i, \mathcal{O}_{\mathrm{gr}})_{p+2}$, and $v_{p+4}^{(i)} \in \mathfrak{v}(U_i, \mathcal{O}_{\mathrm{gr}})_{p+4}$. By Theorem 6.1 we have a condition

$$g^{(01)}v^{(1)} = v^{(0)}g^{(01)}.$$

Then,

$$\begin{aligned} v^{(0)} &= g^{(01)} v^{(1)} (g^{(01)})^{-1} = (\operatorname{exp} \operatorname{ad}_{u^{(01)}}) v^{(1)} \\ &= v^{(1)} + [u^{(01)}, v^{(1)}] + \frac{1}{2} [u^{(01)}, [u^{(01)}, v^{(1)}]]. \end{aligned}$$

Therefore,

$$v + v_{p+2}^{(0)} + v_{p+4}^{(0)} = v + v_{p+2}^{(1)} + v_{p+4}^{(1)} + [u_2 + u_4, v + v_{p+2}^{(1)}] + \frac{1}{2}[u_2, [u_2, v]].$$

Hence, we get the conditions

$$[v, u_2] = v_{p+2}^{(1)} - v_{p+2}^{(0)},$$

$$[v, u_4] = v_{p+4}^{(1)} - v_{p+4}^{(0)} + [u_2, v_{p+2}^{(1)}] + \frac{1}{2}[u_2, [u_2, v]].$$

Let $v \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1$. We seek $v^{(i)}$ in the form $v + v_3^{(i)}$, where $v_3^{(i)} \in \mathfrak{v}(U_i, \mathcal{O}_{\mathrm{gr}})_3$. By Theorem 6.1 we get the condition

$$g^{(01)}v^{(1)} = v^{(0)}g^{(01)}$$
.

Then,

$$v^{(0)} = g^{(01)}v^{(1)}(g^{(01)})^{-1} = (\exp \operatorname{ad}_{u^{(01)}})v^{(1)} = v^{(1)} + [u^{(01)}, v^{(1)}].$$

Therefore,

$$v + v_3^{(0)} = v + v_3^{(1)} + [u_2 + u_4, v + v_3^{(1)}].$$

Hence, we get the condition

$$[v, u_2] = v_3^{(1)} - v_3^{(0)}.$$

The definition of homogeneous supermanifold implies that the supermanifold is homogeneous if and only if the following map is surjective

$$\operatorname{ev}_x : \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}) \longrightarrow T_x(\mathbb{CP}^1, \mathcal{O}) \text{ for any } x \in \mathbb{CP}^1.$$

Since $\overline{0}$ -homogeneity takes place by the proved, it is necessary and sufficient to prove that all fields $\partial_{\xi_i} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{gr})_{-1}$ can be lifted to $(\mathbb{CP}^1, \mathcal{O})$.

Let us use the conditions obtained to verify the homogeneity of the supermanifolds in the 10 cases of Theorem 6.1. For every homogeneous $(\mathbb{CP}^1, \mathcal{O})$, I compute the Lie superalgebra of vector fields on it.

6.2 Case 1. It corresponds to the supermanifold $C\mathcal{P}^{1|4}$. It is well-known that this supermanifold is homogeneous. The Lie superalgebra of vector fields on $C\mathcal{P}^{1|4}$ is known (see [O3]):

$$\begin{aligned} & \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1} = \langle v_{5i} = -\partial_{\xi_i}, v_{6i} = -x\partial_{\xi_i}, \text{ where } i = 1, \dots, 4 >, \\ & \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_0 = \langle v_{ij} = -\xi_i\partial_{\xi_j}, \text{ where } i, j = 1, \dots, 4, v_{55} = x\partial_x + \nabla, \\ & v_{66} = -x\partial_x, v_{56} = -\partial_x, v_{65} = x^2\partial_x + x\nabla, \text{ where } \sum_{1 \le i \le 6} v_{ii} = 0 >; \\ & \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1 = \langle v_{i5} = -\xi_i(x\partial_x + \nabla), v_{i6} = -\xi_i\partial_x \text{ for } i = 1, \dots, 4 >. \end{aligned}$$

6.3 Case 2. Then, $u_2 = x^{-1}\delta_1\partial_{\xi_1}$, and $u_4 = 0$. Let $v_i = -\partial_{\xi_i} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1}$, where $i = 1, \ldots, 4$.

We will repeatedly use the following "formula"

Since
$$[v_i, u_2] \in Z^1(\mathbb{CP}^1, (\mathcal{T}_{gr})_1)$$
, then $[v_i, u_2] \sim 0$ by Theorem 2.1, and hence condition (2) of Corollary 6.2 holds. (6)

Since

$$[v_i, u_2] = [-\partial_{\xi_i}, x^{-1}\delta_1\partial_{\xi_1}] = -x^{-1}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1}$$

is holomorphic in U_1 , then for each v_i we set

$$v_i^{(0)} = 0, v_i^{(1)} = -x^{-1} \frac{\partial \delta_1}{\partial \xi_i} \partial_{\xi_1}.$$

00

We have

$$[x^{-1}\delta_1\partial_{\xi_1}, -x^{-1}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1}] = -x^{-2}\delta_1\partial_{\xi_1}(\frac{\partial\delta_1}{\partial\xi_i})\partial_{\xi_1} + x^{-2}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1}(\delta_1)\partial_{\xi_1} = 0$$

The first summand vanishes since δ_1 does not contain ξ_1 by definition and $\partial_{\xi_1}(\frac{\partial \delta_1}{\partial \xi_i}) = 0$. The second summand also vanishes since $\partial_{\xi_1}(\delta_1) = 0$. Hence, condition (3) of Corollary 6.2 takes the form

$$0 = v_3^{(1)} - v_3^{(0)}.$$

Set $v_3^{(0)} = v_3^{(1)} = 0.$

Therefore, all fields $v_i = -\partial_{\xi_i}$, where $i = 1, \ldots, 4$, can be lifted; moreover, in U_0 they have the same form. Hence, the supermanifolds corresponding to the cocycle of the 2nd case is homogeneous.

6.3. Theorem. Let supermanifold $(\mathbb{CP}^1, \mathcal{O})$ be isomorphic to the supermanifold determined by the cocycle $u^{(01)} = x^{-1}\delta_1\partial_{\xi_1}$. Then, (recall notation (2))

$$\begin{aligned} \mathfrak{v}(\mathbb{CP}^{1},\mathcal{O})_{\overline{0}} = & \langle -\partial_{x}, x^{2}\partial_{x} + x\nabla - \delta_{1}\partial_{\xi_{1}}, 2x\partial_{x} + \nabla, \\ & -x\partial_{x} - \xi_{2}\partial_{\xi_{2}}, -x\partial_{x} - \xi_{3}\partial_{\xi_{3}}, -x\partial_{x} - \xi_{4}\partial_{\xi_{4}}, -\xi_{2}\partial_{\xi_{1}}, -\xi_{2}\partial_{\xi_{3}}, \\ & -\xi_{2}\partial_{\xi_{4}}, -\xi_{3}\partial_{\xi_{1}}, -\xi_{3}\partial_{\xi_{2}}, -\xi_{3}\partial_{\xi_{4}}, -\xi_{4}\partial_{\xi_{1}}, -\xi_{4}\partial_{\xi_{2}}, -\xi_{4}\partial_{\xi_{3}} \rangle; \\ \mathfrak{v}(\mathbb{CP}^{1},\mathcal{O})_{\overline{1}} = & \langle -\partial_{\xi_{i}} \text{ for } i = 1, \dots, 4, -x\partial_{\xi_{1}}, -x\partial_{\xi_{2}} + \xi_{3}\xi_{4}\partial_{\xi_{1}}, -\xi_{j}\partial_{x}, \\ & -x\partial_{\xi_{3}} - \xi_{2}\xi_{4}\partial_{\xi_{1}}, -x\partial_{\xi_{4}} + \xi_{2}\xi_{3}\partial_{\xi_{1}}, -\xi_{j}(x\partial_{x} + \nabla), \text{ for } j = 2, 3, 4 \rangle. \end{aligned}$$

6.4 Case 3. Let $u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}$, and $u_4 = 0$. Let $v_i = -\partial_{\xi_i} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1}$, where $i = 1, \ldots, 4$. Thanks to (6) and since

$$[v_i, u_2] = [-\partial_{\xi_i}, x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}] = -x^{-1}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1} - x^{-1}\frac{\partial\delta_2}{\partial\xi_i}\partial_{\xi_2}$$

is holomorphic in U_1 , then for each v_i we set

$$v_1^{(0)} = 0, \quad v_1^{(1)} = -x^{-1} \frac{\partial \delta_1}{\partial \xi_i} \partial_{\xi_1} - x^{-1} \frac{\partial \delta_2}{\partial \xi_i} \partial_{\xi_2}$$

In the same way as in Case 2 we see that

$$[x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}, \ -x^{-1}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1} - x^{-1}\frac{\partial\delta_2}{\partial\xi_i}\partial_{\xi_2}] = 0.$$

Hence, condition (3) of Corollary 6.2 takes the form

$$0 = v_3^{(1)} - v_3^{(0)}$$

Set $v_3^{(0)} = v_3^{(1)} = 0.$

Thus, all fields $v_i = -\partial_{\xi_i}$ for $i = 1, \ldots, 4$ can be lifted and in U_0 they have the same form. Therefore, the supermanifold corresponding to the cocycle of Case 3 is homogeneous.

6.4. Theorem. Let supermanifold $(\mathbb{CP}^1, \mathcal{O})$ be isomorphic to the supermanifold determined by the cocycle $u^{(01)} = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}$. Then, (recall notation (2))

$$\mathfrak{v}(\mathbb{CP}^{1}, \mathcal{O})_{\overline{0}} = < -\partial_{x}, \ x^{2}\partial_{x} + x\nabla - \delta_{1}\partial_{\xi_{1}} - \delta_{2}\partial_{\xi_{2}}, \ 2x\partial_{x} + \nabla, \\ \xi_{2}\partial_{\xi_{2}}, \ -x\partial_{x} - \xi_{3}\partial_{\xi_{3}}, \ -x\partial_{x} - \xi_{4}\partial_{\xi_{4}}, \ \xi_{1}\partial_{\xi_{2}} - \xi_{2}\partial_{\xi_{1}}, \ -\xi_{3}\partial_{\xi_{1}}, \\ -\xi_{3}\partial_{\xi_{2}}, \ -\xi_{3}\partial_{\xi_{4}}, \ -\xi_{4}\partial_{\xi_{1}}, \ -\xi_{4}\partial_{\xi_{2}}, \ -\xi_{4}\partial_{\xi_{3}} >; \\ \mathfrak{v}(\mathbb{CP}^{1}, \mathcal{O})_{\overline{1}} = < -\partial_{\xi_{i}}, \ i = 1, \dots, 4, \ -x\partial_{\xi_{1}} - \xi_{3}\xi_{4}\partial_{\xi_{2}}, \ -x\partial_{\xi_{2}} + \xi_{3}\xi_{4}\partial_{\xi_{1}} \\ -x\partial_{\xi_{3}} - \xi_{2}\xi_{4}\partial_{\xi_{1}} + \xi_{1}\xi_{4}\partial_{\xi_{2}}, \ -x\partial_{\xi_{4}} + \xi_{2}\xi_{3}\partial_{\xi_{1}} - \xi_{1}\xi_{3}\partial_{\xi_{2}}, \\ -\xi_{j}(x\partial_{x} + \nabla), \ -\xi_{j}\partial_{x}, \ j = 3, 4 > .$$

6.5 Case 4. Let $u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}$, and $u_4 = 0$. Let $v_i = -\partial_{\xi_i} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1}$, where $i = 1, \ldots, 4$. Thanks to (6) and since

$$[v_i, u_2] = [-\partial_{\xi_i}, x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}]$$

= $-x^{-1}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1} - x^{-1}\frac{\partial\delta_2}{\partial\xi_i}\partial_{\xi_2} - x^{-1}\frac{\partial\delta_3}{\partial\xi_i}\partial_{\xi_3}$

is holomorphic in U_1 , then for each v_i we set

$$v_1^{(0)} = 0, \quad v_1^{(1)} = -x^{-1} \frac{\partial \delta_1}{\partial \xi_i} \partial_{\xi_1} - x^{-1} \frac{\partial \delta_2}{\partial \xi_i} \partial_{\xi_2} - x^{-1} \frac{\partial \delta_3}{\partial \xi_i} \partial_{\xi_3}.$$

In the same way as in Case 2 we see that [X, Y] = 0, where

$$X := x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3},$$

$$Y := -x^{-1}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1} - x^{-1}\frac{\partial\delta_2}{\partial\xi_i}\partial_{\xi_2} - x^{-1}\frac{\partial\delta_3}{\partial\xi_i}\partial_{\xi_3}.$$

Hence, condition (3) of Corollary 6.2 is of the form

$$0 = v_3^{(1)} - v_3^{(0)}.$$

Set $v_3^{(0)} = v_3^{(1)} = 0.$

Thus, all fields $v_i = -\partial_{\xi_i}$ for $i = 1, \dots, 4$ can be lifted and in U_0 they have the same form. Therefore, the supermanifold corresponding to the cocycle of the 4th case is homogeneous.

6.5. Theorem. Let supermanifold $(\mathbb{CP}^1, \mathcal{O})$ be isomorphic to the supermanifold determined by the cocycle

$$u^{(01)} = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}.$$

Then, (recall notation (2))

$$\begin{aligned} \mathfrak{v}(\mathbb{CP}^{1},\mathcal{O})_{\overline{0}} &= < -\partial_{x}, \ x^{2}\partial_{x} + x\nabla - \delta_{1}\partial_{\xi_{1}} - \delta_{2}\partial_{\xi_{2}} - \delta_{3}\partial_{\xi_{3}}, \ 2x\partial_{x} + \nabla_{\xi_{1}} \\ \xi_{1}\partial_{\xi_{2}} &- \xi_{2}\partial_{\xi_{1}}, \ \xi_{1}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{1}}, \ \xi_{2}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{2}}, \ -x\partial_{x} - \xi_{4}\partial_{\xi_{4}}, \\ -\xi_{4}\partial_{\xi_{1}}, \ -\xi_{4}\partial_{\xi_{2}}, \ -\xi_{4}\partial_{\xi_{3}} >; \\ \mathfrak{v}(\mathbb{CP}^{1},\mathcal{O})_{\overline{1}} &= < -\partial_{\xi_{i}} \ for \ i = 1, \dots, 4, \ -x\partial_{\xi_{1}} - \xi_{3}\xi_{4}\partial_{\xi_{2}} + \xi_{2}\xi_{4}\partial_{\xi_{3}}, \\ -x\partial_{\xi_{2}} + \xi_{3}\xi_{4}\partial_{\xi_{1}} - \xi_{1}\xi_{4}\partial_{\xi_{3}}, \ -x\partial_{\xi_{3}} - \xi_{2}\xi_{4}\partial_{\xi_{1}} + \xi_{1}\xi_{4}\partial_{\xi_{2}}, \\ -x\partial_{\xi_{4}} + \xi_{2}\xi_{3}\partial_{\xi_{1}} - \xi_{1}\xi_{3}\partial_{\xi_{2}} + \xi_{1}\xi_{2}\partial_{\xi_{3}}, \ -\xi_{4}(x\partial_{x} + \nabla), \ -\xi_{4}\partial_{x} > . \end{aligned}$$

6.6 Case 5. Let

$$u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}$$
, and $u_4 = 0$.

Let $v_i = -\partial_{\xi_i} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1}$, where $i = 1, \ldots, 4$. Thanks to (6) and since

$$\begin{bmatrix} v_i, u_2 \end{bmatrix} = \begin{bmatrix} -\partial_{\xi_i}, x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4} \end{bmatrix} = \\ = -x^{-1}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1} - x^{-1}\frac{\partial\delta_2}{\partial\xi_i}\partial_{\xi_2} - x^{-1}\frac{\partial\delta_3}{\partial\xi_i}\partial_{\xi_3} - x^{-1}\frac{\partial\delta_4}{\partial\xi_i}\partial_{\xi_4} \end{bmatrix} =$$

is holomorphic in U_1 , then for each v_i we set

$$v_1^{(0)} = 0, \quad v_1^{(1)} = -x^{-1} \frac{\partial \delta_1}{\partial \xi_i} \partial_{\xi_1} - x^{-1} \frac{\partial \delta_2}{\partial \xi_i} \partial_{\xi_2} - x^{-1} \frac{\partial \delta_3}{\partial \xi_i} \partial_{\xi_3} - x^{-1} \frac{\partial \delta_4}{\partial \xi_i} \partial_{\xi_4}.$$

In the same way as in Case 2 we see that [A, B] = 0, where

$$A := x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4},$$

$$B := -x^{-1}\frac{\partial\delta_1}{\partial\xi_i}\partial_{\xi_1} - x^{-1}\frac{\partial\delta_2}{\partial\xi_i}\partial_{\xi_2} - x^{-1}\frac{\partial\delta_3}{\partial\xi_i}\partial_{\xi_3} - x^{-1}\frac{\partial\delta_4}{\partial\xi_i}\partial_{\xi_4}.$$

Hence, condition (3) of Corollary 6.2 takes the form

$$0 = v_3^{(1)} - v_3^{(0)}.$$

Set $v_3^{(0)} = v_3^{(1)} = 0.$

Therefore, all fields $v_i = -\partial_{\xi_i}$ for $i = 1, \ldots, 4$ can be lifted and in U_0 they have the same form. Therefore, the supermanifold corresponding to the cocycle of the 5th case is homogeneous.

6.6. Theorem. Let supermanifold $(\mathbb{CP}^1, \mathcal{O})$ be isomorphic to the supermanifold determined by the cocycle

$$u^{(01)} = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}.$$

Then, (recall notation (2))

$$\mathfrak{v}(\mathbb{CP}^{1}, \mathcal{O})_{\overline{0}} = < -\partial_{x}, \ x^{2}\partial_{x} + x\nabla + \nabla, \ 2x\partial_{x} + \nabla, \ \xi_{1}\partial_{\xi_{2}} - \xi_{2}\partial_{\xi_{1}}, \\ \xi_{1}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{1}}, \ \xi_{2}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{2}}, \ \xi_{1}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{1}}, \ \xi_{2}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{2}}, \ \xi_{3}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{3}} >, \\ \mathfrak{v}(\mathbb{CP}^{1}, \mathcal{O})_{\overline{1}} = < -x\partial_{\xi_{1}} - \xi_{3}\xi_{4}\partial_{\xi_{2}} + \xi_{2}\xi_{4}\partial_{\xi_{3}} - \xi_{2}\xi_{3}\partial_{\xi_{4}}, \\ -x\partial_{\xi_{2}} + \xi_{3}\xi_{4}\partial_{\xi_{1}} - \xi_{1}\xi_{4}\partial_{\xi_{3}} + \xi_{1}\xi_{3}\partial_{\xi_{4}}, \ -x\partial_{\xi_{3}} - \xi_{2}\xi_{4}\partial_{\xi_{1}} + \xi_{1}\xi_{4}\partial_{\xi_{2}} - \xi_{1}\xi_{2}\partial_{\xi_{4}}, \\ -x\partial_{\xi_{4}} + \xi_{2}\xi_{3}\partial_{\xi_{1}} - \xi_{1}\xi_{3}\partial_{\xi_{2}} + \xi_{1}\xi_{2}\partial_{\xi_{3}}, \ -\partial_{\xi_{i}} \ for \ i = 1, \dots, 4 > .$$

6.7 Case 6. Let $u_2 = 0$, and $u_4 = x^{-1} \delta \partial_x$.

Consider the fields $v_i = -\partial_{\xi_i} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{gr})_{-1}$, where $i = 1, \ldots, 4$. Since $[v_i, u_2] = 0$, then condition (2) of Corollary 6.2 is satisfied; it takes the form

$$[v_i, u_4] = v_3^{(1)} - v_3^{(0)},$$

where $v_3^{(j)}$ is holomorphic in U_j for j = 0, 1. Then, $[v_i, u_4]$ should be cohomologous to 0. Substituting the values of v_i and u_4 , we see that $[\partial_{\xi_i}, x^{-1}\delta\partial_x] = x^{-1}\delta_i\partial_x$ which is a basis cocycle (see Theorem 2.2). Hence, condition (3) of Corollary 6.2 is not satisfied.

Therefore, none of the fields $-\partial_{\xi_i}$ for $i = 1, \ldots, 4$ can be lifted. Therefore, the supermanifold corresponding to the cocycle of the 6th case is not homogeneous.

6.8 Case 7. Let $u_2 = x^{-1}\delta_1\partial_{\xi_1}$, and $u_4 = x^{-1}\delta\partial_x$. Consider $v = -\partial_{\xi_4} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1}$. Thanks to (6) and since

$$[v, u_2] = [-\partial_{\xi_4}, x^{-1}\delta_1\partial_{\xi_1}] = -x^{-1}\xi_2\xi_3\partial_{\xi_1}$$

is holomorphic in U_1 , set $v_1^{(0)} = v'$, and $v_1^{(1)} = -x^{-1}\xi_2\xi_3\partial_{\xi_1} + v'$, where $v' \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1$. Since $[x^{-1}\delta_1\partial_{\xi_1}, x^{-1}\xi_2\xi_3\partial_{\xi_1}] = 0$, then condition (3) of Corollary 6.2 is of the form

$$[-\partial_{\xi_4}, x^{-1}\delta\partial_x] = v_3^{(1)} - v_3^{(0)} + [x^{-1}\delta_1\partial_{\xi_1}, v'].$$

Therefore,

$$x^{-1}\delta_4\partial_x + [v', x^{-1}\delta_1\partial_{\xi_1}] \sim 0$$

Since $v' \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1$, let us consider (recall notation (2))

$$v' = \sum_{1 \le k \le 4} \left(A_k \xi_k (x \partial_x + \nabla) + B_k \xi_k \partial_x \right), \text{ where } A_k, B_k \in \mathbb{C}.$$

Then,

$$\begin{split} & [v', x^{-1}\delta_{1}\partial_{\xi_{1}}] = -A_{1}x^{-1}\delta\partial_{\xi_{1}} + 3A_{1}\delta\partial_{\xi_{1}} - B_{1}x^{-2}\delta\partial_{\xi_{1}} - \\ & -(A_{1}\delta_{1}\partial_{x} - 2A_{1}x^{-1}\delta\partial_{\xi_{1}} + B_{1}x^{-1}\delta_{1}\partial_{x}]) \\ & = A_{1}x^{-1}\delta\partial_{\xi_{1}} - B_{1}x^{-2}\delta\partial_{\xi_{1}} - B_{1}x^{-1}\delta_{1}\partial_{x} + 3A_{1}\delta\partial_{\xi_{1}} - A_{1}\delta_{1}\partial_{x} \\ & \sim A_{1}x^{-1}\delta\partial_{\xi_{1}} - 2B_{1}x^{-1}\delta_{1}\partial_{x}. \end{split}$$

But then, for any $A_1, B_1 \in \mathbb{C}$, we have

$$x^{-1}\delta_4\partial_x + [v', x^{-1}\delta_1\partial_{\xi_1}] \sim x^{-1}\delta_4\partial_x + A_1x^{-1}\delta_1\partial_{\xi_1} - 2B_1x^{-1}\delta_1\partial_x \not\sim 0.$$

Therefore, the field $-\partial_{\xi_4}$ can not be lifted. This suffices to conclude that the supermanifold corresponding to the cocycle of the 7th case is not homogeneous. **6.9 Case 8.** Let $u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}$, and $u_4 = x^{-1}\delta\partial_x$. Consider $v = -\partial_{\xi_4} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1}$. Thanks to (6) and since

$$[v, u_2] = [-\partial_{\xi_4}, x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}] = -x^{-1}\xi_2\xi_3\partial_{\xi_1} + x^{-1}\xi_1\xi_3\partial_{\xi_2}$$

is holomorphic in U_1 , we set

$$v_1^{(0)} = v', \quad v_1^{(1)} = -x^{-1}\xi_2\xi_3\partial_{\xi_1} + x^{-1}\xi_1\xi_3\partial_{\xi_2} + v', \text{ where } v' \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1.$$

Since

$$[x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}, -x^{-1}\xi_2\xi_3\partial_{\xi_1} + x^{-1}\xi_1\xi_3\partial_{\xi_2}] = 0,$$

then condition (3) of Corollary 6.2 is of the form

$$[\partial_{\xi_4}, x^{-1}\delta\partial_x] = v_3^{(1)} - v_3^{(0)} + [x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}, v'].$$

Therefore,

$$x^{-1}\delta_4\partial_x + [v', x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}] \sim 0.$$

Since $v' \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1$, let us consider (recall notation (2))

$$v' = \sum_{1 \le k \le 4} \left(A_k \xi_k (x \partial_x + \nabla) + B_k \xi_k \partial_x \right),$$
where $A_k, B_k \in \mathbb{C}.$

Then,

$$\begin{bmatrix} v', x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} \end{bmatrix} \\ \sim A_1 x^{-1}\delta\partial_{\xi_1} + A_2 x^{-1}\delta\partial_{\xi_2} - 2B_1 x^{-1}\delta_1\partial_x - 2B_2 x^{-1}\delta_2\partial_x \end{bmatrix}$$

But then, for any $A_1, A_2, B_1, B_2 \in \mathbb{C}$, we have

$$x^{-1}\delta_4\partial_x + [v', x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2}] \sim x^{-1}\delta_4\partial_x + A_1x^{-1}\delta\partial_{\xi_1} + A_2x^{-1}\delta\partial_{\xi_2} - 2B_1x^{-1}\delta_1\partial_x - 2B_2x^{-1}\delta_2\partial_x \not\sim 0.$$

Therefore, the field $-\partial_{\xi_4}$ can not be lifted. This suffices to conclude that the supermanifold corresponding to the cocycle of the 8th case is not homogeneous.

6.10 Case 9. Let

$$u_2 = x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}$$
, and $u_4 = x^{-1}\delta\partial_x$.

Consider $v = -\partial_{\xi_4} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1}$. Thanks to (6) and since

$$[v, u_2] = [-\partial_{\xi_4}, x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}] = -x^{-1}\xi_2\xi_3\partial_{\xi_1} + x^{-1}\xi_1\xi_3\partial_{\xi_2} - x^{-1}\xi_1\xi_2\partial_{\xi_3}$$

is holomorphic in U_1 , let us set $v_1^{(0)} = v'$, and

$$v_1^{(1)} = -x^{-1}\xi_2\xi_3\partial_{\xi_1} + x^{-1}\xi_1\xi_3\partial_{\xi_2} - x^{-1}\xi_1\xi_2\partial_{\xi_3} + v',$$

where $v' \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1$. Since [X, Y] = 0, where

$$X := x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3},$$

$$Y := -x^{-1}\xi_2\xi_3\partial_{\xi_1} + x^{-1}\xi_1\xi_3\partial_{\xi_2} - x^{-1}\xi_1\xi_2\partial_{\xi_3}.$$

then condition (3) of Corollary 6.2 is of the form

$$[\partial_{\xi_4}, x^{-1}\delta\partial_x] = v_3^{(1)} - v_3^{(0)} + [x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}, v'].$$

Therefore,

$$x^{-1}\delta_4\partial_x + [v', x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}] \sim 0.$$

Since $v' \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1$, then we can consider (recall notation (2))

$$v' = \sum_{1 \le k \le 4} \left(A_k \xi_k (x \partial_x + \nabla) + B_k \xi_k \partial_x \right), \text{ where } A_k, B_k \in \mathbb{C}.$$

Then,

$$\begin{bmatrix} v', x^{-1}\delta_{1}\partial_{\xi_{1}} + x^{-1}\delta_{2}\partial_{\xi_{2}} + x^{-1}\delta_{3}\partial_{\xi_{3}} \end{bmatrix} \\ \sim A_{1}x^{-1}\delta_{2}\partial_{\xi_{1}} + A_{2}x^{-1}\delta_{2}\partial_{\xi_{2}} + A_{3}x^{-1}\delta_{2}\partial_{\xi_{3}} \\ -2B_{1}x^{-1}\delta_{1}\partial_{x} - 2B_{2}x^{-1}\delta_{2}\partial_{x} - 2B_{3}x^{-1}\delta_{3}\partial_{x}.$$

But then, for any $A_1, A_2, A_3, B_1, B_2, B_3 \in \mathbb{C}$, we have

$$x^{-1}\delta_4\partial_x + [v', x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3}] \sim x^{-1}\delta_4\partial_x + A_1x^{-1}\delta\partial_{\xi_1} + A_2x^{-1}\delta\partial_{\xi_2} + A_3x^{-1}\delta\partial_{\xi_3} - 2B_1x^{-1}\delta_1\partial_x - 2B_2x^{-1}\delta_2\partial_x - 2B_3x^{-1}\delta_3\partial_x \not\sim 0.$$

Hence, the field $-\partial_{\xi_4}$ can not be lifted. This shows that the supermanifold of the 9th case is not homogeneous.

6.11 Case 10. Let $t \in \mathbb{C}^{\times}$. Let

$$u_2 = t(x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4})$$
, and $u_4 = x^{-1}\delta\partial_x$.

Let $v_i = -\partial_{\xi_i} \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_{-1}$, where $i = 1, \ldots, 4$. Thanks to (6) and since

$$\begin{aligned} [v_i, u_2] &= \left[-\partial_{\xi_i}, t(x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}) \right] \\ &= -tx^{-1} \left(\frac{\partial \delta_1}{\partial \xi_i}\partial_{\xi_1} + \frac{\partial \delta_2}{\partial \xi_i}\partial_{\xi_2} + \frac{\partial \delta_3}{\partial \xi_i}\partial_{\xi_3} + \frac{\partial \delta_4}{\partial \xi_i}\partial_{\xi_4} \right) \end{aligned}$$

is holomorphic in U_1 , then set $v_1^{(0)} = v'$, where $v' \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1$, and

$$v_1^{(1)} = v' - tx^{-1} \left(\frac{\partial \delta_1}{\partial \xi_i} \partial_{\xi_1} + \frac{\partial \delta_2}{\partial \xi_i} \partial_{\xi_2} + \frac{\partial \delta_3}{\partial \xi_i} \partial_{\xi_3} + \frac{\partial \delta_4}{\partial \xi_i} \partial_{\xi_4} \right).$$

We have [A, B] = 0, where

$$A := t(x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}),$$

$$B := -tx^{-1} \left(\frac{\partial \delta_1}{\partial \xi_i}\partial_{\xi_1} + \frac{\partial \delta_2}{\partial \xi_i}\partial_{\xi_2} + \frac{\partial \delta_3}{\partial \xi_i}\partial_{\xi_3} + \frac{\partial \delta_4}{\partial \xi_i}\partial_{\xi_4} \right).$$

Hence, condition (3) of Corollary 6.2 is of the form

$$\begin{bmatrix} -\partial_{\xi_i}, x^{-1}\delta\partial_x \end{bmatrix} = v_3^{(1)} - v_3^{(0)} + \begin{bmatrix} t(x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}), v' \end{bmatrix}$$

Therefore,

$$-x^{-1}\delta_i\partial_x + t[v', x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}] \sim 0.$$

Since $v' \in \mathfrak{v}(\mathbb{CP}^1, \mathcal{O}_{\mathrm{gr}})_1$, take

$$v' = \sum_{1 \le k \le 4} \left(A_k \xi_k (x \partial_x + \nabla) + B_k \xi_k \partial_x \right), \text{ where } A_k, B_k \in \mathbb{C}.$$

Then,

$$[v', x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}]$$

= $\sum_{1 \le k \le 4} \left(2A_k x^{-1}\delta\partial_{\xi_k} - B_k x^{-2}\delta\partial_{\xi_k} - B_k x^{-1}\delta_k\partial_x - A_k\delta_k\partial_x \right)$
~ $\sum_{1 \le k \le 4} \left(2A_k x^{-1}\delta\partial_{\xi_k} - 2B_k x^{-1}\delta_k\partial_x \right).$

But then, for $B_i = -\frac{1}{2t}$, and $B_j = 0$ for $j \in \{1, \ldots, 4 \mid j \neq i\}$, and $A_k = 0$ for $k = 1, \ldots, 4$, we have

$$-x^{-1}\delta_i\partial_x + t[v', x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}]$$

$$\sim -x^{-1}\delta_i\partial_x + t\sum_{1\le k\le 4} \left(2A_kx^{-1}\delta\partial_{\xi_k} - 2B_kx^{-1}\delta_k\partial_x\right) \sim 0.$$

Thus, all fields $-\partial_{\xi_i}$ for $i = 1, \ldots, 4$ can be lifted. Hence, the supermanifold corresponding to the cocycle of the 4th case is homogeneous.

6.7. Theorem. Let supermanifold $(\mathbb{CP}^1, \mathcal{O})$ be isomorphic to the supermanifold determined by the cocycle

$$u^{(01)} = t(x^{-1}\delta_1\partial_{\xi_1} + x^{-1}\delta_2\partial_{\xi_2} + x^{-1}\delta_3\partial_{\xi_3} + x^{-1}\delta_4\partial_{\xi_4}) + x^{-1}\delta\partial_x.$$

Then (recall notation (2)),

$$\begin{split} \mathfrak{v}(\mathbb{CP}^{1},\mathcal{O})_{\overline{0}} &= < -\partial_{x}, \ x^{2}\partial_{x} + x\nabla - t\omega - \delta\partial_{x}, \ 2x\partial_{x} + \nabla, \\ \xi_{1}\partial_{\xi_{2}} - \xi_{2}\partial_{\xi_{1}}, \ \xi_{1}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{1}}, \ \xi_{2}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{2}}, \\ \xi_{1}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{1}}, \ \xi_{2}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{2}}, \ \xi_{3}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{3}} >, \ where \ \omega = \sum_{1 \leq i \leq 4} \delta_{i}\partial_{\xi_{i}}; \\ \mathfrak{v}(\mathbb{CP}^{1},\mathcal{O})_{\overline{1}} &= < -\partial_{\xi_{i}} - \frac{1}{2t}\xi_{i}\partial_{x}, \ i = 1, \dots, 4, \\ -x\partial_{\xi_{1}} + t(-\xi_{3}\xi_{4}\partial_{\xi_{2}} + \xi_{2}\xi_{4}\partial_{\xi_{4}} - \xi_{2}\xi_{3}\partial_{\xi_{4}}) - \frac{1}{2t}\xi_{1}(x\partial_{x} + \nabla) + \delta_{1}\partial_{x}, \\ -x\partial_{\xi_{2}} + t(\xi_{3}\xi_{4}\partial_{\xi_{1}} - \xi_{1}\xi_{4}\partial_{\xi_{3}} + \xi_{1}\xi_{3}\partial_{\xi_{4}}) - \frac{1}{2t}\xi_{2}(x\partial_{x} + \nabla) + \delta_{2}\partial_{x}, \\ -x\partial_{\xi_{3}} + t(-\xi_{2}\xi_{4}\partial_{\xi_{1}} + \xi_{1}\xi_{4}\partial_{\xi_{2}} - \xi_{1}\xi_{2}\partial_{\xi_{4}}) - \frac{1}{2t}\xi_{3}(x\partial_{x} + \nabla) + \delta_{3}\partial_{x}, \\ -x\partial_{\xi_{4}} + t(\xi_{2}\xi_{3}\partial_{\xi_{1}} - \xi_{1}\xi_{3}\partial_{\xi_{2}} + \xi_{1}\xi_{2}\partial_{\xi_{3}}) - \frac{1}{2t}\xi_{4}(x\partial_{x} + \nabla) + \delta_{4}\partial_{x} > . \end{split}$$

6.8 Theorem (Summary). The supermanifold isomorphic to one of the supermanifolds of cases 1-5 or 10 is homogeneous; it is not homogeneous in cases 6-9.

Description of $v(\mathcal{M})$ for homogeneous superstrings \mathcal{M} with retract 7 $\mathcal{CP}^{1|4}$

The cases are numbered as in Theorem 5.3. We reproduce here the bases found in §2.3, and multiplication tables. In all cases (recall notation (2)),

$$h := [e, f] = 2x\partial_x + \nabla$$
 and $[h, e] = 2e, [h, f] = -2f.$

- 1. Fact (well-known): $\mathfrak{v}(\mathcal{CP}^{1|4}) \simeq \mathfrak{pgl}_{\mathbb{C}}(4|2)$. 2. $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{0}} = \langle e, f, h, a_i \mid i = 1, \dots, 12 \rangle$, where

$$e = x^{2}\partial_{x} + x\nabla - \delta_{1}\partial_{\xi_{1}}, \ f = -\partial_{x}, \quad a_{1} = -x\partial_{x} - \xi_{2}\partial_{\xi_{2}}, \\ a_{2} = -x\partial_{x} - \xi_{3}\partial_{\xi_{3}}, \ a_{3} = -x\partial_{x} - \xi_{4}\partial_{\xi_{4}}, \ a_{4} = -\xi_{2}\partial_{\xi_{1}}, \ a_{5} = -\xi_{2}\partial_{\xi_{3}}, \\ a_{6} = -\xi_{2}\partial_{\xi_{4}}, \ a_{7} = -\xi_{3}\partial_{\xi_{2}}, \ a_{8} = -\xi_{3}\partial_{\xi_{1}}, \ a_{9} = -\xi_{3}\partial_{\xi_{4}}, \ a_{10} = -\xi_{4}\partial_{\xi_{2}}, \\ a_{11} = -\xi_{4}\partial_{\xi_{3}}, \ a_{12} = -\xi_{4}\partial_{\xi_{1}};$$

 $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{1}} = \langle z_i, i = 1, \dots, 14 \rangle$, where

$$\begin{aligned} z_1 &= -\partial_{\xi_1}, \ z_2 &= -\partial_{\xi_2}, \ z_3 &= -\partial_{\xi_3}, \ z_4 &= -\partial_{\xi_4}, \ z_5 &= -\xi_2 \partial_x, \\ z_6 &= -\xi_3 \partial_x, \ z_7 &= -\xi_4 \partial_x, \ z_8 &= -x \partial_{\xi_1}, \ z_9 &= -\xi_2 (x \partial_x + \nabla), \\ z_{10} &= -\xi_3 (x \partial_x + \nabla), \ z_{11} &= -\xi_4 (x \partial_x + \nabla), \ z_{12} &= -x \partial_{\xi_2} + \xi_3 \xi_4 \partial_{\xi_1}, \\ z_{13} &= -x \partial_{\xi_3} - \xi_2 \xi_4 \partial_{\xi_1}, \ z_{14} &= -x \partial_{\xi_3} + \xi_2 \xi_3 \partial_{\xi_1}. \end{aligned}$$

[,]	$ a_1 $	a_2	a_3	a_4	a_5	a_6	a_7	a_8	a_9	a_{10}	a_{11}	a_{12}
a_1	0	0	0	$-a_4$	$-a_{5}$	$-a_{6}$	a_7	0	0	a_{10}	0	0
a_2	0	0	0	0	a_5	0	$-a_{7}$	$-a_8$	$-a_{9}$	0	a_{11}	0
a_3	0	0	0	0	0	a_6	0	0	a_9	$-a_{10}$	$-a_{11}$	$-a_{12}$
a_4	a_4	0	0	0	0	0	a_8	0	0	a_{12}	0	0
a_5	a_5	$-a_5$	0	0	0	0	$a_2 - a_1$	$-a_4$	$-a_6$	a_{11}	0	0
a_6	a_6	0	$-a_6$	0	0	0	a_9	0	0	$a_3 - a_1$	$-a_{5}$	$-a_4$
a_7	$-a_7$	a_7	0	$-a_8$	$a_1 - a_2$	$-a_{9}$	0	0	0	0	a_{12}	0
a_8	0	a_8	0	0	a_4	0	0	0	0	0	a_{10}	0
a_9	0	a_9	$-a_9$	0	a_6	0	0	0	0	$-a_{7}$	$a_3 - a_2$	$-a_8$
a_{10}	$-a_{10}$	0	$-a_{10}$	$-a_{12}$	$-a_{11}$	$a_1 - a_3$	0	0	a_7	0	0	0
a_{11}	0	$-a_{11}$	a_{11}	0	0	a_5	$-a_{12}$	$-a_{10}$	$a_2 - a_3$	0	0	0
a_{12}	0	0	a_{12}	0	0	a_4	0	0	a_8	0	0	0

$$[h, a_i] = [e, a_i] = [f, a_i] = 0$$
 for all $i = 1, \dots, 12$.

[,]	$ z_1 $	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z_{10}	z_{11}	z_{12}	z_{13}	z_{14}
e	$-z_8$	$-z_{12}$		$-z_{14}$	$-z_{9}$	$-z_{10}$	$-z_{11}$	0	0	0	0	0	0	0
f	0	0	0	0	0	0	0	$-z_{1}$	$-z_{5}$	$-z_6$	$-z_{7}$	$-z_2$	$-z_{3}$	$-z_4$
h	$ -z_1$	$-z_2$	$-z_3$	$-z_4$	$-z_{5}$	$-z_{6}$	$-z_{7}$	z_8	z_9	z_{10}	z_{11}	z_{12}	z_{13}	z_{14}
a_1	0	z_2	0	0	0	z_6	z_7	$-z_{8}$	$-z_9$	0	0	0	$-z_{13}$	$-z_{14}$
a_2	0	0	z_3	0	z_5	0	z_7	$-z_{8}$	0	$-z_{10}$	0	$-z_{12}$	0	$-z_{14}$
a_3	0	0	0	z_4	z_5	z_6	0	$-z_{8}$	0	0	$-z_{11}$	$-z_{12}$	$-z_{13}$	0
a_4	0	z_1	0	0	0	0	0	0	0	0	0	z_8	0	0
a_5	0	z_3	0	0	0	$-z_{5}$	0	0	0	$-z_9$	0	$-z_{12}$	0	0
a_6	0	z_4	0	0	0	0	$-z_{5}$	0	0	0	$-z_9$	z_{14}	0	0
a_7	0	0	z_2	0	z_6	0	0	0	$-z_{10}$	0	0	0	z_{12}	0
a_8	0	0	z_1	0	0	0	0	0	0	0	0	0	z_8	0
a_9	0	0	z_4	0	0	0	$-z_{6}$	0	0	0	$-z_{10}$	0	z_4	0
a_{10}	0	0	0	z_2	$-z_{7}$	0	0	0	$-z_{11}$	0	0	0	0	z_{12}
a_{11}	0	0	0	z_3	0	$-z_{7}$	0	0	0	$-z_{11}$	0	0	0	z_{13}
a_{12}	0	0	0	z_1	0	0	0	0	0	0	0	0	0	z_8
[,]	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z_{10}	z_{11}	z_{12}	z_{13}	z_1
z_1	0	0	0	0	0	0	0	0	a_4	a_8	a_{12}	0	0	C
z_2	0	0	0	0	-f	0	0	0	a_1+h	a_7	a_{10}	0	$-a_{12}$	a
z_3	0	0	0	0	0	-f	0	0	a_5	a_2+h	a_{11}	a_{12}	0	-0
z_4	0	0	0	0	0	0	-f	0	a_8	a_9	a_3+h	$-a_8$	a_4	C
z_5	0	-f	0	0	0	0	0	$-a_4$	0	0	0	$-a_1$	$-a_5$	-0
z_6	0	0	-f	0	0	0	0	$-a_{8}$	0	0	0	$-a_{7}$	$-a_{2}$	-0
z_7	0	0	0	-f	0	0	0	$-a_{12}$	0	0	0	$-a_{10}$	$-a_{11}$	-0
z_8	0	0	0	0	$-a_4$	$-a_8$	$-a_{12}$	0	0	0	0	0	0	C
z_9	a_4	a_1+h	a_5	a_6	0	0	0	0	0	0	0	e	0	C
z_{10}	a_8	a_7	a_2+h	a_9	0	0	0	0	0	0	0	0	e	C
z_{11}	a_{12}	a_{10}	a_{11}	a_3+h	0	0	0	0	0	0	0	0	0	ϵ
z_{12}	0	0	a_{12}	$-a_8$	$-a_1$	$-a_{7}$	$-a_{10}$	0	e	0	0	0	0	C
z_{13}	0	$-a_{12}$	0	a_4	$-a_5$	$-a_{2}$	$-a_{11}$	0	0	e	0	0	0	C
z_{14}	0	a_8	$-a_4$	0	$-a_6$	$-a_9$	$-a_3$	0	0	0	e	0	0	0

3. We have $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{0}} = \langle e, f, h, a_i \mid i = 1, \dots, 9 \rangle$, where

$$e = x^{2}\partial_{x} + x\nabla - \delta_{1}\partial_{\xi_{1}} - \delta_{2}\partial_{\xi_{2}}, \quad f = -\partial_{x}, \quad a_{1} = -x\partial_{x} - \xi_{3}\partial_{\xi_{3}}, \\ a_{2} = -x\partial_{x} - \xi_{4}\partial_{\xi_{4}}, \quad a_{3} = \xi_{1}\partial_{\xi_{2}} - \xi_{2}\partial_{\xi_{1}}, \quad a_{4} = -\xi_{3}\partial_{\xi_{1}}, \quad a_{5} = -\xi_{3}\partial_{\xi_{2}}, \\ a_{6} = -\xi_{3}\partial_{\xi_{4}}, \quad a_{7} = -\xi_{4}\partial_{\xi_{1}}, \quad a_{8} = -\xi_{4}\partial_{\xi_{2}}, \quad a_{9} = -\xi_{4}\partial_{\xi_{3}}; \end{cases}$$

 $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{1}} = \langle z_i \mid i = 1, \dots, 12 \rangle$, where

$$\begin{aligned} z_1 &= -\partial_{\xi_1}, \, z_2 = -\partial_{\xi_2}, \, z_3 = -\partial_{\xi_3}, \, z_4 = -\partial_{\xi_4}, \, z_5 = -\xi_3 \partial_x, \\ z_6 &= -\xi_4 \partial_x, \, z_7 = -x \partial_{\xi_1} - \xi_3 \xi_4 \partial_{\xi_2}, \, z_8 = -x \partial_{\xi_2} + \xi_3 \xi_4 \partial_{\xi_1}, \\ z_9 &= -x \partial_{\xi_3} - \xi_2 \xi_4 \partial_{\xi_1} + \xi_1 \xi_4 \partial_{\xi_2}, \, z_{10} = -x \partial_{\xi_4} + \xi_2 \xi_3 \partial_{\xi_1} - \xi_1 \xi_3 \partial_{\xi_2}, \\ z_{11} &= -\xi_3 (x \partial_x + \nabla), \, z_{12} = -\xi_4 (x \partial_x + \nabla). \end{aligned}$$

Mikhail Bashkin

	$[h, a_i] = [e, a_i] = [f, a_i] = 0, \ i = 1, \dots, 9.$												
[,]	a_1	a_2	a_{Ξ}	3 0	ι_4	a_5	a	l_6	a_7	C	ι_8	a_9	
a_1	0	0	0	_	a_4	$-a_5$	_	a_6	0		0	a_9	
a_2	0	0	0		0	0	a	l_6	$-a_{7}$	_	a_8	$-a_9$	
a_3	0	0	0		a_5	a_4	()	$-a_{8}$		l_7	0	
a_4	a_4	0	a_{\sharp}	5	0	0	()	0		0	a_7	
a_5	a_5	0	-a	l_4	0	0	()	0		0	a_8	
a_6	a_6	$-a_{\epsilon}$	₃ 0		0	0	()	$-a_4$	_	a_5 a_5	$a_2 - a_1$	
a_7	0	a_7	a_8	3	0	0	a	l_4	0		0	0	
a_8	0	a_8	-a	17	0	0	a	l_5	0		0	0	
a_9	$-a_{9}$	a_9	0	_	a_7	$-a_{8}$	a_1 -	$-a_{2}$	0		0	0	
[,]	z_1	z_2	z_3	z_4	z_5	z_6	z_7	$\frac{z_8}{0}$	$\frac{z_9}{0}$	z_{10}	z_{11}	z_{12}	
e	$-z_{7}$	$-z_{8}$				$-z_{12}$	0			0	0	0	
f	0	0	0	0	0	0	$-z_1$	$-z_2$	$-z_{3}$	$-z_4$	$-z_{5}$	$-z_6$	
h	$-z_1$	$-z_{2}$			$-z_{5}$	$-z_6$	z_7	z_8	z_9	z_{10}	z_{11}	z_{12}	
a_1	0	0	z_3	0	0	z_6	$-z_{7}$	$-z_{8}$	0	$-z_{10}$		0	
a_2	0	0	0	z_4	z_5	0	$-z_{7}$	$-z_{8}$	$-z_{9}$	0	0	z_{12}	
a_3	$-z_2$	z_1	0	0	0	0	$-z_{8}$	z_7	0	0	0	0	
a_4	0	0	z_1	0	0	0	0	0	z_7	0	0	0	
a_5	0	0	z_2	0	0	0	0	0	z_8	0	0	0	
a_6	0	0	z_4	0	0	$-z_{5}$	0	0	z_{10}	0	0	$-z_{11}$	
a_7	0	0	0	z_1	0	0	0	0	0	z_7	0	0	
a_8	0	0	0	z_2	0	0	0	0	0	z_8	0	0	
a_9	0	0	0	z_3	$-z_{6}$	0	0	0	0	z_9	$-z_{12}$	0	
[,]	$ z_1 $	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z_{10}	z_{11}	z_{12}	
z_1	0	0	0	0	0	0	0	0	a_8	$-a_{5}$	a_4	a_7	
z_2	0	0	0	0	0	0	0	0	$-a_7$	a_4	a_5	a_8	
z_3	0	0	0	0	-f	0	$-a_8$	a_7	0	$-a_3$	a_1+h	a_9	
z_4	0	0	0	0	0	-f	a_5	$-a_4$	a_3	0	a_6	a_2+h	
z_5	0	0	-f	0	0	0	$-a_4$	$-a_5$	$-a_1$	$-a_6$	0	0	
z_6	0	0	0	-f	0	0	$-a_{7}$	$-a_{8}$	$-a_{9}$	$-a_2$	0	0	
z_7	0	0	$-a_{8}$	a_7	$-a_4$	$-a_{7}$	0	0	0	0	0	0	
z_8	0	0	a_7	$-a_4$	$-a_{5}$	$-a_8$	0	0	0	0	0	0	
z_9	a ₈	$-a_{7}$	0	a_3	$-a_1$	$-a_{9}$	0	0	0	0	e	0	
z_{10}	$ -a_5 $	a_4	$-a_3$	0	$-a_6$	$-a_{2}$	0	0	0	0	0	e	
z_{11}	a_4	a_5	a_1+h	a_6	0	0	0	0	e	0	0	0	
z_{12}	a_7	a_8	a_9	a_2+h	0	0	0	0	0	e	0	0	
$\mathfrak{v}(\mathbb{CP}^1)$	$(\mathcal{O})_{\overline{\alpha}} =$	$= \langle e_{-} \rangle$	f. h. a	$a_i \mid i =$	= 1	$\ldots 6\rangle$.	wher	re					

4.
$$\mathfrak{v}(\mathbb{CP}^{1}, \mathcal{O})_{\overline{0}} = \langle e, f, h, a, a_{i} | i = 1, ..., 6 \rangle$$
, where
 $e = x^{2}\partial_{x} + x\nabla - \delta_{1}\partial_{\xi_{1}} - \delta_{2}\partial_{\xi_{2}} - \delta_{3}\partial_{\xi_{3}}, f = -\partial_{x}, a = -x\partial_{x} - \xi_{4}\partial_{\xi_{4}},$
 $a_{1} = \xi_{1}\partial_{\xi_{2}} - \xi_{2}\partial_{\xi_{1}}, a_{2} = \xi_{1}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{1}}, a_{3} = \xi_{2}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{2}},$
 $a_{4} = -\xi_{4}\partial_{\xi_{1}}, a_{5} = -\xi_{4}\partial_{\xi_{2}}, a_{6} = -\xi_{4}\partial_{\xi_{3}};$

$$\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{1}} = \langle z_i \mid i = 1, \dots, 10 \rangle$$
, where

$$\begin{aligned} z_1 &= -\partial_{\xi_1}, \ z_2 &= -\partial_{\xi_2}, \ z_3 &= -\partial_{\xi_3}, \ z_4 &= -\xi_4 \partial_x, \ z_5 &= -\partial_{\xi_4}, \\ z_6 &= -x \partial_{\xi_1} - \xi_3 \xi_4 \partial_{\xi_2} + \xi_2 \xi_4 \partial_{\xi_3}, \ z_7 &= -x \partial_{\xi_2} + \xi_3 \xi_4 \partial_{\xi_1} - \xi_1 \xi_4 \partial_{\xi_3}, \\ z_8 &= -x \partial_{\xi_3} - \xi_2 \xi_4 \partial_{\xi_1} + \xi_1 \xi_4 \partial_{\xi_2}, \ z_9 &= -\xi_4 (x \partial_x + \nabla), \\ z_{10} &= -x \partial_{\xi_4} + \xi_2 \xi_3 \partial_{\xi_1} - \xi_1 \xi_3 \partial_{\xi_2} + \xi_1 \xi_2 \partial_{\xi_3}. \end{aligned}$$

	[h,	v] =	[e, v]	= [f,	v] = 0), wher	e $v \in$	$\{a, a_i \mid$	i = 1	$, \dots, 6\}$	} .
[,]	C	ι	a_1	a_2	2	a_3	a_4	a	l_5	a_6
\overline{a}		()	0	0		0	$-a_4$	_	a_5	$-a_6$
a_1		0)	0	-a	l_3	a_2	$-a_5$	G	l_4	0
a_2		()	a_3	0	-	$-a_1$	$-a_6$	(0	a_4
a_3		()	$-a_2$	a_1	L	0	0	_	a_6	a_5
a_4		a	4	a_5	a_{ϵ}	3	0	0	(0	0
a_5		a	5	$-a_4$	0		a_6	0	(0	0
a_6		a	6	0	-a	14 -	$-a_5$	0	(0	0
[,]	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z_{10}
e		0	0	0	0	0	$-z_1$	$-z_{2}$	$-z_{3}$	$-z_4$	$-z_{5}$
f		$-z_{6}$	$-z_{7}$	$-z_{8}$	$-z_{9}$	$-z_{10}$	0	0	0	0	0
h		$-z_{1}$	$-z_{2}$	$-z_{3}$	$-z_{4}$	$-z_{5}$	z_6	z_7	z_8	z_9	z_{10}
a		0	0	0	0	z_5	$-z_{6}$	$-z_{7}$	$-z_{8}$	$-z_{9}$	0
a_1		$-z_{2}$	z_1	0	0	0	$-z_{7}$	z_6	0	0	0
a_2		$-z_{3}$	0	z_1	0	0	$-z_{8}$	0	z_6	0	0
a_3	3	0	$-z_{3}$	z_2	0	0	0	$-z_{8}$	z_7	0	0
a_4		0	0	0	0	z_1	0	0	0	0	z_6
a_5		0	0	0	0	z_2	0	0	0	0	z_7
a_6	6	0	0	0	0	z_3	0	0	0	0	z_8
[,]	-	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8	z_9	z_{10}
z_1		0	0	0	0	0	0	$-a_6$	a_5	a_4	$-a_3$
z_2		0	0	0	0	0	a_6	0	$-a_4$	a_5	a_2
z_3		0	0	0	0	0	$-a_5$	a_4	0	a_6	$-a_1$
z_4		0	0	0	0	-f	$-a_4$	$-a_5$	$-a_6$	0	-a
z_5		0	0	0	-f	0	a_3	$-a_2$	a_1	a+h	0
z_6	1	0	a_6	$-a_5$	$-a_4$	a_3	0	0	0	0	0
z_7		$-a_6$	0	a_4	$-a_{5}$	$-a_2$	0	0	0	0	0
z_8		-	$-a_4$	0	$-a_6$	a_1	0	0	0	0	0
z_9		a_4	a_5	a_6	0	a+h	0	0	0	0	e
z_{10}	-	$-a_3$	a_2	$-a_1$	-a	0	0	0	0	e	0

$$\mathbf{5.} \ \mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{0}} = \langle e, f, h, a_i \mid i = 1, \dots, 6 \rangle, \text{ where}$$

$$e = x^{2}\partial_{x} + x\nabla - \omega, \ f = -\partial_{x}, \quad a_{1} = \xi_{1}\partial_{\xi_{2}} - \xi_{2}\partial_{\xi_{1}}, \ a_{2} = \xi_{1}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{1}}, \\ a_{3} = \xi_{1}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{1}}, \ a_{4} = \xi_{2}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{2}}, \ a_{5} = \xi_{2}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{2}}, \\ a_{6} = \xi_{3}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{3}};$$

 $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{1}} = \langle z_i \mid i = 1, \dots, 8 \rangle$, where

$$z_{1} = -\partial_{\xi_{1}}, z_{2} = -\partial_{\xi_{2}}, z_{3} = -\partial_{\xi_{3}}, z_{4} = -\partial_{\xi_{4}}, z_{5} = -x\partial_{\xi_{1}} - \xi_{3}\xi_{4}\partial_{\xi_{2}} + \xi_{2}\xi_{4}\partial_{\xi_{3}} - \xi_{2}\xi_{3}\partial_{\xi_{4}}, z_{6} = -x\partial_{\xi_{2}} + \xi_{3}\xi_{4}\partial_{\xi_{1}} - \xi_{1}\xi_{4}\partial_{\xi_{3}} + \xi_{1}\xi_{3}\partial_{\xi_{4}}, z_{7} = -x\partial_{\xi_{3}} - \xi_{2}\xi_{4}\partial_{\xi_{1}} + \xi_{1}\xi_{4}\partial_{\xi_{2}} - \xi_{1}\xi_{2}\partial_{\xi_{4}}, z_{8} = -x\partial_{\xi_{4}} + \xi_{2}\xi_{3}\partial_{\xi_{1}} - -\xi_{1}\xi_{3}\partial_{\xi_{2}} + \xi_{1}\xi_{2}\partial_{\xi_{3}}.$$

$$[h, a_i] = [e, a_i] = [f, a_i] = 0, \ i = 1, \dots, 6$$

Direct computations show that $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{0}} \simeq \mathfrak{s}l_2 \oplus \mathfrak{s}l_2 \oplus \mathfrak{s}l_2$.

[,]	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8
e	$-z_{5}$	$-z_{6}$	$-z_{7}$	$-z_{8}$	0	0	0	0
f	0	0	0	0	$-z_{1}$	$-z_{2}$	$-z_{3}$	$-z_{4}$
h	$-z_1$	$-z_{2}$	$-z_{3}$	$-z_4$	z_5	z_6	z_7	z_8
a_1	$-z_{2}$	z_1	0	0	$-z_{6}$	z_5	0	0
a_2	$-z_{3}$	0	z_1	0	$-z_{7}$	0	z_5	0
a_3	$-z_{4}$	0	0	z_1	$-z_{8}$	0	0	z_5
a_4	0	$-z_{3}$	z_2	0	0	$-z_{7}$	z_6	0
a_5	0	$-z_{4}$	0	z_2	0	$-z_{8}$	0	z_6
a_6	0	0	$-z_{4}$	z_3	0	0	$-z_{8}$	z_7
[,]	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8
z_1	0	0	0	0	0	$-a_6$	a_5	$-a_{3}$
z_2	0	0	0	0	a_6	0	$-a_4$	a_2
z_3	0	0	0	0	$-a_5$	a_4	0	$-a_1$
z_4	0	0	0	0	a_3	$-a_2$	a_1	0
z_5	0	a_6	$-a_{5}$	a_3	0	0	0	0
z_6	$-a_6$	0	a_4	$-a_2$	0	0	0	0
z_7	a_5	$-a_4$	0	a_1	0	0	0	0
z_8	$-a_3$	a_2	$-a_1$	0	0	0	0	0

Let $(\sigma_1, \sigma_2, \sigma_3) \neq (0, 0, 0)$ and $\sigma_1 + \sigma_2 + \sigma_3 = 0$. In [BO1], the family of Lie superalgebras $\Gamma(\sigma_1, \sigma_2, \sigma_3)$, discovered by Kaplansky [Kapp*], [Kap*], is described. Observe that the Lie superalgebra $\mathfrak{osp}(4|2; \alpha)$, where $\alpha = \frac{\sigma_i}{\sigma_j}$ for $\sigma_j \neq 0$, is simple except for $\alpha = 0$ or -1.

Since $\Gamma(\sigma_1, \sigma_2, \sigma_3) \simeq \Gamma(\sigma'_1, \sigma'_2, \sigma'_3)$ if and only if $(\sigma'_1, \sigma'_2, \sigma'_3) = a(\sigma_1, \sigma_2, \sigma_3)$, where $a \in \mathbb{C}^{\times}$ and the triple σ differs from σ' by a permutation of its components, see [BGL*], it follows that $\mathfrak{v}(\mathcal{M})$ is isomorphic to $\Gamma(1, -1, 0) = \mathfrak{osp}(4|2; -1)$.

10. We have $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{0}} = \langle e, f, h, a_i \mid i = 1, \dots, 6 \rangle$, where

$$e = x^{2}\partial_{x} + x\nabla - t\omega - \delta\partial_{x}, \quad f = -\partial_{x}, \\ a_{1} = \xi_{1}\partial_{\xi_{2}} - \xi_{2}\partial_{\xi_{1}}, \quad a_{2} = \xi_{1}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{1}}, \quad a_{3} = \xi_{1}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{1}}, \\ a_{4} = \xi_{2}\partial_{\xi_{3}} - \xi_{3}\partial_{\xi_{2}}, \quad a_{5} = \xi_{2}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{2}}, \quad a_{6} = \xi_{3}\partial_{\xi_{4}} - \xi_{4}\partial_{\xi_{3}}; \end{cases}$$

$$\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{1}} = \langle z_i \mid i = 1, \dots, 8 \rangle, \text{ where }$$

$$\begin{aligned} z_1 &= -\partial_{\xi_1} - \frac{1}{2t}\xi_1\partial_x, \quad z_2 = -\partial_{\xi_2} - \frac{1}{2t}\xi_2\partial_x, \\ z_3 &= -\partial_{\xi_3} - \frac{1}{2t}\xi_3\partial_x, \quad z_4 = -\partial_{\xi_4} - \frac{1}{2t}\xi_4\partial_x, \\ z_5 &= -x\partial_{\xi_1} + t(-\xi_3\xi_4\partial_{\xi_2} + \xi_2\xi_4\partial_{\xi_3} - \xi_2\xi_3\partial_{\xi_4}) - \frac{1}{2t}\xi_1(x\partial_x + \nabla) + \delta_1\partial_x, \\ z_6 &= -x\partial_{\xi_2} + t(\xi_3\xi_4\partial_{\xi_1} - \xi_1\xi_4\partial_{\xi_3} + \xi_1\xi_3\partial_{\xi_4}) - \frac{1}{2t}\xi_2(x\partial_x + \nabla) + \delta_2\partial_x, \\ z_7 &= -x\partial_{\xi_3} + t(-\xi_2\xi_4\partial_{\xi_1} + \xi_1\xi_4\partial_{\xi_2} - \xi_1\xi_2\partial_{\xi_4}) - \frac{1}{2t}\xi_3(x\partial_x + \nabla) + \delta_3\partial_x, \\ z_8 &= -x\partial_{\xi_4} + t(\xi_2\xi_3\partial_{\xi_1} - \xi_1\xi_3\partial_{\xi_2} + \xi_1\xi_2\partial_{\xi_3}) - \frac{1}{2t}\xi_4(x\partial_x + \nabla) + \delta_4\partial_x. \end{aligned}$$

$$[e, a_i] = [f, a_i] = [h, a_i] = 0, \ i = 1, \dots, 6$$

Direct computations show that $\mathfrak{v}(\mathbb{CP}^1, \mathcal{O})_{\overline{0}} \simeq \mathfrak{s}l_2 \oplus \mathfrak{s}l_2 \times \mathfrak{s}l_2$.

[,]	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8
f	0	0	0	0	$-z_{1}$	$-z_{2}$	$-z_{3}$	$-z_4$
e	z_5	z_6	z_7	z_8	0	0	0	0
h	z_1	z_2	z_3	z_4	$-z_{5}$	$-z_{6}$	$-z_{7}$	$-z_{8}$
a_1	$-z_{2}$	z_1	0	0	$-z_{6}$	z_5	0	0
a_2	$-z_{3}$	0	z_1	0	$-z_{7}$	0	z_5	0
a_3	$-z_4$	0	0	z_1	$-z_{8}$	0	0	z_5
a_4	0	$-z_{3}$	z_2	0	0	$-z_{7}$	z_6	0
a_5	0	$-z_{4}$	0	z_2	0	$-z_{8}$	0	z_6
a_6	0	0	$-z_{4}$	z_3	0	0	$-z_{8}$	z_7

[,]	z_1	z_2	z_3	z_4	z_5	z_6	z_7	z_8
z_1	$-\frac{1}{t}f$	0	0	0	$\frac{1}{2t}h$	$-ta_6 + \frac{1}{2t}a_1$	$ta_5 + \frac{1}{2t}a_2$	$-ta_4 + \frac{1}{2t}a_3$
z_2	0	$-\frac{1}{t}f$	0	0	$ta_6 - \frac{1}{2t}a_1$	$\frac{1}{2t}h$	$-ta_3+rac{1}{2t}a_4$	$ta_2 + \frac{1}{2t}a_5$
z_3	0	0	$-\frac{1}{t}f$	0	$-ta_5 - \frac{1}{2t}a_2$	$ta_3 - \frac{1}{2t}a_4$	$\frac{1}{2t}h$	$-ta_1 + \frac{1}{2t}a_6$
z_4	0	0	0	$-\frac{1}{t}f$	$ta_4 - \frac{1}{2t}a_3$	$-ta_2 - \frac{1}{2t}a_5$	$ta_1 - \frac{1}{2t}a_6$	$\frac{1}{2t}h$
z_5	$\frac{1}{2t}h$	$-ta_6 + \frac{1}{2t}a_1$	$ta_5 + \frac{1}{2t}a_2$	$-ta_4 + \frac{1}{2t}a_3$	$\frac{1}{t}e$	0	0	0
z_6	$ta_6 - \frac{1}{2t}a_1$	$\frac{1}{2t}h$	$-ta_3+\frac{1}{2t}a_4$	$ta_2 + \frac{1}{2t}a_5$	0	$\frac{1}{t}e$	0	0
z_7	$-ta_5 - \frac{1}{2t}a_2$	$ta_3 - \frac{1}{2t}a_4$	$\frac{1}{2t}h$	$-ta_1 + \frac{1}{2t}a_6$	0	0	$\frac{1}{t}e$	0
z_8	$ta_4 - \frac{1}{2t}a_3$	$-ta_2 - \frac{1}{2t}a_5$	$ta_1 - \frac{1}{2t}a_6$	$\frac{1}{2t}h$	0	0	0	$\frac{1}{t}e$

Comparing the above table with the tables in [BO1] we deduce that this Lie superalgebra is

$$\Gamma(\frac{1}{2t}, -\frac{1}{2}(\frac{1}{2t}+t), -\frac{1}{2}(\frac{1}{2t}-t)) \simeq \Gamma(2, -(2t^2+1), 2t^2-1) \simeq \mathfrak{osp}(4|2; \frac{2t^2+1}{1-2t^2}).$$

References

[BGL*] Bouarroudj S., Grozman P., Leites D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 5(60) (2009), 63 pages.

- [BGLS*] Bouarroudj S., Grozman P., Leites D., Shchepochkina I., Minkowski superspaces and superstrings as almost real-complex supermanifolds. Theor. and Mathem. Physics, **173**(3), (2012) 1687–1708.
 - [BO1] Bunegina V.A., Onishchik A.L., Two families of flag supermanifolds. Different. Geom. and its Appl. (1994) 4, 329–360.
 - [BO2] Bunegina V.A., Onishchik A.L., Homogeneous supermanifolds related with complex projective line. In: Algebraic geometry. I. J. Math. Sci. (1996) 82(4), 3503–3527.
 - [Gr] Green P., On holomorphic graded manifolds. Proc. of the AMS. (1982) 85(4), 587–590.
- [Kapp*] Kaplansky I., Graded Lie algebras I, II, preprints, Univ. Chicago, Chicago, Ill., 1975, see https://web.osu.cz/~Zusmanovich/links/files/kaplansky/.
- [Kap*] Kaplansky I., Superalgebras. Pacific J. Math., (1980) 86(1), 93–98
 - [O1] Onishchik A.L., A Construction of Non-Split Supermanifolds. Annals of Global Analysis and Geometry, (1998) 16 309–333.
 - [O2] Onishchik A.L., Non-Abelian Cohomology and Supermanifolds. SFB 288. Preprint N 360. Berlin, (1998) 1–38.
 - [O3] Onishchik A.L., Lifting of holomorphic actions on complex supermanifolds. Lie Groups, Geometric Structures and Differential Geometry. Adv. Studies in Pure Math. 37. Kyoto, (2002) 317–335.
 - [W*] Witten E. On Super Riemann Surfaces and String Theory, Pure and Applied Mathematics Quarterly, (2019) 15(1), 1-607.